MicroPython Documentation
Release 1.12

Damien P. George, Paul Sokolovsky, and contributors

Jan 16, 2020

Contents

1 MicroPython libraries 1
1.1 Python standard libraries and micro-libraries Lo oL, 2
1.1.1 Builtin functions and exceptions e 2

1.1.2 cmath — mathematical functions for complex numbers 5

1.1.3 gc —control the garbage collector 5

1.1.4 math-—mathematical functions 6

1.1.5 sys —system specific functions L e 9

1.1.6 uarray-—arraysof numericdata Lo oL 11

1.1.7 ubinascii —binary/ASCII conversions 11

1.1.8 ucollections —collection and container types o oottt 11

1.1.9 uerrno-—systemerror codes e e 13
1.1.10 uhashlib —hashing algorithms 13
1.1.11 uheapg-heap queue algorithm 14
1.1.12 uio—input/output Streams oo e e e 14
1.1.13 ujson—-JSON encoding and decoding 16
1.1.14 uos —basic “operating SyStem” SEIVICES « « ¢ v v v v vt e e e e e e e e 16
1.1.15 ure —simple regular eXpressions v vt e i e e e e e e e e e e e e e e 20
1.1.16 uselect —waitforeventsonasetof streams 23
1.1.17 usocket —socketmodule 24
1.1.18 ussl—SSL/TLSmodule i i 29
1.1.19 ustruct — pack and unpack primitive datatypeso 31
1.1.20 utime —timerelated functions 31

1.1.21 uzlib-—zlibdecompression v i v v i i e e e e e e e e 34
1.1.22 _thread —multithreading support e 35

1.2 MicroPython-specific libraries L 35
1.2.1 btree-simple BTreedatabase 35

1.2.2 framebuf — frame buffer manipulation 0oL, 37

1.2.3 machine — functions related to the hardware 40

1.2.4 micropython —access and control MicroPython internals 58

1.2.5 network —metwork configurationo o oL oL 60

1.2.6 ubluetooth—Ilow-level Bluetooth, 70

1.2.7 ucryptolib —cryptographicciphers o, 75

1.2.8 uctypes —access binary datain a structured way 75

1.3 Port-specific libraries L e e e e e e e e e 80
1.4 Libraries specifictothe pyboard L 80
1.4.1 pyb—functionsrelated totheboard L. 80

2

142 1cdl60cr —control of LCDI6GOCR display oo o oo 119

1.5 Libraries specifictothe WiPy e e 125
1.5.1 wipy—WiPyspecificfeatures 126
1.5.2 class ADCWiPy — analog to digital conversion 126
1.5.3 class ADCChannel — read analog values from internal or external sources 127
1.5.4 class TimerWiPy — control hardware timers 127
1.5.5 class TimerChannel — setup a channel foratimer. 128
1.6 Libraries specific to the ESP8266 and ESP32 o .. 129
1.6.1 esp — functions related to the ESP8266 and ESP32 129
1.6.2 esp32 — functionality specifictothe ESP32 131
MicroPython language and implementation 135
2.1 Glossaryo e e e 135
2.2 The MicroPython Interactive Interpreter Mode (akaREPL) 137
22,1 Auto-indent L e e e e e 137
222 Auto-completion e e e e e e e e e e e e e e e 138
2.2.3 Interrupting a running Program ¢ . v v v v e e e e e e e e e e e e e e e e e e 138
224 Pastemode e e e 139
225 Softreset e e e e e e e 140
2.2.6 The special variable _ (underscore)o 140
227 Rawmode e e 140
2.3 MicroPython .mpy files e e e e e e 141
2.3.1 Versioning and compatibility of . mpy files oo 141
2.3.2 Binary encoding of .mpy files L 142
2.4 Writing interrupt handlers Lo 143
2.4.1 Tips and recommended practicesol 143
242 MICroPythOn iSSUES v v v v i i e 144
243 EXCEPHONS . . v v v v it e 146
244 GeneraliSSUES e e e e e 147
2.5 Maximising MicroPythonspeed L 149
2.5.1 Designing forspeed L e e 150
2.5.2 Identifying the slowest sectionofcode 151
2.5.3 MicroPython code improvements v v v vt et e e e e e e e e e e e e 152
254 The Native code emitter e 152
255 TheVipercode emitter e 153
2.5.6 Accessing hardware directly L L 154
2.6 MicroPython on microcontrollers e e e e e e e e e 155
2.6.1 Flashmemory o 0 i e e e e e e e e e e e e 155
262 RAM . . e 155
263 Theheap e 159
2.6.4 String Operations L. e e e e e e e e e e e e e e e 160
2.6.5 POSESCIIPE . . . v v v v e e e e e 161
2.7 Distribution packages, package management, and deploying applications 161
27.1 0 OVEIVIEW . . . v vt i e e e e e e e e e e e e 161
272 Distribution packageso e e e e e e e 161
273 upippackagemanager. Ll e 162
274 Cross-installing packages L e 163
2.7.5 Cross-installing packages with freezing 163
2.7.6 Creating distribution packages e e 164
277 Application TESOUICES v v v v v vttt it e e e e e e e e e e e 164
277.8 References L e e e e e e 165
2.8 Inline assembler for Thumb2 architectures 165
2.8.1 Document CONVENtIONS v v v v v vt v e e e e e e e e e e e e e e e e 166
2.8.2 InStruction Cate@ories . . . « v v v v vt e 166

3

4

5

2.83 Usageexampleso e e e e e e
284 References
2.9 Working with filesystems L. e e e e e e e e
29.1 VES
2.9.2 Blockdevices L e e e e
2.9.3 FilesyStemso e e e e e e e e
2.10 The pyboard.py tool e e e e e e e e e e
2.10.1 Runningacommandonthedevice e
2.10.2 Runningascriptonthedevice e
2.10.3 FileSyStem acCess v v v v v i i e
2.10.4 Using the pyboard library
Developing and building MicroPython
3.1 MicroPython external C modules
3.1.1 Structure of anexternal Cmodule L o
3.1.2 Basicexample e e e e e e e e e e e
3.1.3 Compiling the cmodule into MicroPython
3.1.4 Module usage in MicroPython o
3.2 MicroPython string interningo L e e e e e e e e e e e e
3.2.1 Compile-time QSTR generation
3.2.2 Run-time QSTR generation L i e e
3.3 Native machine code in .mpy files e e
3.3.1 Supported features and limitations oL o L
33.2 Defininganativemodule L o e
333 Minimalexample L. L e e e e
334 Compilingthemodule
3.3.5 Module usage in MicroPython e
3.3.6 Furtherexamples e e e e e e e e
MicroPython license information
Quick reference for the pyboard
5.1 General information about the pyboard oL o
5.1.1 Localfilesystemand SDcard e
5.2 Bootmodes
5.1.3 Errors: flashing LEDs o0 e
5.1.4 Guide for using the pyboard with Windows
5.1.5 The pyboard hardware L
5.1.6 Datasheets for the components onthe pyboard
5.1.7 Datasheets for other components e
5.2 MicroPython tutorial for the pyboard
5.2.1 Introduction tothe pyboard L. L e
5.2.2 Running your firSt SCripto e e e
5.2.3 Getting a MicroPython REPL prompt
5.2.4 Turning on LEDs and basic Pythonconcepts
5.2.5 Switches, callbacks and interrupts oL
5.2.6 Theaccelerometer
5.2.7 Safe mode and factory reset L. L. e e
5.2.8 Making the pyboard actasaUSBmouse
529 TheTimers o it
52,10 Inlineassembler.
5.2.11 Powercontrol L e e
5.2.12 Tutorials requiring extra COMPONENLS+« v v v v v v v v e e e e e e e e e e
5.2.13 Tips, tricks and useful thingstoknow L oo

187
187
187
188
189
189
190
190
191
191
191
192
193
194
194
194

195

5.3 General board control Ll 230
54 Delayand timing e e e e e e e e e e e e e e 230
5.5 Internal LEDs o e e e e e e e 231
5.6 Internal switch L L e e e e e 231
5.7 Pinsand GPIO e 231
5.8 Servocontrol L L e e e e e e e e 231
5.9 External iINterrupts o e 232
500 TIMETS . . . o o ot ot e e e e e e e e e e e e e 232
5.11 RTC (real time clock) e e e e e e e 232
5.12 PWM (pulse width modulation) L e 232
5.13 ADC (analog to digital conversion) e e 233
5.14 DAC (digital to analog CONVErSion) v v v v v v e e e e e e e e e e e e e e e e e 233
5.15 UART (serial bus) o e e e e e e e 233
506 SPIbus o e 233
507 T2CDUS . . . o e e e e 233
5.18 CAN bus (controller area network) 234
5.19 Internal accelerometer e e e e e e e e 234
Quick reference for the ESP8266 235
6.1 General information about the ESP8266 port o 235
6.1.1 Multitude of boards 236
6.1.2 Technical specifications and SoC datasheets 236
6.1.3 Scarcity of runtime resourceso e e e e 236
6.1.4 BOOLProCess o i i i e e e e 237
6.1.5 KnownlIssues 0 i i e e e e e e e e e e 237
6.2 MicroPython tutorial for ESP8266 238
6.2.1 Getting started with MicroPython on the ESP8266 239
6.2.2 Getting a MicroPython REPL prompt 241
6.2.3 Theinternal filesystem L e 245
6.2.4 Network basiCs o v i e e e e e e e e e e e 246
6.2.5 Network - TCPsockets o . i e e e e e e e e e e e 247
6.2.6 GPIOPINS e e 249
6.2.7 Pulse Width Modulation e 250
6.2.8 Analogto Digital Conversion L e 252
6.2.9 Powercontrol e e e e e e e e e e 252
6.2.10 Controlling 1-wire devices o e e 253
6.2.11 Controlling NeoPixels e e e e e e e 254
6.2.12 Controlling APAIO2LEDS e e e e e e 255
6.2.13 Temperature and Humidity L 257
6.2.14 NEXUSIEPS . . . o v v v i i i e e e e e e e e e 258
6.3 Installing MicroPython e 258
6.4 General board control L L. e e e e e e e e e 258
6.5 Networking o . o e e e e e e e e e e e e 258
6.6 Delay and timing L L e e e e e e e e 259
6.7 TIMEIS e e e e 259
6.8 Pinsand GPIO e 259
6.9 PWM (pulse width modulation) e 260
6.10 ADC (analog to digital cOnversion) v v v i i e e e e e e e e e e 260
6.11 Software SPIbus e 260
6.12 Hardware SPIbus e e e 261
6.13 I2Cbus L e e 261
6.14 Realtimeclock (RTC) e 261
6.15 Deep-sleepmode e e e e e e e e e e e e 262
6.16 OneWire driver o o o e e e e e e e 262

6.17
6.18
6.19
6.20

NeoPixel driver e e e e e e e
APATO2driver o e e e e e e e
DHT Ariver o e e e e e e e e

Quick reference for the ESP32

7.1

7.2

7.3
7.4
7.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21

General information about the ESP32 port
7.1.1 Multitude of boards e e
7.1.2 Technical specifications and SoC datasheets
Getting started with MicroPythononthe ESP32
7.2.1 ReqUIrEMENtS . . .« . v v v v v e
7.2.2 Poweringtheboard e e e
7.2.3 Getting the firmware e
7.2.4 Deploying the firmware
7.2.5 Serial prompt e e e e
7.2.6 Troubleshooting installation problems e
Installing MicroPython o L e e e e e
General board control
Networking o L e e e e e
Delay and timing e e e
TIMETS o o o e e e
Pinsand GPIO e
PWM (pulse width modulation) e e
ADC (analog to digital conversion)o e e e e
Software SPIbus e
Hardware SPIbus e
I2Cbus . . . o e
Real time clock (RTC) e e e e e e
Deep-sleepmode L e
RMT . e
OneWire driver e e e e e e
NeoPixel driver o e e e
Capacitive touch e e e e e e e
DHT Ariver e e e e e

Quick reference for the WiPy

8.1

8.2

General information aboutthe WiPy o oo
8.1.1 Nofloating point SUPPOTt o i e e e e e e e e e
8.1.2 Before applying power e e e e
8.1.3 WLANdefaultbehaviour L
8.1.4 TelnetREPL
8.1.5 Localfilesystemand FTPaccess
8.1.6 FileZillasettings o o i i e e e e e e e e e e
8.1.7 Upgrading the firmware Over The Air
8.1.8 Bootmodesandsafeboot.
8.1.9 Theheartbeat LED e
8.1.10 Detailsonsleepmodes L e
8.1.11 Additional details for machine.Pin 0 oL
8.1.12 Additional details for machine.I2C oo
. 1.13 KNOWNISSUES . . . v v v v v o it et e e e e e e e e e e e e e e e e
WiPy tutorials and examples L. e e e e e e e e e e e
8.2.1 Introductiontothe WiPy e
8.2.2 Getting a MicroPython REPL prompt

265
266
266
266
267
267
267
267
267
268
268
269
269
270
270
270
271
271
272
272
273
273
274
274
275
275
275
276
276
277

279
280
280
280
280
280
280
281
281
281
282
282
282
283
284
285
286
287

8.2.3 Getting started with Blynk andthe WiPy 289

824 WLANSIEP DY SED v v o o e e e e e e e e e e e e e e e 289

8.2.5 Hardware timers e e e e e e e e e e e e 290

8.2.6 Resetandbootmodes e e e e e e e e 2901

8.3 General board control (including sleepmodes) 292

84 Pinsand GPIO e e 293

8.5 TIMEIS o e e e e e e e e e e e 293

8.6 PWM (pulse width modulation) e 293

8.7 ADC (analog to digital conversion) o 294

8.8 UART (serial bus) e e e e e e e e e e e e e 294

8.9 SPIDbUS e e e 294
8.10 I2C bUS o e e e e e e e e e 294
8.11 Watchdog timer (WDT) e e e e e e e e 294
8.12 Realtimeclock (RTC) e e e e e e e e e e e e 295
.13 SDcard e e e e e e 295
8.14 WLAN (WiFi) e e 295
8.15 Telnetand FTP server o . i i e e e e e e e e e e e e e 296
8.16 Heartbeat LED e e e e e e e e e e e e e 296
Python Module Index 297
Index 299

vi

CHAPTER 1

MicroPython libraries

Warning: Important summary of this section
* MicroPython implements a subset of Python functionality for each module.
* To ease extensibility, MicroPython versions of standard Python modules usually have u (“micro”) prefix.

¢ Any particular MicroPython variant or port may miss any feature/function described in this general docu-
mentation (due to resource constraints or other limitations).

This chapter describes modules (function and class libraries) which are built into MicroPython. There are a few
categories of such modules:

* Modules which implement a subset of standard Python functionality and are not intended to be extended by the
user.

* Modules which implement a subset of Python functionality, with a provision for extension by the user (via
Python code).

* Modules which implement MicroPython extensions to the Python standard libraries.
* Modules specific to a particular MicroPython port and thus not portable.

Note about the availability of the modules and their contents: This documentation in general aspires to describe
all modules and functions/classes which are implemented in MicroPython project. However, MicroPython is highly
configurable, and each port to a particular board/embedded system makes available only a subset of MicroPython
libraries. For officially supported ports, there is an effort to either filter out non-applicable items, or mark individual
descriptions with “Availability:” clauses describing which ports provide a given feature.

With that in mind, please still be warned that some functions/classes in a module (or even the entire module) described
in this documentation may be unavailable in a particular build of MicroPython on a particular system. The best place
to find general information of the availability/non-availability of a particular feature is the “General Information”
section which contains information pertaining to a specific MicroPython port.

On some ports you are able to discover the available, built-in libraries that can be imported by entering the following
at the REPL:

MicroPython Documentation, Release 1.12

help ('modules")

Beyond the built-in libraries described in this documentation, many more modules from the Python standard library,
as well as further MicroPython extensions to it, can be found in micropython-11ib.

1.1 Python standard libraries and micro-libraries

The following standard Python libraries have been “micro-ified” to fit in with the philosophy of MicroPython. They
provide the core functionality of that module and are intended to be a drop-in replacement for the standard Python
library. Some modules below use a standard Python name, but prefixed with “u”, e.g. ujson instead of json. This
is to signify that such a module is micro-library, i.e. implements only a subset of CPython module functionality.
By naming them differently, a user has a choice to write a Python-level module to extend functionality for better
compatibility with CPython (indeed, this is what done by the micropython—11ib project mentioned above).

On some embedded platforms, where it may be cumbersome to add Python-level wrapper modules to achieve naming
compatibility with CPython, micro-modules are available both by their u-name, and also by their non-u-name. The
non-u-name can be overridden by a file of that name in your library path (sys.path). For example, import json
will first search for a file json.py (or package directory json) and load that module if it is found. If nothing is
found, it will fallback to loading the built-in ujson module.

1.1.1 Builtin functions and exceptions

All builtin functions and exceptions are described here. They are also available via builtins module.

Functions and types

abs ()

all ()

any ()

bin ()

class bool
class bytearray

class bytes
See CPython documentation: bytes.

callable()
chr ()
classmethod ()
compile ()
class complex

delattr (0bj, name)
The argument name should be a string, and this function deletes the named attribute from the object given by
obj.

class dict

dir ()

2 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/functions.html#bytes

MicroPython Documentation, Release 1.12

divmod ()
enumerate ()
eval ()
exec ()
filter ()
class float
class frozenset
getattr ()
globals ()
hasattr ()
hash ()
hex ()

id()
input ()

class int

classmethod from_ bytes (bytes, byteorder)

In MicroPython, byt eorder parameter must be positional (this is compatible with CPython).

to_bytes (size, byteorder)

In MicroPython, byt eorder parameter must be positional (this is compatible with CPython).

isinstance ()
issubclass ()
iter ()

len()

class list
locals ()
map ()

max ()

class memoryview
min ()

next ()

class object
oct ()

open ()

ord ()

pow ()
print ()

1.1. Python standard libraries and micro-libraries

MicroPython Documentation, Release 1.12

property ()
range ()
repr ()
reversed ()
round ()
class set

setattr ()

class slice

The slice builtin is the type that slice objects have.

sorted ()

staticmethod ()

class str
sum ()

super ()

class tuple

type ()
zip ()

Exceptions

exception
exception
exception
exception
exception
exception
exception
exception
exception
exception

exception

AssertionError
AttributeError
Exception
ImportError
IndexError
KeyboardInterrupt
KeyError
MemoryError
NameError
NotImplementedError

OSError

See CPython documentation: OSError. MicroPython doesn’t implement errno attribute, instead use the

standard way to access exception arguments: exc.args [0].

exception RuntimeError
exception StopIteration
exception SyntaxError

exception SystemExit
See CPython documentation: SystemExit

Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/exceptions.html#OSError
https://docs.python.org/3.5/library/exceptions.html#SystemExit

MicroPython Documentation, Release 1.12

exception TypeError
See CPython documentation: TypeError.

exception ValueError

exception ZeroDivisionError

1.1.2 cmath — mathematical functions for complex nhumbers

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cmath.

The cmath module provides some basic mathematical functions for working with complex numbers.

Auvailability: not available on WiPy and ESP8266. Floating point support required for this module.

Functions
cmath.cos (7)
Return the cosine of z.

cmath.exp (z)
Return the exponential of z.

cmath.log(z)
Return the natural logarithm of z. The branch cut is along the negative real axis.

cmath.loglO (z)
Return the base-10 logarithm of z. The branch cut is along the negative real axis.

cmath.phase (z)
Returns the phase of the number z, in the range (-pi, +pi].

cmath.polar (z)
Returns, as a tuple, the polar form of z.

cmath.rect (r, phi)
Returns the complex number with modulus r and phase phi.

cmath.sin (2)
Return the sine of z.

cmath.sqrt (z)
Return the square-root of z.

Constants

cmath.e
base of the natural logarithm

cmath.pi
the ratio of a circle’s circumference to its diameter

1.1.3 gc - control the garbage collector

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: gc.

1.1. Python standard libraries and micro-libraries 5

https://docs.python.org/3.5/library/exceptions.html#TypeError
https://docs.python.org/3.5/library/cmath.html#module-cmath
https://docs.python.org/3.5/library/gc.html#module-gc

MicroPython Documentation, Release 1.12

Functions

gc.

gc

gc.

gc

gc

gc.

enable ()
Enable automatic garbage collection.

.disable ()

Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can still be
initiated manually using gc. collect ().

collect ()
Run a garbage collection.

.mem_alloc ()

Return the number of bytes of heap RAM that are allocated.

Difference to CPython

This function is MicroPython extension.

.mem_free ()

Return the number of bytes of available heap RAM, or -1 if this amount is not known.

Difference to CPython

This function is MicroPython extension.

threshold ([amount])

Set or query the additional GC allocation threshold. Normally, a collection is triggered only when a new allo-
cation cannot be satisfied, i.e. on an out-of-memory (OOM) condition. If this function is called, in addition to
OOM, a collection will be triggered each time after amount bytes have been allocated (in total, since the pre-
vious time such an amount of bytes have been allocated). amount is usually specified as less than the full heap
size, with the intention to trigger a collection earlier than when the heap becomes exhausted, and in the hope
that an early collection will prevent excessive memory fragmentation. This is a heuristic measure, the effect of
which will vary from application to application, as well as the optimal value of the amount parameter.

Calling the function without argument will return the current value of the threshold. A value of -1 means a
disabled allocation threshold.

Difference to CPython

This function is a MicroPython extension. CPython has a similar function - set_threshold (), but due to
different GC implementations, its signature and semantics are different.

1.1.4 math — mathematical functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: math.

The math module provides some basic mathematical functions for working with floating-point numbers.

Note: On the pyboard, floating-point numbers have 32-bit precision.

Availability: not available on WiPy. Floating point support required for this module.

Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/math.html#module-math

MicroPython Documentation, Release 1.12

Functions
math.acos (x)
Return the inverse cosine of x.

math.acosh (x)
Return the inverse hyperbolic cosine of x.

math.asin (x)
Return the inverse sine of x.

math.asinh (x)
Return the inverse hyperbolic sine of x.

math.atan (x)
Return the inverse tangent of x.

math.atan2 (y, x)
Return the principal value of the inverse tangent of v/ x.

math.atanh (x)
Return the inverse hyperbolic tangent of x.

math.ceil (x)
Return an integer, being x rounded towards positive infinity.

math.copysign (x,y)
Return x with the sign of y.

math.cos (x)
Return the cosine of x.

math.cosh (x)
Return the hyperbolic cosine of x.

math.degrees (x)
Return radians x converted to degrees.

math.erf (x)
Return the error function of x.

math.erfe (x)
Return the complementary error function of x.

math.exp (x)
Return the exponential of x.

math.expml (x)
Return exp (x) - 1.

math. fabs (x)
Return the absolute value of x.

math.floor (x)

Return an integer, being x rounded towards negative infinity.

math. fmod (x, y)
Return the remainder of x/y.

math.frexp (x)

Decomposes a floating-point number into its mantissa and exponent. The returned value is the tuple (m, e)
such that x == m % 2x«e exactly. If x == 0 then the function returns (0.0, 0), otherwise the relation

0.5 <= abs(m) < 1 holds.

1.1. Python standard libraries and micro-libraries

MicroPython Documentation, Release 1.12

math.gamma (x)
Return the gamma function of x.

math.isfinite (x)
Return True if x is finite.

math.isinf (x)
Return True if x is infinite.

math.isnan (x)
Return True if x is not-a-number

math.ldexp (x, exp)
Return x « (2+*exp).

math.lgamma (x)
Return the natural logarithm of the gamma function of x.

math.log (x)
Return the natural logarithm of x.

math.loglO (x)
Return the base-10 logarithm of x.

math.log2 (x)
Return the base-2 logarithm of x.

math.modf (x)
Return a tuple of two floats, being the fractional and integral parts of x. Both return values have the same sign
as x.

math.pow (x,y)
Returns x to the power of y.

math.radians (x)
Return degrees x converted to radians.

math.sin (x)
Return the sine of x.

math.sinh (x)
Return the hyperbolic sine of x.

math.sqrt (x)
Return the square root of x.

math.tan (x)
Return the tangent of x.

math.tanh (x)
Return the hyperbolic tangent of x.

math.trunc (x)
Return an integer, being x rounded towards 0.

Constants
math.e
base of the natural logarithm

math.pi
the ratio of a circle’s circumference to its diameter

8 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

1.1.5 sys — system specific functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: sys.

Functions

sys.exit (retval=0,/)
Terminate current program with a given exit code. Underlyingly, this function raise as Sy stemEx 1t exception.
If an argument is given, its value given as an argument to SystemExit.

sys.atexit (func)
Register func to be called upon termination. func must be a callable that takes no arguments, or None to disable
the call. The atexit function will return the previous value set by this function, which is initially None.

Difference to CPython

This function is a MicroPython extension intended to provide similar functionality to the atexit module in
CPython.

sys.print_exception (exc, file=sys.stdout, /)
Print exception with a traceback to a file-like object file (or sys. stdout by default).

Difference to CPython

This is simplified version of a function which appears in the traceback module in CPython. Unlike
traceback.print_exception (), this function takes just exception value instead of exception type, ex-
ception value, and traceback object; file argument should be positional; further arguments are not supported.
CPython-compatible t raceback module can be found in micropython-1ib.

Constants
sys.argv
A mutable list of arguments the current program was started with.

sys.byteorder
The byte order of the system ("1ittle" or "big").

sys.implementation
Object with information about the current Python implementation. For MicroPython, it has following attributes:

* name - string “micropython”
* version - tuple (major, minor, micro), e.g. (1, 7, 0)

This object is the recommended way to distinguish MicroPython from other Python implementations (note that
it still may not exist in the very minimal ports).

Difference to CPython

CPython mandates more attributes for this object, but the actual useful bare minimum is implemented in Mi-
croPython.

1.1. Python standard libraries and micro-libraries 9

https://docs.python.org/3.5/library/sys.html#module-sys
https://docs.python.org/3.5/library/atexit.html#module-atexit

MicroPython Documentation, Release 1.12

SysS.

SYs

SYS

SysS

SysS

SYS

SysS

SYS

SyS

maxsize

Maximum value which a native integer type can hold on the current platform, or maximum value representable
by MicroPython integer type, if it’s smaller than platform max value (that is the case for MicroPython ports
without long int support).

This attribute is useful for detecting “bitness” of a platform (32-bit vs 64-bit, etc.). It’s recommended to not
compare this attribute to some value directly, but instead count number of bits in it:

bits = 0
v = sys.maxsize
while v:
bits += 1
v >>= 1
if bits > 32:
64-bit (or more) platform

else:
32-bit (or less) platform
Note that on 32-bit platform, value of bits may be less than 32
(e.g. 31) due to peculiarities described above, so use "> 16",
"> 32", "> 64" style of comparisons.

.modules

Dictionary of loaded modules. On some ports, it may not include builtin modules.

.path

A mutable list of directories to search for imported modules.

.platform

The platform that MicroPython is running on. For OS/RTOS ports, this is usually an identifier of the OS, e.g.
"linux". For baremetal ports it is an identifier of a board, e.g. "pyboard" for the original MicroPython
reference board. It thus can be used to distinguish one board from another. If you need to check whether your
program runs on MicroPython (vs other Python implementation), use sys. implementat ion instead.

.stderr

Standard error st ream.

.stdin

Standard input st ream.

.stdout

Standard output st ream.

.version

Python language version that this implementation conforms to, as a string.

.version_info

Python language version that this implementation conforms to, as a tuple of ints.

Difference to CPython

Only the first three version numbers (major, minor, micro) are supported and they can be referenced
only by index, not by name.

10

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

1.1.6 uvarray — arrays of numeric data
This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: array.

Supported format codes: b, B, h, H, i, I, 1, L, g, Q, £, d (the latter 2 depending on the floating-point support).

Classes

class uarray.array (typecode[, iterable])
Create array with elements of given type. Initial contents of the array are given by iterable. If it is not provided,
an empty array is created.

append (val)
Append new element val to the end of array, growing it.

extend (iterable)
Append new elements as contained in iterable to the end of array, growing it.

1.1.7 ubinascii — binary/ASCII conversions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: binascii.

This module implements conversions between binary data and various encodings of it in ASCII form (in both direc-
tions).

Functions

ubinascii.hexlify (data[, sep])
Convert binary data to hexadecimal representation. Returns bytes string.

Difference to CPython

If additional argument, sep is supplied, it is used as a separator between hexadecimal values.

ubinascii.unhexlify (data)
Convert hexadecimal data to binary representation. Returns bytes string. (i.e. inverse of hexlify)

ubinascii.a2b_base64 (data)
Decode base64-encoded data, ignoring invalid characters in the input. Conforms to RFC 2045 s.6.8. Returns a
bytes object.

ubinascii.b2a_base64 (data)
Encode binary data in base64 format, as in RFC 3548. Returns the encoded data followed by a newline character,
as a bytes object.

1.1.8 ucollections — collection and container types

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: collections.

This module implements advanced collection and container types to hold/accumulate various objects.

1.1. Python standard libraries and micro-libraries 11

https://docs.python.org/3.5/library/array.html#module-array
https://docs.python.org/3.5/library/binascii.html#module-binascii
https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc3548.html
https://docs.python.org/3.5/library/collections.html#module-collections

MicroPython Documentation, Release 1.12

Classes

ucollections.deque (iterable, maxlen[,ﬂags])
Deques (double-ended queues) are a list-like container that support O(1) appends and pops from either side of
the deque. New deques are created using the following arguments:

* iterable must be the empty tuple, and the new deque is created empty.

» maxlen must be specified and the deque will be bounded to this maximum length. Once the deque is full,
any new items added will discard items from the opposite end.

* The optional flags can be 1 to check for overflow when adding items.
As well as supporting bool and 1en, deque objects have the following methods:

deque . append (x)
Add x to the right side of the deque. Raises IndexError if overflow checking is enabled and there is no
more room left.

deque .popleft ()
Remove and return an item from the left side of the deque. Raises IndexError if no items are present.

ucollections.namedtuple (name, fields)
This is factory function to create a new namedtuple type with a specific name and set of fields. A namedtuple is
a subclass of tuple which allows to access its fields not just by numeric index, but also with an attribute access
syntax using symbolic field names. Fields is a sequence of strings specifying field names. For compatibility
with CPython it can also be a a string with space-separated field named (but this is less efficient). Example of
use:

from ucollections import namedtuple

MyTuple = namedtuple ("MyTuple", ("id", "name"))
tl = MyTuple(l, "foo")

t2 = MyTuple (2, "bar")

print (tl.name)

assert t2.name == t2[1]

ucollections.OrderedDict (...)
dict type subclass which remembers and preserves the order of keys added. When ordered dict is iterated over,
keys/items are returned in the order they were added:

from ucollections import OrderedDict

To make benefit of ordered keys, OrderedDict should be initialized
from sequence of (key, value) pairs.

d = OrderedDict ([("z", 1), ("a", 2)1)
More items can be added as usual
d["w"] =5

d["b"] = 3

for k, v in d.items{():
print (k, v)

Output:

O = O N
w N

12 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

1.1.9 uerrno — system error codes

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: errno.

This module provides access to symbolic error codes for OSError exception. A particular inventory of codes depends
on MicroPython port.

Constants

EEXIST, EAGAIN, etc.
Error codes, based on ANSI C/POSIX standard. All error codes start with “E”. As mentioned above, inventory
of the codes depends on MicroPython port. Errors are usually accessible as exc.args [0] where exc
is an instance of OSError. Usage example:

try:
uos.mkdir ("my_dir")
except OSError as exc:
if exc.args[0] == uerrno.EEXIST:
print ("Directory already exists")

uerrno.errorcode
Dictionary mapping numeric error codes to strings with symbolic error code (see above):

>>> print (uerrno.errorcode[uerrno.EEXIST])
EEXIST

1.1.10 uhashlib — hashing algorithms

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: hashlib.

This module implements binary data hashing algorithms. The exact inventory of available algorithms depends on a
board. Among the algorithms which may be implemented:

e SHA256 - The current generation, modern hashing algorithm (of SHA2 series). It is suitable for
cryptographically-secure purposes. Included in the MicroPython core and any board is recommended to provide
this, unless it has particular code size constraints.

e SHALI - A previous generation algorithm. Not recommended for new usages, but SHA1 is a part of number of
Internet standards and existing applications, so boards targeting network connectivity and interoperability will
try to provide this.

* MDS5 - A legacy algorithm, not considered cryptographically secure. Only selected boards, targeting interoper-
ability with legacy applications, will offer this.

Constructors

class uhashlib.sha256 ([data])
Create an SHA256 hasher object and optionally feed data into it.

class uhashlib.shal ([data])
Create an SHA1 hasher object and optionally feed data into it.

class uhashlib.md5 ([data])
Create an MD5 hasher object and optionally feed data into it.

1.1. Python standard libraries and micro-libraries 13

https://docs.python.org/3.5/library/errno.html#module-errno
https://docs.python.org/3.5/library/hashlib.html#module-hashlib

MicroPython Documentation, Release 1.12

Methods
hash.update (data)
Feed more binary data into hash.

hash.digest ()
Return hash for all data passed through hash, as a bytes object. After this method is called, more data cannot be
fed into the hash any longer.

hash.hexdigest ()
This method is NOT implemented. Use ubinascii.hexlify (hash.digest ()) to achieve a similar
effect.

1.1.11 uheapq — heap queue algorithm

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: heapd.

This module implements the heap queue algorithm.

A heap queue is simply a list that has its elements stored in a certain way.

Functions
uheapq.heappush (heap, item)
Push the item onto the heap.

uheapqg.heappop (heap)
Pop the first item from the heap, and return it. Raises IndexError if heap is empty.

uheapq.heapify (x)
Convert the list x into a heap. This is an in-place operation.

1.1.12 uio - input/output streams

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: io.

This module contains additional types of st ream (file-like) objects and helper functions.

Conceptual hierarchy

Difference to CPython

Conceptual hierarchy of stream base classes is simplified in MicroPython, as described in this section.

(Abstract) base stream classes, which serve as a foundation for behavior of all the concrete classes, adhere to few
dichotomies (pair-wise classifications) in CPython. In MicroPython, they are somewhat simplified and made implicit
to achieve higher efficiencies and save resources.

An important dichotomy in CPython is unbuffered vs buffered streams. In MicroPython, all streams are currently
unbuffered. This is because all modern OSes, and even many RTOSes and filesystem drivers already perform buffering
on their side. Adding another layer of buffering is counter- productive (an issue known as “bufferbloat™) and takes

14 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/heapq.html#module-heapq
https://docs.python.org/3.5/library/io.html#module-io

MicroPython Documentation, Release 1.12

precious memory. Note that there still cases where buffering may be useful, so we may introduce optional buffering
support at a later time.

But in CPython, another important dichotomy is tied with “bufferedness” - it’s whether a stream may incur short
read/writes or not. A short read is when a user asks e.g. 10 bytes from a stream, but gets less, similarly for writes. In
CPython, unbuffered streams are automatically short operation susceptible, while buffered are guarantee against them.
The no short read/writes is an important trait, as it allows to develop more concise and efficient programs - something
which is highly desirable for MicroPython. So, while MicroPython doesn’t support buffered streams, it still provides
for no-short-operations streams. Whether there will be short operations or not depends on each particular class’ needs,
but developers are strongly advised to favor no-short-operations behavior for the reasons stated above. For example,
MicroPython sockets are guaranteed to avoid short read/writes. Actually, at this time, there is no example of a short-
operations stream class in the core, and one would be a port-specific class, where such a need is governed by hardware
peculiarities.

The no-short-operations behavior gets tricky in case of non-blocking streams, blocking vs non-blocking behavior
being another CPython dichotomy, fully supported by MicroPython. Non-blocking streams never wait for data either
to arrive or be written - they read/write whatever possible, or signal lack of data (or ability to write data). Clearly,
this conflicts with “no-short-operations” policy, and indeed, a case of non-blocking buffered (and this no-short-ops)
streams is convoluted in CPython - in some places, such combination is prohibited, in some it’s undefined or just not
documented, in some cases it raises verbose exceptions. The matter is much simpler in MicroPython: non-blocking
stream are important for efficient asynchronous operations, so this property prevails on the “no-short-ops” one. So,
while blocking streams will avoid short reads/writes whenever possible (the only case to get a short read is if end of
file is reached, or in case of error (but errors don’t return short data, but raise exceptions)), non-blocking streams may
produce short data to avoid blocking the operation.

The final dichotomy is binary vs text streams. MicroPython of course supports these, but while in CPython text
streams are inherently buffered, they aren’t in MicroPython. (Indeed, that’s one of the cases for which we may
introduce buffering support.)

Note that for efficiency, MicroPython doesn’t provide abstract base classes corresponding to the hierarchy above, and
it’s not possible to implement, or subclass, a stream class in pure Python.

Functions

uio.open (name, mode="r’, **kwargs)
Open a file. Builtin open () function is aliased to this function. All ports (which provide access to file system)
are required to support mode parameter, but support for other arguments vary by port.

Classes

class uio.FileIO(...)
This is type of a file open in binary mode, e.g. using open (name, "rb"). You should not instantiate this
class directly.

class uio.TextIOWrapper (...)
This is type of a file open in text mode, e.g. using open (name, "rt"). You should not instantiate this class
directly.

class uio.StringIO ([string])

class uio.BytesIO([string])
In-memory file-like objects for input/output. StringIO is used for text-mode I/O (similar to a normal file
opened with “t” modifier). BytesIO is used for binary-mode I/O (similar to a normal file opened with “b”
modifier). Initial contents of file-like objects can be specified with string parameter (should be normal string
for St ringIO or bytes object for BytesI0O). All the usual file methods like read (), write (), seek (),
flush (), close () are available on these objects, and additionally, a following method:

1.1. Python standard libraries and micro-libraries 15

MicroPython Documentation, Release 1.12

getvalue ()
Get the current contents of the underlying buffer which holds data.

class uio.StringIO (alloc_size)

class uio.BytesIO (alloc_size)
Create an empty StringIO/BytesIO object, preallocated to hold up to alloc_size number of bytes. That
means that writing that amount of bytes won’t lead to reallocation of the buffer, and thus won’t hit out-of-
memory situation or lead to memory fragmentation. These constructors are a MicroPython extension and are
recommended for usage only in special cases and in system-level libraries, not for end-user applications.

Difference to CPython

These constructors are a MicroPython extension.

1.1.13 ujson — JSON encoding and decoding
This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: json.

This modules allows to convert between Python objects and the JSON data format.

Functions
ujson.dump (obj, stream)
Serialise obj to a JSON string, writing it to the given stream.

ujson.dumps (obj)
Return obj represented as a JSON string.

ujson.load (stream)
Parse the given stream, interpreting it as a JSON string and deserialising the data to a Python object. The
resulting object is returned.

Parsing continues until end-of-file is encountered. A Va lueError israised if the data in stream is not correctly
formed.

ujson.loads (str)
Parse the JSON str and return an object. Raises Va lueError if the string is not correctly formed.

1.1.14 uos — basic “operating system” services
This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: os.

The uos module contains functions for filesystem access and mounting, terminal redirection and duplication, and the
uname and urandom functions.

General functions

uos.uname ()
Return a tuple (possibly a named tuple) containing information about the underlying machine and/or its operat-
ing system. The tuple has five fields in the following order, each of them being a string:

16 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/json.html#module-json
https://docs.python.org/3.5/library/os.html#module-os

MicroPython Documentation, Release 1.12

uos

* sysname — the name of the underlying system

* nodename — the network name (can be the same as sysname)
* release — the version of the underlying system

* version — the MicroPython version and build date

* machine — an identifier for the underlying hardware (eg board, CPU)

.urandom (n)

Return a bytes object with n random bytes. Whenever possible, it is generated by the hardware random number
generator.

Filesystem access

uos

uos

uos

uos

uos

uos

uos

uos

uos

uos

.chdir (path)

Change current directory.

.getcwd ()

Get the current directory.

.ilistdir ([dir])

This function returns an iterator which then yields tuples corresponding to the entries in the directory that it is
listing. With no argument it lists the current directory, otherwise it lists the directory given by dir.

The tuples have the form (name, type, inode/, size]):
* name is a string (or bytes if dir is a bytes object) and is the name of the entry;

* type is an integer that specifies the type of the entry, with 0x4000 for directories and 0x8000 for regular
files;

* inode is an integer corresponding to the inode of the file, and may be O for filesystems that don’t have such
a notion.

* Some platforms may return a 4-tuple that includes the entry’s size. For file entries, size is an integer
representing the size of the file or -1 if unknown. Its meaning is currently undefined for directory entries.

.listdir ([dir])

With no argument, list the current directory. Otherwise list the given directory.

.mkdir (path)

Create a new directory.

.remove (path)

Remove a file.

.rmdir (path)

Remove a directory.

. rename (old_path, new_path)

Rename a file.

.stat (path)

Get the status of a file or directory.

.statvEs (path)

Get the status of a fileystem.
Returns a tuple with the filesystem information in the following order:

e f bsize —file system block size

1.1.

Python standard libraries and micro-libraries 17

MicroPython Documentation, Release 1.12

e f_frsize —fragment size

e f blocks —size of fs in f_frsize units

e £ bfree —number of free blocks

e f_bavail —number of free blocks for unprivileged users
e £ files — number of inodes

e £ ffree —number of free inodes

e £ favail — number of free inodes for unprivileged users
e f_flag-mount flags

e f namemax — maximum filename length

Parameters related to inodes: £_files, f_ffree, f_avail and the £_flags parameter may return O as
they can be unavailable in a port-specific implementation.

uos.sync ()

Sync all filesystems.

Terminal redirection and duplication

uos .dupterm (stream_object, index=0, /)

Duplicate or switch the MicroPython terminal (the REPL) on the given st ream-like object. The stream_object
argument must be a native stream object, or derive from uio.IOBase and implement the readinto () and
write () methods. The stream should be in non-blocking mode and readinto () should return None if
there is no data available for reading.

After calling this function all terminal output is repeated on this stream, and any input that is available on the
stream is passed on to the terminal input.

The index parameter should be a non-negative integer and specifies which duplication slot is set. A given port
may implement more than one slot (slot 0 will always be available) and in that case terminal input and output is
duplicated on all the slots that are set.

If None is passed as the stream_object then duplication is cancelled on the slot given by index.

The function returns the previous stream-like object in the given slot.

Filesystem mounting

Some ports provide a Virtual Filesystem (VES) and the ability to mount multiple “real” filesystems within this VFS.
Filesystem objects can be mounted at either the root of the VFS, or at a subdirectory that lives in the root. This allows
dynamic and flexible configuration of the filesystem that is seen by Python programs. Ports that have this functionality
provide the mount () and umount () functions, and possibly various filesystem implementations represented by
VES classes.

uos .mount (fsobj, mount_point, *, readonly)

Mount the filesystem object fsobj at the location in the VFS given by the mount_point string. fsobj can be a a
VES object that has a mount () method, or a block device. If it’s a block device then the filesystem type is
automatically detected (an exception is raised if no filesystem was recognised). mount_point may be '/' to
mount fsobj at the root, or ' /<name> "' to mount it at a subdirectory under the root.

If readonly is True then the filesystem is mounted read-only.
During the mount process the method mount () is called on the filesystem object.

Will raise OSError (EPERM) if mount_point is already mounted.

18

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

uos .umount (mount_point)
Unmount a filesystem. mount_point can be a string naming the mount location, or a previously-mounted filesys-
tem object. During the unmount process the method umount () is called on the filesystem object.

Will raise OSError (EINVAL) if mount_point is not found.

class uos.VEsFat (block_dev)
Create a filesystem object that uses the FAT filesystem format. Storage of the FAT filesystem is provided by
block_dev. Objects created by this constructor can be mounted using mount ().

static mkEfs (block_dev)
Build a FAT filesystem on block_dev.

class uos.VEsL£fsl (block_dev)
Create a filesystem object that uses the littlefs v1 filesystem format. Storage of the littlefs filesystem is provided

by block_dev, which must support the extended interface. Objects created by this constructor can be mounted
using mount ().

See Working with filesystems for more information.

static mkEfs (block_dev)
Build a Lfs1 filesystem on block_dev.

Note: There are reports of littlefs v1 failing in certain situations, for details see littlefs issue 347.

class uos.VEsL£fs2 (block_dev)
Create a filesystem object that uses the littlefs v2 filesystem format. Storage of the littlefs filesystem is provided

by block_dev, which must support the extended interface. Objects created by this constructor can be mounted
using mount ().

See Working with filesystems for more information.

static mk£fs (block_dev)
Build a Lfs2 filesystem on block_dev.

Note: There are reports of littlefs v2 failing in certain situations, for details see littlefs issue 295.

Block devices

A block device is an object which implements the block protocol, which is a set of methods described below by the
AbstractBlockDev class. A concrete implementation of this class will usually allow access to the memory-like
functionality a piece of hardware (like flash memory). A block device can be used by a particular filesystem driver to
store the data for its filesystem.

Simple and extended interface

There are two compatible signatures for the readblocks and writeblocks methods (see below), in order to
support a variety of use cases. A given block device may implement one form or the other, or both at the same time.
The second form (with the offset parameter) is referred to as the “extended interface”.

Some filesystems (such as littlefs) that require more control over write operations, for example writing to sub-block
regions without erasing, may require that the block device supports the extended interface.

class uos.AbstractBlockDev (...)
Construct a block device object. The parameters to the constructor are dependent on the specific block device.

1.1. Python standard libraries and micro-libraries 19

https://github.com/ARMmbed/littlefs/tree/v1
https://github.com/ARMmbed/littlefs/issues/347
https://github.com/ARMmbed/littlefs
https://github.com/ARMmbed/littlefs/issues/295

MicroPython Documentation, Release 1.12

readblocks (block_num, buf’)
readblocks (block_num, buf, offset)

The first form reads aligned, multiples of blocks. Starting at the block given by the index block_num, read
blocks from the device into buf (an array of bytes). The number of blocks to read is given by the length of
buf, which will be a multiple of the block size.

The second form allows reading at arbitrary locations within a block, and arbitrary lengths. Starting at
block index block_num, and byte offset within that block of offset, read bytes from the device into buf (an
array of bytes). The number of bytes to read is given by the length of buf.

writeblocks (block_num, buf)

writeblocks (block_num, buf, offset)

The first form writes aligned, multiples of blocks, and requires that the blocks that are written to be first
erased (if necessary) by this method. Starting at the block given by the index block_num, write blocks
from buf (an array of bytes) to the device. The number of blocks to write is given by the length of buf,
which will be a multiple of the block size.

The second form allows writing at arbitrary locations within a block, and arbitrary lengths. Only the bytes
being written should be changed, and the caller of this method must ensure that the relevant blocks are
erased via a prior ioctl call. Starting at block index block_num, and byte offset within that block of
offset, write bytes from buf (an array of bytes) to the device. The number of bytes to write is given by the
length of buf.

Note that implementations must never implicitly erase blocks if the offset argument is specified, even if it
is zero.

ioctl (op, arg)

Control the block device and query its parameters. The operation to perform is given by op which is one
of the following integers:

* 1 —initialise the device (arg is unused)

e 2 — shutdown the device (arg is unused)

* 3 —sync the device (arg is unused)

* 4 — get a count of the number of blocks, should return an integer (arg is unused)

e 5 — get the number of bytes in a block, should return an integer, or None in which case the default
value of 512 is used (arg is unused)

¢ 6 — erase a block, arg is the block number to erase

See Working with filesystems for example implementations of block devices using both protocols.

1.1.15 ure — simple regular expressions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: re.

This module implements regular expression operations. Regular expression syntax supported is a subset of CPython
re module (and actually is a subset of POSIX extended regular expressions).

Supported operators and special sequences are:

. Match any character.

[...] Match set of characters. Individual characters and ranges are supported, including negated sets (e.g.

[~a-c]).

~ Match the start of the string.

20

Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/re.html#module-re

MicroPython Documentation, Release 1.12

$ Match the end of the string.

? Match zero or one of the previous sub-pattern.

* Match zero or more of the previous sub-pattern.

+ Match one or more of the previous sub-pattern.

?? Non-greedy version of ?, match zero or one, with the preference for zero.

*? Non-greedy version of %, match zero or more, with the preference for the shortest match.
+? Non-greedy version of +, match one or more, with the preference for the shortest match.
| Match either the left-hand side or the right-hand side sub-patterns of this operator.

(...) Grouping. Each group is capturing (a substring it captures can be accessed with match. group () method).
\d Matches digit. Equivalent to [0-9].

\D Matches non-digit. Equivalentto [*0-9].

\s Matches whitespace. Equivalentto [\t-\r].

\S Matches non-whitespace. Equivalentto [~ \t-\r].

\w Matches “word characters” (ASCII only). Equivalent to [A-Za-z0-9_].

\W Matches non “word characters” (ASCII only). Equivalent to [“A-Za-z0-9_].

\ Escape character. Any other character following the backslash, except for those listed above, is taken literally. For
example, \ « is equivalent to literal = (not treated as the » operator). Note that \r, \n, etc. are not handled
specially, and will be equivalent to literal letters r, n, etc. Due to this, it’s not recommended to use raw Python
strings (r" ") for regular expressions. For example, r" \ r\n" when used as the regular expression is equivalent
to "rn". To match CR character followed by LF, use "\r\n".

NOT SUPPORTED:
* counted repetitions ({m, n})

* named groups ((?P<name>...))

e more advanced assertions (\b, \B)
* special character escapes like \ r, \n - use Python’s own escaping instead
* etc.

Example:

import ure

As ure doesn't support escapes itself, use of r"" strings is not
recommended.
regex = ure.compile (" [\r\n]")

regex.split ("linel\rline2\nline3\r\n")

Result:
['linel', 'line2', 'line3', '', '']

1.1. Python standard libraries and micro-libraries 21

MicroPython Documentation, Release 1.12

Functions

ure.compile (regex_str[,ﬂags])
Compile regular expression, return regex object.

ure .match (regex_str, string)
Compile regex_str and match against string. Match always happens from starting position in a string.

ure.search (regex_str, string)
Compile regex_str and search it in a string. Unlike match, this will search string for first position which
matches regex (which still may be O if regex is anchored).

ure. sub (regex_str, replace, string, count=0, flags=0, /)
Compile regex_str and search for it in string, replacing all matches with replace, and returning the new string.

replace can be a string or a function. If it is a string then escape sequences of the form \<number> and
\g<number> can be used to expand to the corresponding group (or an empty string for unmatched groups). If
replace is a function then it must take a single argument (the match) and should return a replacement string.

If count is specified and non-zero then substitution will stop after this many substitutions are made. The flags
argument is ignored.

Note: availability of this function depends on MicroPython port.

ure .DEBUG
Flag value, display debug information about compiled expression. (Availability depends on MicroPython
port.)

Regex objects

Compiled regular expression. Instances of this class are created using ure. compile ().

regex .match (string)

regex.search (string)

regex.sub (replace, string, count=0, flags=0, /)
Similar to the module-level functions match (), search () and sub (). Using methods is (much) more
efficient if the same regex is applied to multiple strings.

regex.split (string, max_split=-1,/)
Split a string using regex. If max_split is given, it specifies maximum number of splits to perform. Returns list
of strings (there may be up to max_split+1 elements if it’s specified).

Match objects

Match objects as returned by match () and search () methods, and passed to the replacement function in sub ().

match.group (index)
Return matching (sub)string. index is O for entire match, 1 and above for each capturing group. Only numeric
groups are supported.

match.groups ()
Return a tuple containing all the substrings of the groups of the match.

Note: availability of this method depends on MicroPython port.

match.start ([index])

match.end ([index])
Return the index in the original string of the start or end of the substring group that was matched. index defaults
to the entire group, otherwise it will select a group.

22 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

Note: availability of these methods depends on MicroPython port.

match.span ([index])
Returns the 2-tuple (match.start (index), match.end (index)).

Note: availability of this method depends on MicroPython port.

1.1.16 uselect — wait for events on a set of streams
This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: select.

This module provides functions to efficiently wait for events on multiple st reams (select streams which are ready
for operations).

Functions
uselect.poll ()
Create an instance of the Poll class.

uselect.select (rlist, wlist, xlist[, timeout])
Wait for activity on a set of objects.

This function is provided by some MicroPython ports for compatibility and is not efficient. Usage of Pol1 is
recommended instead.

class Poll

Methods

poll.register (obj[, eventmask])
Register st ream obj for polling. eventmask is logical OR of:

* uselect .POLLIN - data available for reading
e uselect .POLLOUT - more data can be written

Note that flags like uselect .POLLHUP and uselect .POLLERR are not valid as input eventmask (these
are unsolicited events which will be returned from pol1l () regardless of whether they are asked for). This
semantics is per POSIX.

eventmask defaults to uselect .POLLIN | uselect.POLLOUT.

It is OK to call this function multiple times for the same obj. Successive calls will update obj’s eventmask to the
value of eventmask (i.e. will behave as modify ()).

poll.unregister (obj)
Unregister obj from polling.

poll.modify (obj, eventmask)
Modify the eventmask for obj. If obj is not registered, OSError is raised with error of ENOENT.

poll.poll (timeout=-1,/)
Wait for at least one of the registered objects to become ready or have an exceptional condition, with optional
timeout in milliseconds (if timeout arg is not specified or -1, there is no timeout).

Returns list of (ob 7, event, ...) tuples. There may be other elements in tuple, depending on a platform and
version, so don’t assume that its size is 2. The event element specifies which events happened with a stream

1.1. Python standard libraries and micro-libraries 23

https://docs.python.org/3.5/library/select.html#module-select

MicroPython Documentation, Release 1.12

and is a combination of uselect .POLL« constants described above. Note that flags uselect .POLLHUP
and uselect .POLLERR can be returned at any time (even if were not asked for), and must be acted on
accordingly (the corresponding stream unregistered from poll and likely closed), because otherwise all further
invocations of pol1 () may return immediately with these flags set for this stream again.

In case of timeout, an empty list is returned.

Difference to CPython

Tuples returned may contain more than 2 elements as described above.

poll.ipoll (timeout=-1, flags=0,/)
Like pol1l.poll (), but instead returns an iterator which yields a callee—-owned tuple. This function
provides an efficient, allocation-free way to poll on streams.

If flags is 1, one-shot behavior for events is employed: streams for which events happened will have their event
masks automatically reset (equivalent to poll .modify (obj, 0)), so new events for such a stream won’t
be processed until new mask is set with pol1.modify (). This behavior is useful for asynchronous I/O
schedulers.

Difference to CPython

This function is a MicroPython extension.

1.1.17 usocket — socket module

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: socket.

This module provides access to the BSD socket interface.

Difference to CPython

For efficiency and consistency, socket objects in MicroPython implement a st ream (file-like) interface directly. In
CPython, you need to convert a socket to a file-like object using makefile () method. This method is still supported
by MicroPython (but is a no-op), so where compatibility with CPython matters, be sure to use it.

Socket address format(s)

The native socket address format of the usocket module is an opaque data type returned by getaddrinfo func-
tion, which must be used to resolve textual address (including numeric addresses):

sockaddr = usocket.getaddrinfo ('www.micropython.org', 80)[0][-1]
You must use getaddrinfo() even for numeric addresses
sockaddr = usocket.getaddrinfo('127.0.0.1", 80)[0][-1]

Now you can use that address

sock.connect (addr)

Using getaddrinfo is the most efficient (both in terms of memory and processing power) and portable way to work
with addresses.

However, socket module (note the difference with native MicroPython usocket module described here) pro-
vides CPython-compatible way to specify addresses using tuples, as described below. Note that depending on a

24 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/socket.html#module-socket

MicroPython Documentation, Release 1.12

MicroPython port, socket module can be builtin or need to be installed from micropython—11b (as in the
case of MicroPython Unix port), and some ports still accept only numeric addresses in the tuple format, and
require to use getaddrinfo function to resolve domain names.

Summing up:
* Always use getaddrinfo when writing portable applications.

» Tuple addresses described below can be used as a shortcut for quick hacks and interactive use, if your port
supports them.

Tuple address format for socket module:

» IPv4: (ipv4_address, port), where ipv4_address is a string with dot-notation numeric IPv4 address, e.g. "8.8.
8.8", and port is and integer port number in the range 1-65535. Note the domain names are not accepted as
ipv4_address, they should be resolved first using usocket.getaddrinfo ().

e IPv6: (ipv6_address, port, flowinfo, scopeid), where ipv6_address is a string with colon-notation numeric IPv6
address, e.g. "2001:db8::1", and port is an integer port number in the range 1-65535. flowinfo must be
0. scopeid is the interface scope identifier for link-local addresses. Note the domain names are not accepted as
ipv6_address, they should be resolved first using usocket.getaddrinfo (). Availability of IPv6 support
depends on a MicroPython port.

Functions

usocket .socket (af=AF_INET, type=SOCK_STREAM, proto=IPPROTO_TCP, /)
Create a new socket using the given address family, socket type and protocol number. Note that specifying
proto in most cases is not required (and not recommended, as some MicroPython ports may omit TPPROTO_
constants). Instead, type argument will select needed protocol automatically:

Create STREAM TCP socket
socket (AF_INET, SOCK_STREAM)
Create DGRAM UDP socket
socket (AF_INET, SOCK_DGRAM)

usocket .getaddrinfo (host, port, af=0, type=0, proto=0, flags=0, /)
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creating
a socket connected to that service. Arguments af, type, and proto (which have the same meaning as for the
socket () function) can be used to filter which kind of addresses are returned. If a parameter is not specified
or zero, all combinations of addresses can be returned (requiring filtering on the user side).

The resulting list of 5-tuples has the following structure:

(family, type, proto, canonname, sockaddr)

The following example shows how to connect to a given url:

s = usocket.socket ()

This assumes that if "type" is not specified, an address for
SOCK_STREAM will be returned, which may be not true

s.connect (usocket.getaddrinfo ('www.micropython.org', 80) [0][-1])

Recommended use of filtering params:

s = usocket.socket ()

Guaranteed to return an address which can be connect'ed to for
stream operation.

s.connect (usocket.getaddrinfo ('www.micropython.org', 80, 0, SOCK_STREAM) [0][-1])

1.1. Python standard libraries and micro-libraries 25

MicroPython Documentation, Release 1.12

Difference to CPython

CPython raises a socket.gaierror exception (OSError subclass) in case of error in this function.
MicroPython doesn’t have socket.gaierror and raises OSError directly. Note that error numbers of
getaddrinfo () form a separate namespace and may not match error numbers from the ue r rno module. To
distinguish getaddrinfo () errors, they are represented by negative numbers, whereas standard system er-
rors are positive numbers (error numbers are accessible using e . args [0] property from an exception object).
The use of negative values is a provisional detail which may change in the future.

usocket .inet_ntop (af, bin_addr)
Convert a binary network address bin_addr of the given address family af to a textual representation:

>>> usocket.inet_ntop (usocket.AF_INET, b"\x7£\0\0\1")
'127.0.0.1"

usocket .inet_pton (af, txt_addr)
Convert a textual network address #xt_addr of the given address family af to a binary representation:

>>> usocket.inet_pton (usocket .AF_INET, "1.2.3.4")
b'\x01\x02\x03\x04"

Constants

usocket .AF_INET
usocket .AF_INET6
Address family types. Availability depends on a particular MicroPython port.

usocket . SOCK_STREAM
usocket . SOCK_DGRAM
Socket types.

usocket . IPPROTO_UDP

usocket . IPPROTO_TCP
IP protocol numbers. Availability depends on a particular MicroPython port. Note that you don’t need
to specify these in a call to usocket . socket (), because SOCK_STREAM socket type automatically selects
IPPROTO_TCP, and SOCK_DGRAM - IPPROTO_UDP. Thus, the only real use of these constants is as an
argument to setsockopt ().

usocket .SOL_ *
Socket option levels (an argument to setsockopt ()). The exact inventory depends on a MicroPython
port.

usocket .SO_=*
Socket options (an argument to set sockopt ()). The exact inventory depends on a MicroPython port.

Constants specific to WiPy:

usocket . IPPROTO_SEC
Special protocol value to create SSL-compatible socket.

class socket

26 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

Methods

socket.close ()
Mark the socket closed and release all resources. Once that happens, all future operations on the socket object
will fail. The remote end will receive EOF indication if supported by protocol.

Sockets are automatically closed when they are garbage-collected, but it is recommended to close () them
explicitly as soon you finished working with them.

socket .bind (address)
Bind the socket to address. The socket must not already be bound.

socket.listen([backlog])
Enable a server to accept connections. If backlog is specified, it must be at least O (if it’s lower, it will be set to 0);
and specifies the number of unaccepted connections that the system will allow before refusing new connections.
If not specified, a default reasonable value is chosen.

socket .accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and
address is the address bound to the socket on the other end of the connection.

socket .connect (address)
Connect to a remote socket at address.

socket . send (bytes)
Send data to the socket. The socket must be connected to a remote socket. Returns number of bytes sent, which
may be smaller than the length of data (“short write”).

socket .sendall (bytes)
Send all data to the socket. The socket must be connected to a remote socket. Unlike send (), this method will
try to send all of data, by sending data chunk by chunk consecutively.

The behavior of this method on non-blocking sockets is undefined. Due to this, on MicroPython, it’s recom-
mended to use write () method instead, which has the same “no short writes” policy for blocking sockets, and
will return number of bytes sent on non-blocking sockets.

socket . recv (bufsize)
Receive data from the socket. The return value is a bytes object representing the data received. The maximum
amount of data to be received at once is specified by bufsize.

socket . sendto (bytes, address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is
specified by address.

socket . recvfrom (bufsize)
Receive data from the socket. The return value is a pair (bytes, address) where bytes is a bytes object representing
the data received and address is the address of the socket sending the data.

socket . setsockopt (level, optname, value)
Set the value of the given socket option. The needed symbolic constants are defined in the socket module (SO_*
etc.). The value can be an integer or a bytes-like object representing a buffer.

socket .settimeout (value)
Note: Not every port supports this method, see below.

Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point number
expressing seconds, or None. If a non-zero value is given, subsequent socket operations will raise an OSError
exception if the timeout period value has elapsed before the operation has completed. If zero is given, the socket
is put in non-blocking mode. If None is given, the socket is put in blocking mode.

1.1. Python standard libraries and micro-libraries 27

MicroPython Documentation, Release 1.12

Not every MicroPython port supports this method. A more portable and generic solution is to use
uselect.poll object. This allows to wait on multiple objects at the same time (and not just on sockets,
but on generic st ream objects which support polling). Example:

Instead of:

s.settimeout (1.0) # time 1iIn seconds
s.read(10) # may timeout
Use:

poller = uselect.poll ()
poller.register (s, uselect.POLLIN)
res = poller.poll(1000) # time in milliseconds
if not res:
s 1is still not ready for input, i.e. operation timed out

Difference to CPython

CPython raises a socket .timeout exception in case of timeout, which is an OSError subclass. MicroPy-
thon raises an OSError directly instead. If you use except OSError: to catch the exception, your code will
work both in MicroPython and CPython.

socket .setblocking (flag)
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to

blocking mode.

This method is a shorthand for certain settimeout () calls:
e sock.setblocking (True) is equivalent to sock.settimeout (None)
* sock.setblocking (False) isequivalentto sock.settimeout (0)

socket .makefile (mode="rb’, buffering=0, /)
Return a file object associated with the socket. The exact returned type depends on the arguments given to
makefile(). The support is limited to binary modes only (‘rb’, ‘wb’, and ‘rwb’). CPython’s arguments: encoding,
errors and newline are not supported.

Difference to CPython

As MicroPython doesn’t support buffered streams, values of buffering parameter is ignored and treated as if it
was 0 (unbuffered).

Difference to CPython
Closing the file object returned by makefile() WILL close the original socket as well.

socket .read ([size])
Read up to size bytes from the socket. Return a bytes object. If size is not given, it reads all data available from
the socket until EOF; as such the method will not return until the socket is closed. This function tries to read as
much data as requested (no “short reads”). This may be not possible with non-blocking socket though, and then

less data will be returned.

socket .readinto (buf[, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most len(buf)
bytes. Just as read (), this method follows “no short reads” policy.

28 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

Return value: number of bytes read and stored into buf.

socket .readline ()
Read a line, ending in a newline character.

Return value: the line read.

socket .write (buf)
Write the buffer of bytes to the socket. This function will try to write all data to a socket (no “short writes”).
This may be not possible with a non-blocking socket though, and returned value will be less than the length of

buf.

Return value: number of bytes written.

exception usocket.error
MicroPython does NOT have this exception.

Difference to CPython

CPython used to have a socket .error exception which is now deprecated, and is an alias of OSError. In
MicroPython, use OSError directly.

1.1.18 ussl — SSL/TLS module

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: ss1.

This module provides access to Transport Layer Security (previously and widely known as “Secure Sockets Layer”)
encryption and peer authentication facilities for network sockets, both client-side and server-side.

Functions

ussl.wrap_socket (sock, server_side=False, keyfile=None, certfile=None, cert_reqs=CERT_NONE,

ca_certs=None, server_hostname=None, do_handshake=True)

Takes a stream sock (usually usocket.socket instance of SOCK_STREAM type), and returns an instance of
ssl.SSLSocket, which wraps the underlying stream in an SSL context. Returned object has the usual st ream
interface methods like read (), write (), etc. In MicroPython, the returned object does not expose socket
interface and methods like recv (), send () . In particular, a server-side SSL socket should be created from a
normal socket returned from accept () on a non-SSL listening server socket.

Parameters:

server_side: creates a server connection if True, else client connection. A server connection requires
akeyfileandacertfile.

cert_reqgs: specifies the level of certificate checking to be performed.
ca_certs: root certificates to use for certificate checking.

server_hostname: specifies the hostname of the server for verification purposes as well for SNI
(Server Name Identification).

do_handshake: if True, initiates the TLS handshake and waits for its completion; if False, proceeds
without handshake and performs is with the first write making it non-blocking if asyncio is used, see git
commit 9¢7c082.

1.1. Python standard libraries and micro-libraries 29

https://docs.python.org/3.5/library/ssl.html#module-ssl

MicroPython Documentation, Release 1.12

Depending on the underlying module implementation in a particular MicroPython port, some or all key-
word arguments above may be not supported.

ESP32 implementation notes:
* The esp32 implementation does not support cert_reqs: it never validates certs!

e The esp32 implementation supports key-exchange and bidirectional authentication using Pre-
Shared Keys. Use KW options psk_ident=<identity hint> and psk_key=binascii.
unhexlify (b'<key in hex>"). PSK ciphers are only supported for client-side connections. See
below for more info about PSK ciphers.

Warning: Some implementations of uss1 module do NOT validate server certificates, which makes an SSL
connection established prone to man-in-the-middle attacks.

Exceptions

ssl.SSLError
This exception does NOT exist. Instead its base class, OSError, is used.

Constants

ussl.CERT_NONE
ussl.CERT_OPTIONAL
ussl.CERT_REQUIRED

Supported values for cert_regs parameter.

¢ CERT_NONE: in client mode accept just about any cert, in server mode do not request a cert from the
client.

* CERT_OPTIONAL: in client mode behaves the same as CERT_REQUIRED and in server mode requests
an optional cert from the client for authentication.

* CERT_REQUIRED: in client mode validates the server’s cert and in server mode requires the client to
send a cert for authentication. Note that ussl does not actually support client authentication.

Pre-Shared Key (PSK) cipher suites

TLS supports authentication and encryption using a pre-shared key (i.e. a key that both client and server know) as
an alternative to the public key cryptography commonly used on the web for HTTPS. PSK is starting to be used for
MQTT, e.g. in mosquitto, to simplify the set-up and avoid having to go through the whole CA, cert, and private key
process.

A pre-shared key is a binary string of up to 32 bytes and is commonly represented in hex form. In addition to the
key, clients can also present an id/ident and typically the server allows a different key to be associated with each client
id. In effect this is very similar to username and password pairs, except that unlike a password the key is not directly
transmitted to the server, thus a connection to a malicious server does not divulge the password. Plus the server is also
authenticated to the client.

To use PSK:
* Generate a random hex string (generating an MDS5 on some random data is one way to do this)
* Come up with a string id for your client and configure your server to accept the id/key pair

* Inussl.wrap_socket use psk_ident and psk_key to set the id/key combo

30 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

e When the handshake with the server is performed it uses the id/key combo to authenticate the server (it must
prove that it has the key too), authenticate the client and then negotiate encryption for the connection

An example can be found in examples/network/mgtt_psk.py.

1.1.19 ustruct — pack and unpack primitive data types

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: struct.

Supported size/byte order prefixes: @, <, >, !.

Supported format codes: b, B, h, H, i, I, 1, L, g, Q, s, P, £, d (the latter 2 depending on the floating-point support).

Functions

ustruct.calcsize (fint)
Return the number of bytes needed to store the given fint.

ustruct.pack (fmt, vi, v2,...)
Pack the values v/, v2, ... according to the format string fint. The return value is a bytes object encoding the
values.

ustruct .pack_into (fint, buffer, offset, vi, v2,...)
Pack the values vi, v2, ... according to the format string fimt into a buffer starting at offset. offset may be
negative to count from the end of buffer.

ustruct .unpack (fint, data)
Unpack from the data according to the format string fint. The return value is a tuple of the unpacked values.

ustruct .unpack_£from (fint, data, offset=0, /)
Unpack from the data starting at offset according to the format string fint. offset may be negative to count from
the end of buffer. The return value is a tuple of the unpacked values.

1.1.20 utime — time related functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: t ime.

The ut ime module provides functions for getting the current time and date, measuring time intervals, and for delays.

Time Epoch: Unix port uses standard for POSIX systems epoch of 1970-01-01 00:00:00 UTC. However, embedded
ports use epoch of 2000-01-01 00:00:00 UTC.

Maintaining actual calendar date/time: This requires a Real Time Clock (RTC). On systems with underlying OS
(including some RTOS), an RTC may be implicit. Setting and maintaining actual calendar time is responsibility of
OS/RTOS and is done outside of MicroPython, it just uses OS API to query date/time. On baremetal ports however
system time depends on machine.RTC () object. The current calendar time may be set using machine .RTC () .
datetime (tuple) function, and maintained by following means:

* By a backup battery (which may be an additional, optional component for a particular board).
» Using networked time protocol (requires setup by a port/user).

¢ Set manually by a user on each power-up (many boards then maintain RTC time across hard resets, though some
may require setting it again in such case).

If actual calendar time is not maintained with a system/MicroPython RTC, functions below which require reference to
current absolute time may behave not as expected.

1.1. Python standard libraries and micro-libraries 31

https://docs.python.org/3.5/library/struct.html#module-struct
https://docs.python.org/3.5/library/time.html#module-time

MicroPython Documentation, Release 1.12

Functions

utime.localtime ([secs])

Convert a time expressed in seconds since the Epoch (see above) into an 8-tuple which contains: (year, month,
mday, hour, minute, second, weekday, yearday) If secs is not provided or None, then the current time from the
RTC is used.

e year includes the century (for example 2014).
e month is 1-12

* mday is 1-31

* hour is 0-23

* minute is 0-59

* second is 0-59

* weekday is 0-6 for Mon-Sun

e yearday is 1-366

utime.mktime ()

This is inverse function of localtime. It’s argument is a full 8-tuple which expresses a time as per localtime. It
returns an integer which is the number of seconds since Jan 1, 2000.

utime.sleep (seconds)

Sleep for the given number of seconds. Some boards may accept seconds as a floating-point number to sleep for a
fractional number of seconds. Note that other boards may not accept a floating-point argument, for compatibility
with them use sIleep ms () and sleep_us () functions.

utime.sleep_ms (ms)

Delay for given number of milliseconds, should be positive or 0.

utime.sleep_us (us)

Delay for given number of microseconds, should be positive or 0.

utime.ticks_ms ()

Returns an increasing millisecond counter with an arbitrary reference point, that wraps around after some value.

The wrap-around value is not explicitly exposed, but we will refer to it as TICKS_MAX to simplify discussion.
Period of the values is TICKS_PERIOD = TICKS_MAX + I. TICKS_PERIOD is guaranteed to be a power
of two, but otherwise may differ from port to port. The same period value is used for all of ticks_ms (),
ticks_us (), ticks_cpu () functions (for simplicity). Thus, these functions will return a value in range [0
.. TICKS_MAX], inclusive, total TICKS_PERIOD values. Note that only non-negative values are used. For the
most part, you should treat values returned by these functions as opaque. The only operations available for them
are ticks diff () and ticks_add () functions described below.

Note: Performing standard mathematical operations (+, -) or relational operators (<, <=, >, >=) directly on these
value will lead to invalid result. Performing mathematical operations and then passing their results as arguments
toticks diff () or ticks_add () will also lead to invalid results from the latter functions.

utime.ticks_us ()

Just like £ 1 cks_ms () above, but in microseconds.

utime.ticks_cpu()

Similar to ticks_ms () and ticks_us (), but with the highest possible resolution in the system. This is
usually CPU clocks, and that’s why the function is named that way. But it doesn’t have to be a CPU clock, some
other timing source available in a system (e.g. high-resolution timer) can be used instead. The exact timing unit
(resolution) of this function is not specified on ut ime module level, but documentation for a specific port may

32

Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

provide more specific information. This function is intended for very fine benchmarking or very tight real-time
loops. Avoid using it in portable code.

Availability: Not every port implements this function.

utime.ticks_add (ticks, delta)
Offset ticks value by a given number, which can be either positive or negative. Given a ticks value, this function
allows to calculate ticks value delta ticks before or after it, following modular-arithmetic definition of tick values
(see ticks_ms () above). ticks parameter must be a direct result of callto ticks _ms (), ticks_us (), or
ticks_cpu () functions (or from previous call to t i cks_add ()). However, delta can be an arbitrary integer
number or numeric expression. ticks_add () is useful for calculating deadlines for events/tasks. (Note: you
must use ticks_difrf () function to work with deadlines.)

Examples:

Find out what ticks value there was 100ms ago
print (ticks_add(time.ticks_ms (), —-100))

Calculate deadline for operation and test for it

deadline = ticks_add(time.ticks_ms (), 200)

while ticks_diff (deadline, time.ticks_ms()) > O:
do_a_little_of_something()

Find out TICKS_MAX used by this port
print (ticks_add (0, -1))

utime.ticks_diff (ticksl, ticks2)
Measure ticks difference between values returned from ticks_ms (), ticks us (), or ticks_cpu()
functions, as a signed value which may wrap around.

The argument order is the same as for subtraction operator, t icks_diff (ticksl, ticks2) hasthe same
meaning as ticksl - ticks2. However, values returned by ticks_ms (), etc. functions may wrap
around, so directly using subtraction on them will produce incorrect result. That is why ticks_diff () is
needed, it implements modular (or more specifically, ring) arithmetics to produce correct result even for wrap-
around values (as long as they not too distant inbetween, see below). The function returns signed value in
the range [-TICKS_PERIOD/2 .. TICKS_PERIOD/2-1] (that’s a typical range definition for two’s-complement
signed binary integers). If the result is negative, it means that ticks/ occurred earlier in time than ticks2. Other-
wise, it means that ticks/ occurred after ticks2. This holds only if ticks] and ticks2 are apart from each other for
no more than TICKS_PERIOD/2-1 ticks. If that does not hold, incorrect result will be returned. Specifically, if
two tick values are apart for TICKS_PERIOD/2-1 ticks, that value will be returned by the function. However,
if TICKS_PERIOD,?2 of real-time ticks has passed between them, the function will return -TICKS_PERIOD/2
instead, i.e. result value will wrap around to the negative range of possible values.

Informal rationale of the constraints above: Suppose you are locked in a room with no means to monitor passing
of time except a standard 12-notch clock. Then if you look at dial-plate now, and don’t look again for another
13 hours (e.g., if you fall for a long sleep), then once you finally look again, it may seem to you that only 1 hour
has passed. To avoid this mistake, just look at the clock regularly. Your application should do the same. “Too
long sleep” metaphor also maps directly to application behavior: don’t let your application run any single task
for too long. Run tasks in steps, and do time-keeping inbetween.

ticks_diff () is designed to accommodate various usage patterns, among them:

* Polling with timeout. In this case, the order of events is known, and you will deal only with positive results
of ticks diff():

Wait for GPIO pin to be asserted, but at most 500us
start = time.ticks_us/()
while pin.value() == 0:

(continues on next page)

1.1. Python standard libraries and micro-libraries 33

MicroPython Documentation, Release 1.12

(continued from previous page)

if time.ticks_diff(time.ticks_us (), start) > 500:
raise TimeoutError

* Scheduling events. In this case, t icks_diff () result may be negative if an event is overdue:

This code snippet is not optimized

now = time.ticks_ms ()

scheduled_time = task.scheduled_time ()

if ticks_diff (scheduled_time, now) > O0:
print ("Too early, let's nap")
sleep_ms (ticks_diff (scheduled_time, now))
task.run ()

elif ticks_diff (scheduled_time, now) == 0:
print ("Right at time!™")
task.run ()

elif ticks_diff (scheduled_time, now) < O:
print ("Oops, running late, tell task to run faster!")
task.run (run_faster=true)

Note: Do not pass time () values to ticks_diff (), you should use normal mathematical operations on
them. But note that t ime () may (and will) also overflow. This is known as https://en.wikipedia.org/wiki/
Year_2038_problem .

utime.time ()
Returns the number of seconds, as an integer, since the Epoch, assuming that underlying RTC is set and main-
tained as described above. If an RTC is not set, this function returns number of seconds since a port-specific
reference point in time (for embedded boards without a battery-backed RTC, usually since power up or reset).
If you want to develop portable MicroPython application, you should not rely on this function to provide higher
than second precision. If you need higher precision, use ticks _ms () and ticks_us () functions, if you
need calendar time, localtime () without an argument is a better choice.

Difference to CPython

In CPython, this function returns number of seconds since Unix epoch, 1970-01-01 00:00 UTC, as a floating-
point, usually having microsecond precision. With MicroPython, only Unix port uses the same Epoch, and if
floating-point precision allows, returns sub-second precision. Embedded hardware usually doesn’t have floating-
point precision to represent both long time ranges and subsecond precision, so they use integer value with second
precision. Some embedded hardware also lacks battery-powered RTC, so returns number of seconds since last
power-up or from other relative, hardware-specific point (e.g. reset).

1.1.21 uzlib - zlib decompression
This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: z11b.

This module allows to decompress binary data compressed with DEFLATE algorithm (commonly used in zlib library
and gzip archiver). Compression is not yet implemented.

Functions

uzlib.decompress (data, wbits=0, bufsize=0, /)
Return decompressed data as bytes. wbits is DEFLATE dictionary window size used during compression (8-
15, the dictionary size is power of 2 of that value). Additionally, if value is positive, data is assumed to be

34 Chapter 1. MicroPython libraries

https://en.wikipedia.org/wiki/Year_2038_problem
https://en.wikipedia.org/wiki/Year_2038_problem
https://docs.python.org/3.5/library/zlib.html#module-zlib
https://en.wikipedia.org/wiki/DEFLATE

MicroPython Documentation, Release 1.12

zlib stream (with zlib header). Otherwise, if it’s negative, it’s assumed to be raw DEFLATE stream. bufsize
parameter is for compatibility with CPython and is ignored.

class uzlib.DecompIO (stream, wbits=0,/)
Create a st ream wrapper which allows transparent decompression of compressed data in another stream. This
allows to process compressed streams with data larger than available heap size. In addition to values described
in decompress (), wbits may take values 24..31 (16 + 8..15), meaning that input stream has gzip header.

Difference to CPython

This class is MicroPython extension. It’s included on provisional basis and may be changed considerably or
removed in later versions.

1.1.22 _thread — multithreading support

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: _thread.

This module implements multithreading support.

This module is highly experimental and its API is not yet fully settled and not yet described in this documentation.

1.2 MicroPython-specific libraries

Functionality specific to the MicroPython implementation is available in the following libraries.

1.2.1 btree — simple BTree database

The bt ree module implements a simple key-value database using external storage (disk files, or in general case,
a random-access st ream). Keys are stored sorted in the database, and besides efficient retrieval by a key value,
a database also supports efficient ordered range scans (retrieval of values with the keys in a given range). On the
application interface side, BTree database work as close a possible to a way standard dict type works, one notable
difference is that both keys and values must be bytes objects (so, if you want to store objects of other types, you
need to serialize them to byt es first).

The module is based on the well-known BerkelyDB library, version 1.xx.

Example:

import btree

First, we need to open a stream which holds a database
This is usually a file, but can be in—-memory database
using uio.BytesIO, a raw flash partition, etc.
Oftentimes, you want to create a database file if it doesn't
exist and open if it exists. Idiom below takes care of this.
DO NOT open database with "a+b" access mode.
try:
f = open("mydb", "r+b")
except OSError:
f = open("mydb", "w+b")

H H R R W R

Now open a database itself

(continues on next page)

1.2. MicroPython-specific libraries 35

https://docs.python.org/3.5/library/_thread.html#module-_thread

MicroPython Documentation, Release 1.12

(continued from previous page)

db = btree.open (f)

The keys you add will be sorted internally in the database

db[b"3"] = b"three"
db[b"1"] = b"one"
db[b"z"] - b"twoﬂ

Assume that any changes are cached in memory unless

explicitly flushed (or database closed). Flush database
at the end of each "transaction".

db.flush ()

Prints b'two'
print (db[b"2"])

Iterate over sorted keys in the database, starting from b"2"

until the end of the database, returning only values.

Mind that arguments passed to values () method are xkeyx values.
Prints:

b'two'

b'three'

for word in db.values (b"2"):
print (word)

del db[b"2"]

No longer true, prints False
print (b"2" in db)

Prints:

b"1"

b"3"

for key in db:
print (key)

db.close ()

Don't forget to close the underlying stream!
f.close()

Functions

btree.open (stream, *, flags=0, pagesize=0, cachesize=0, minkeypage=0)
Open a database from a random-access st ream (like an open file). All other parameters are optional and
keyword-only, and allow to tweak advanced parameters of the database operation (most users will not need
them):

* flags - Currently unused.

* pagesize - Page size used for the nodes in BTree. Acceptable range is 512-65536. If O, a port-specific
default will be used, optimized for port’s memory usage and/or performance.

* cachesize - Suggested memory cache size in bytes. For a board with enough memory using larger values
may improve performance. Cache policy is as follows: entire cache is not allocated at once; instead,
accessing a new page in database will allocate a memory buffer for it, until value specified by cachesize is
reached. Then, these buffers will be managed using LRU (least recently used) policy. More buffers may

36 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

still be allocated if needed (e.g., if a database contains big keys and/or values). Allocated cache buffers
aren’t reclaimed.

» minkeypage - Minimum number of keys to store per page. Default value of 0 equivalent to 2.

Returns a BTree object, which implements a dictionary protocol (set of methods), and some additional methods
described below.

Methods

btree.close()
Close the database. It’s mandatory to close the database at the end of processing, as some unwritten data may be
still in the cache. Note that this does not close underlying stream with which the database was opened, it should
be closed separately (which is also mandatory to make sure that data flushed from buffer to the underlying
storage).

btree.flush()
Flush any data in cache to the underlying stream.

btree.__getitem_ _ (key)
btree.get (key, default=None, /)
btree.___setitem__ (key, val)
btree.__detitem _ (key)
btree.__contains__ (key)
Standard dictionary methods.

btree.__iter_ ()
A BTree object can be iterated over directly (similar to a dictionary) to get access to all keys in order.

btree.keys ([start_key[, end_key[,ﬂags]]])

btree.values ([start_key , end_key| , ﬂags])

btree.items ([start_key[, end_key[,ﬂags]]])
These methods are similar to standard dictionary methods, but also can take optional parameters to iterate over
a key sub-range, instead of the entire database. Note that for all 3 methods, start_key and end_key arguments
represent key values. For example, values () method will iterate over values corresponding to they key range
given. None values for start_key means “from the first key”, no end_key or its value of None means “until the
end of database”. By default, range is inclusive of start_key and exclusive of end_key, you can include end_key
in iteration by passing flags of bt ree. INCL. You can iterate in descending key direction by passing flags of
btree.DESC. The flags values can be ORed together.

Constants

btree.INCL
A flag for keys (), values (), items () methods to specify that scanning should be inclusive of the end
key.

btree.DESC

A flag for keys (), values (), items () methods to specify that scanning should be in descending direction
of keys.

1.2.2 framebuf — frame buffer manipulation

This module provides a general frame buffer which can be used to create bitmap images, which can then be sent to a
display.

1.2. MicroPython-specific libraries 37

MicroPython Documentation, Release 1.12

class FrameBuffer

The FrameBuffer class provides a pixel buffer which can be drawn upon with pixels, lines, rectangles, text and even
other FrameBuffer’s. It is useful when generating output for displays.

For example:

import framebuf

FrameBuffer needs 2 bytes for every RGB565 pixel
fbuf = framebuf.FrameBuffer (bytearray (10 » 100 = 2), 10, 100, framebuf.RGB565)

fouf.£fill (0)
fbuf.text ("MicroPython!', 0, 0, Oxffff)
fbuf.hline (0, 10, 96, Oxffff)

Constructors
class framebuf.FrameBuffer (buffer, width, height, format, stride=width, /)
Construct a FrameBuffer object. The parameters are:

* buffer is an object with a buffer protocol which must be large enough to contain every pixel defined by the
width, height and format of the FrameBuffer.

* width is the width of the FrameBuffer in pixels
* height is the height of the FrameBuffer in pixels

* format specifies the type of pixel used in the FrameBuffer; permissible values are listed under Constants
below. These set the number of bits used to encode a color value and the layout of these bits in buffer.
Where a color value c is passed to a method, c is a small integer with an encoding that is dependent on the
format of the FrameBuffer.

e stride is the number of pixels between each horizontal line of pixels in the FrameBuffer. This defaults to
width but may need adjustments when implementing a FrameBuffer within another larger FrameBuffer or
screen. The buffer size must accommodate an increased step size.

One must specify valid buffer, width, height, format and optionally stride. Invalid buffer size or dimensions may
lead to unexpected errors.

Drawing primitive shapes

The following methods draw shapes onto the FrameBuffer.

FrameBuffer.£ill (¢)
Fill the entire FrameBuffer with the specified color.

FrameBuffer.pixel (x, y[, c])
If ¢ is not given, get the color value of the specified pixel. If ¢ is given, set the specified pixel to the given color.

FrameBuffer.hline (x,y, w, c)
FrameBuffer.vline (x,y, h, c)

FrameBuffer.line (x/, yl, x2,y2,c)
Draw a line from a set of coordinates using the given color and a thickness of 1 pixel. The 1ine method draws
the line up to a second set of coordinates whereas the h1ine and v1ine methods draw horizontal and vertical
lines respectively up to a given length.

38 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

FrameBuffer.rect (x,y,w, I, c)

FrameBuffer.fill rect (x,y,w, h, c)
Draw a rectangle at the given location, size and color. The rect method draws only a 1 pixel outline whereas
the f111 rect method draws both the outline and interior.

Drawing text

FrameBuffer.text (s, x, y[, c])
Write text to the FrameBuffer using the the coordinates as the upper-left corner of the text. The color of the text
can be defined by the optional argument but is otherwise a default value of 1. All characters have dimensions of
8x8 pixels and there is currently no way to change the font.

Other methods

FrameBuffer.scroll (xstep, ystep)
Shift the contents of the FrameBuffer by the given vector. This may leave a footprint of the previous colors in
the FrameBulffer.

FrameBuffer.blit (fbuf, x, y[, key])
Draw another FrameBuffer on top of the current one at the given coordinates. If key is specified then it should
be a color integer and the corresponding color will be considered transparent: all pixels with that color value
will not be drawn.

This method works between FrameBuffer instances utilising different formats, but the resulting colors may be
unexpected due to the mismatch in color formats.

Constants

framebuf .MONO_VLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are vertically mapped with
bit 0 being nearest the top of the screen. Consequently each byte occupies 8 vertical pixels. Subsequent bytes
appear at successive horizontal locations until the rightmost edge is reached. Further bytes are rendered at
locations starting at the leftmost edge, 8 pixels lower.

framebuf .MONO_HLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit O being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf .MONO_HMSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit 7 being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf .RGB565
Red Green Blue (16-bit, 5+6+5) color format

framebuf .GS2_ HMSB
Grayscale (2-bit) color format

framebuf .GS4_HMSB
Grayscale (4-bit) color format

framebuf.GS8
Grayscale (8-bit) color format

1.2. MicroPython-specific libraries 39

MicroPython Documentation, Release 1.12

1.2.3 machine — functions related to the hardware

The machine module contains specific functions related to the hardware on a particular board. Most functions in
this module allow to achieve direct and unrestricted access to and control of hardware blocks on a system (like CPU,
timers, buses, etc.). Used incorrectly, this can lead to malfunction, lockups, crashes of your board, and in extreme
cases, hardware damage.

A note of callbacks used by functions and class methods of machine module: all these callbacks should be considered
as executing in an interrupt context. This is true for both physical devices with IDs >= 0 and “virtual” devices with
negative IDs like -1 (these “virtual” devices are still thin shims on top of real hardware and real hardware interrupts).
See Writing interrupt handlers.

Reset related functions

machine.reset ()
Resets the device in a manner similar to pushing the external RESET button.

machine.soft_reset ()
Performs a soft reset of the interpreter, deleting all Python objects and resetting the Python heap. It tries to retain
the method by which the user is connected to the MicroPython REPL (eg serial, USB, Wifi).

machine.reset_cause ()
Get the reset cause. See constants for the possible return values.

Interrupt related functions

machine.disable_irqg()
Disable interrupt requests. Returns the previous IRQ state which should be considered an opaque value. This
return value should be passed to the enable irg () function to restore interrupts to their original state, before
disable_irg/() was called.

machine.enable_irq (state)
Re-enable interrupt requests. The state parameter should be the value that was returned from the most recent
call to the disable irg() function.

Power related functions

machine. freq()
Returns CPU frequency in hertz.

machine.idle ()
Gates the clock to the CPU, useful to reduce power consumption at any time during short or long periods.
Peripherals continue working and execution resumes as soon as any interrupt is triggered (on many ports this
includes system timer interrupt occurring at regular intervals on the order of millisecond).

machine.sleep ()

Note: This function is deprecated, use 1ightsleep () instead with no arguments.

machine.lightsleep ([time_ms])
machine.deepsleep ([lime_ms])
Stops execution in an attempt to enter a low power state.

40 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

If time_ms is specified then this will be the maximum time in milliseconds that the sleep will last for. Otherwise
the sleep can last indefinitely.

With or without a timout, execution may resume at any time if there are events that require processing. Such
events, or wake sources, should be configured before sleeping, like Pin change or RTC timeout.

The precise behaviour and power-saving capabilities of lightsleep and deepsleep is highly dependent on the
underlying hardware, but the general properties are:

* A lightsleep has full RAM and state retention. Upon wake execution is resumed from the point where the
sleep was requested, with all subsystems operational.

* A deepsleep may not retain RAM or any other state of the system (for example peripherals or network
interfaces). Upon wake execution is resumed from the main script, similar to a hard or power-on reset.
The reset_cause () function will return machine.DEEPSLEEP and this can be used to distinguish
a deepsleep wake from other resets.

machine.wake_reason ()
Get the wake reason. See constants for the possible return values.

Availability: ESP32, WiPy.

Miscellaneous functions

machine.unique_id()
Returns a byte string with a unique identifier of a board/SoC. It will vary from a board/SoC instance to another,
if underlying hardware allows. Length varies by hardware (so use substring of a full value if you expect a short
ID). In some MicroPython ports, ID corresponds to the network MAC address.

machine.time_pulse_us (pin, pulse_level, timeout_us=1000000, /)
Time a pulse on the given pin, and return the duration of the pulse in microseconds. The pulse_level argument
should be 0 to time a low pulse or 1 to time a high pulse.

If the current input value of the pin is different to pulse_level, the function first (*) waits until the pin input
becomes equal to pulse_level, then (**) times the duration that the pin is equal to pulse_level. If the pin is
already equal to pulse_level then timing starts straight away.

The function will return -2 if there was timeout waiting for condition marked (*) above, and -1 if there was
timeout during the main measurement, marked (¥*) above. The timeout is the same for both cases and given by
timeout_us (which is in microseconds).

machine.rng()
Return a 24-bit software generated random number.

Availability: WiPy.

Constants

machine.IDLE

machine.SLEEP

machine .DEEPSLEEP
IRQ wake values.

machine .PWRON_RESET
machine.HARD RESET
machine .WDT_RESET
machine .DEEPSLEEP_RESET
machine.SOFT_RESET

Reset causes.

1.2. MicroPython-specific libraries 41

MicroPython Documentation, Release 1.12

machine .WLAN WAKE

machine .PIN_WAKE

machine.RTC_WAKE
Wake-up reasons.

Classes

class Pin — control I/O pins

A pin object is used to control I/O pins (also known as GPIO - general-purpose input/output). Pin objects are com-
monly associated with a physical pin that can drive an output voltage and read input voltages. The pin class has
methods to set the mode of the pin (IN, OUT, etc) and methods to get and set the digital logic level. For analog control
of a pin, see the ADC class.

A pin object is constructed by using an identifier which unambiguously specifies a certain I/O pin. The allowed forms
of the identifier and the physical pin that the identifier maps to are port-specific. Possibilities for the identifier are an
integer, a string or a tuple with port and pin number.

Usage Model:

from machine import Pin

create an output pin on pin #0
p0O = Pin(0, Pin.OUT)

set the value low then high
p0.value (0)
pO0.value (1)

create an input pin on pin #2, with a pull up resistor
p2 = Pin(2, Pin.IN, Pin.PULL_UP)

read and print the pin value
print (p2.value())

reconfigure pin #0 in input mode
p0.mode (p0.IN)

configure an irq callback
pO.irg(lambda p:print (p))

Constructors

class machine.Pin (id, mode=-1, pull=-1, *, value, drive, alt)
Access the pin peripheral (GPIO pin) associated with the given id. If additional arguments are given in the
constructor then they are used to initialise the pin. Any settings that are not specified will remain in their
previous state.

The arguments are:

* id is mandatory and can be an arbitrary object. Among possible value types are: int (an internal Pin
identifier), str (a Pin name), and tuple (pair of [port, pin]).

* mode specifies the pin mode, which can be one of:

— Pin.IN - Pinis configured for input. If viewed as an output the pin is in high-impedance state.

42 Chapter 1. MicroPython libraries

MicroPython Documentation, Release 1.12

— Pin.OUT - Pin is configured for (normal) output.

— Pin.OPEN_DRAIN - Pin is configured for open-drain output. Open-drain output works in the fol-
lowing way: if the output value is set to O the pin is active at a low level; if the output value is 1 the
pin is in a high-impedance state. Not all ports implement this mode, or some might only on certain
pins.

— Pin.ALT - Pin is configured to perform an alternative function, which is port specific. For a pin
configured in such a way any other Pin methods (except Pin. init ()) are not applicable (calling
them will lead to undefined, or a hardware-specific, result). Not all ports implement this mode.

— Pin.ALT_OPEN_DRAIN - The Same as Pin.ALT, but the pin is configured as open-drain. Not all
ports implement this mode.

e pull specifies if the pin has a (weak) pull resistor attached, and can be one of:
— None - No pull up or down resistor.
— Pin.PULL_UP - Pull up resistor enabled.
— Pin.PULL_DOWN - Pull down resistor enabled.

* value is valid only for Pin.OUT and Pin.OPEN_DRAIN modes and specifies initial output pin value if
given, otherwise the state of the pin peripheral remains unchanged.

* drive specifies the output power of the pin and can be one of: Pin.LOW_POWER, Pin.MED_POWER or
Pin.HIGH_POWER. The actual current driving capabilities are port dependent. Not all ports implement
this argument.

* alt specifies an alternate function for the pin and the values it can take are port dependent. This argument
is valid only for Pin.ALT and Pin.ALT_ OPEN_DRAIN modes. It may be used when a pin supports
more than one alternate function. If only one pin alternate function is supported the this argument is not
required. Not all ports implement this argument.

As specified above, the Pin class allows to set an alternate function for a particular pin, but it does not specify any
further operations on such a pin. Pins configured in alternate-function mode are usually not used as GPIO but
are instead driven by other hardware peripherals. The only operation supported on such a pin is re-initialising,
by calling the constructor or Pin.init () method. If a pin that is configured in alternate-function mode is
re-initialised with Pin.IN, Pin.OUT, or Pin.OPEN_DRAIN, the alternate function will be removed from
the pin.

Methods

Pin.init (mode=-1, pull=-1, * value, drive, alt)
Re-initialise the pin using the given parameters. Only those arguments that are specified will be set. The rest of
the pin peripheral state will remain unchanged. See the constructor documentation for details of the arguments.

Returns None.

Pin.value ([x])
This method allows to set and get the value of the pin, depending on whether the argument x is supplied or not.

If the argument is omitted then this method gets the digital logic level of the pin, returning O or 1 corresponding
to low and high voltage signals respectively. The behaviour of this method depends on the mode of the pin:

e Pin.IN - The method returns the actual input value currently present on the pin.

e Pin.OUT - The behaviour and return value of the method is undefined.

1.2. MicroPython-specific libraries 43

MicroPython Documentation, Release 1.12

* Pin.OPEN_DRAIN - If the pin is in state ‘0’ then the behaviour and return value of the method is unde-
fined. Otherwise, if the pin is in state ‘1’, the method returns the actual input value currently present on
the pin.

If the argument is supplied then this method sets the digital logic level of the pin. The argument x can be
anything that converts to a boolean. If it converts to True, the pin is set to state ‘1, otherwise it is set to state
‘0’. The behaviour of this method depends on the mode of the pin:

e Pin.IN - The value is stored in the output buffer for the pin. The pin state does not change, it remains
in the high-impedance state. The stored value will become active on the pin as soon as it is changed to
Pin.OUT or Pin.OPEN_DRAIN mode.

* Pin.OUT - The output buffer is set to the given value immediately.

e Pin.OPEN_DRAIN - If the value is ‘0’ the pin is set to a low voltage state. Otherwise the pin is set to
high-impedance state.

When setting the value this method returns None.

Pin._call_([x])

Pin objects are callable. The call method provides a (fast) shortcut to set and get the value of the pin. It is
equivalent to Pin.value([x]). See Pin.value () for more details.

Pin.on ()

Set pin to “1” output level.

Pin.off ()

Set pin to “0” output level.

Pin.mode ([mode])

Get or set the pin mode. See the constructor documentation for details of the mode argument.

Pin.pull ([pull])

Get or set the pin pull state. See the constructor documentation for details of the pull argument.

Pin.drive ([drive])

Get or set the pin drive strength. See the constructor documentation for details of the drive argument.
Not all ports implement this method.
Availability: WiPy.

Pin.irq (handler=None, trigger=(Pin.IRQ_FALLING | Pin.IRQ_RISING), *, priority=1, wake=None,

hard=Fualse)
Configure an interrupt handler to be called when the trigger source of the pin is active. If the pin mode is Pin.

IN then the trigger source is the external value on the pin. If the pin mode is Pin.OUT then the trigger source
is the output buffer of the pin. Otherwise, if the pin mode is Pin.OPEN_DRAIN then the trigger source is the
output buffer for state ‘0’ and the external pin value for state ‘1°.

The arguments are:

* handler is an optional function to be called when the interrupt triggers. The handler must take exactly
one argument which is the P in instance.

* trigger configures the event which can generate an interrupt. Possible values are:

Pin.IRQ_FALLING interrupt on falling edge.

Pin.IRQ_RISING interrupt on rising edge.

Pin.IRQ_LOW_LEVEL interrupt on low level.
— Pin.IRQ_HIGH_LEVEL interrupt on high level.

These values can be OR