

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

micropython-watson-iot

Unofficial IBM Watson IoT Platform SDK for Devices Running MicroPython

This is a "SDK" in the loosest sense.

Installation

This library is intended to be used with an ESP32 [https://espressif.com/en/products/hardware/esp32/overview]-based device, or at least something with connectivity that has more RAM than a ESP8266, and runs MicroPython [https://micropython.org].

The device you're using should already have been flashed with MicroPython [https://micropython.org].

Installation via REPL

Open a serial terminal, e.g.:

$ python3 -m serial.tools.miniterm --raw /dev/your-com-port 115200

Ensure your device has internet connectivity, then:

import upip
upip.install('micropython-watson-iot')

The above will install the latest release of this module (and its dependencies) within lib/.

Installation via Host Computer

	Clone this repo [https://github.com/boneskull/micropython-watson-iot], or download a .zip.

	From your working copy, copy the watson_iot/ directory to your device

	Create a umqtt directory on your device

	Clone micropython-lib [https://github.com/micropython/micropython-lib] or download a .zip

	From the micropython-lib working copy, put:

	umqtt.simple/umqtt/simple.py into umqtt/simple.py

	umqtt.robust/umqtt/robust.py into umqtt/robust.py

Using Adafruit's MicroPython Tool

A tool you can use to copy files is adafruit-ampy [https://github.com/adafruit/ampy], which can be installed via pip3 install adafruit-ampy.

This oughtta do it:

$ PORT=/dev/tty.SLAB_USBtoUART && \
ampy --port "${PORT}" put /path/to/micropython-watson-iot/watson_iot && \
ampy --port "${PORT}" mkdir umqtt && \
ampy --port "${PORT}" put \
 /path/to/micropython-lib/umqtt.simple/umqtt/simple.py umqtt/simple.py && \
ampy --port "${PORT}" put \
 /path/to/micropython-lib/umqtt.robust/umqtt/robust.py umqtt/robust.py

(Replace the working copy paths and the value of PORT with your device path.)

IBM Cloud & Watson IoT Platform

You have a couple options here.

	To experiment, you can use Watson IoT Platform Quickstart [https://quickstart.internetofthings.ibmcloud.com/], or

	Sign up for a (free) IBM Cloud account [https://console.bluemix.net/registration/], then create an Watson IoT Platform service [https://console.bluemix.net/catalog/services/internet-of-things-platform] from the catalog

Usage

In lieu of proper API documentation, here are a bunch of examples:

Connecting

from watson_iot import Device

my_device = Device(
 device_id='my-device-id', # required
 device_type='my-device-type', # required
 token='my-device-token', # required
 # optional parameters shown with defaults below
 org='quickstart',
 username='use-token-auth',
 port=8883, # this is 1883 if default `org` used
 clean_session=True,
 domain='internetofthings.ibmcloud.com',
 ssl_params=None,
 log_level='info'
)

my_device.connect()

When finished, you can disconnect:

my_device.disconnect()

Publishing an Event

Assuming the Device is connected, this example will publish a single event with ID my_event_id.

my_device.publishEvent(
 'my_event_id', # event name
 {'ok': True}, # message payload

 message_format='json', # 'text' is also built-in
 qos=0 # QoS 0 or QoS 1
)

Handling a Command

The following will execute the my_handler function when command my-command is received by the Device.

def my_handler(message):
 """
 does something with `message`
 """
 pass

my_device.set_command('my-command', my_handler)

blocking wait for command
while my_device.is_connected:
 my_device.sync_loop()

Alternatively, a non-blocking approach:

import utime as time

non-blocking wait for command
while my_device.is_connected:
 my_device.loop()
 # do other stuff like sleep
 time.sleep(1)

To stop handling the command my-command:

my_device.unset_command('my-command')

Registering a Custom Message Format

micropython-watson-iot comes with built-in encoders and decoders for JSON (json) and plain text (text) message formats.

All incoming messages (via commands, for example) are byte literals!

You can add a custom encoder and decoder:

def to_csv(my_list):
 """
 `my_list` is likely a list or tuple; returns a str
 """
 return ','.join(my_list)

def from_csv(data):
 """
 `data` is a byte literal and must be coerced to a str first
 """
 return str(data).split(',')

my_device.set_encoder('csv', to_csv)
my_device.set_decoder('csv', from_csv)

Now, whenever an event is published with message_format='csv', the encoder will modify the outbound message. Likewise, whenever a command is received in the csv format, the incoming message will be run through the decoder before it's given to the command handler.

You can also remove them, if you wish:

my_device.unset_encoder('csv')
my_device.unset_decoder('csv')

Potentially Useful Properties

	is_connected - bool, whether or not the Device is currently connected

	is_secure - bool, whether or not the active or inactive connection is encrypted

Limitations

If your use case falls outside of the limitations listed below, take a look at the official Python SDK [https://github.com/ibm-watson-iot/iot-python] instead.

That being said, I'm open to collaboration on the following items, whether they make sense within this project, or others.

No "Applications" Nor "Gateways"

micropython-watson-iot supports "unmanaged" devices only. A "device" in the context of Watson IoT Platform is:

A device is anything that has a connection to the internet and has data to send to or receive from the cloud. You can use devices to send event information such as sensor readings to the cloud, and to accept commands from applications in the cloud.

That means you cannot create an application [https://console.bluemix.net/docs/services/IoT/applications/app_dev_index.html#app_dev_index] or gateway [https://console.bluemix.net/docs/services/IoT/gateways/gw_dev_index.html#gw_dev_index] with micropython-watson-iot.

No "Managed Devices"

micropython-watson-iot (as of this writing) does not support managed devices [https://console.bluemix.net/docs/services/IoT/devices/device_mgmt/index.html#index].

This may or may not be feasible.

No XML Support

micropython-watson-iot does not (and likely will not) parse commands received as XML; nor does it provide any "helpers" to publish events as XML.

No Support for QoS 2

As of Sep 20, 2017, the official MicroPython MQTT client module does not support QoS 2, so neither does micropython-watson-iot.

I'd be cool with using a non-official MQTT client module which did support QoS 2, if such a thing existed!

MicroPython Itself

MicroPython is not CPython [http://docs.micropython.org/en/latest/pyboard/genrst/index.html]. While MicroPython is based on Python 3, micropython-watson-iot is not targeting Python 3, nor is it targeting any forks of MicroPython (e.g., CircuitPython [https://github.com/adafruit/circuitpython]).

Development Notes

Publish

$./setup.py sdist upload

Enter your PyPi pizassword at the pizrompt.

License

© 2017-2018 Christopher Hiller [https://boneskull.com]. Licensed Apache-2.0

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

