
MiCADO Documentation

Attila Farkas

Jan 17, 2019

User Documentation

1 Introduction 3
1.1 Deployment . 3
1.2 Dashboard . 7
1.3 REST API . 8
1.4 Application description . 9
1.5 Tutorials . 16
1.6 Release Notes . 18

i

ii

MiCADO Documentation

This software is developed by the COLA project.

User Documentation 1

https://project-cola.eu/

MiCADO Documentation

2 User Documentation

CHAPTER 1

Introduction

MiCADO is an auto-scaling framework for Docker containers, orchestrated by Kubernetes. It supports autoscaling
at two levels. At virtual machine (VM) level, a built-in Kubernetes cluster is dynamically extended or reduced by
adding/removing cloud virtual machines. At Kubernetes level, the number of replicas tied to a specific Kubernetes
Deployment can be increased/decreased.

MiCADO requires a TOSCA based Application Description to be submitted containing three sections: 1) the definition
of the individual applications making up a Kubernetes Deployment, 2) the specification of the virtual machine and 3)
the implementation of scaling policy for both scaling levels. The format of the Application Description for MiCADO
is detailed later.

To use MiCADO, first the MiCADO core services must be deployed on a virtual machine (called MiCADO Master)
by an Ansible playbook. MiCADO Master is configured as the Kubernetes Master Node and has installed the Docker
Engine, Occopus (to scale VMs), Prometheus (for monitoring), Policy Keeper (to perform decision on scaling) and
Submitter (to provide submission endpoint) microservices to realize the autoscaling control loops. During operation
MiCADO workers (realised on new VMs) are instantiated on demand which deploy Prometheus Node Exporter, CAd-
visor and Docker engine through contextualisation. The newly instantiated MiCADO workers join the Kubernetes
cluster managed by the MiCADO Master.

In the current release, the status of the system can be inspected through the following ways: REST API provides
interface for submission, update and list functionalities over applications. Dashboard provides three graphical view to
inspect the VMs and Kubernetes Deployments. They are the Kubernetes Dashboard, Grafana and Prometheus. Finally,
advanced users may find the logs of the MiCADO core services useful on MiCADO master.

1.1 Deployment

To deploy MiCADO you need a (separate) virtual machine, called MiCADO master. There are two ways of deploy-
ment:

• remote: download the Ansible playbook on your local machine, configure the MiCADO master as target ma-
chine and run the playbook to perform the deployment remotely.

• local: login to the MiCADO master, download the Ansible playbook, configure the localhost as target machine
and run the playbook to perform the deployment locally.

3

MiCADO Documentation

We recommend to perform the installation remotely as all your configuration files are preserved on your machine, i.e.
it is easier to repeat the deployment if needed.

1.1.1 Prerequisites

For cloud interfaces supported by MiCADO:

• EC2 (tested on Amazon and OpenNebula)

• Nova (tested on OpenStack)

• CloudSigma

• CloudBroker

For the MiCADO master:

• Ubuntu 16.04

• 2GHz CPU & 2GB RAM

For the host where the Ansible playbook is executed (differs depending on local or remote):

• Ansible 2.4 or greater

• Git

Ansible

Note: Ansible in the Ubuntu 16.04 APT repository is outdated and insufficient (at the time of writing this document)

To install Ansible on Ubuntu 16.04, use these commands:

sudo apt-get update
sudo apt-get install software-properties-common
sudo apt-add-repository ppa:ansible/ansible
sudo apt-get update
sudo apt-get install ansible

To install Ansible on other operation systems follow the official installation guide.

Git

To install Git on Ubuntu, use this command:

sudo apt-get install git-all

To install Git on other operating systems follow the official installation guide.

1.1.2 Installation

Perform the following steps either on your local machine or on MiCADO master depending on the installation method.

4 Chapter 1. Introduction

https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

MiCADO Documentation

Step 1: Download the ansible playbook.

git clone https://github.com/micado-scale/ansible-micado.git ansible-micado
cd ansible-micado
git checkout v0.7.0

Step 2: Specify cloud credential for instantiating MiCADO workers.

MiCADO master will use this credential to start/stop VM instances (MiCADO workers) to host the application and
to realize scaling. Credentials here should belong to the same cloud as where MiCADO master is running. We
recommend making a copy of our predefined template and edit it. MiCADO expects the credential in a file, called
credentials-cloud-api.yml before deployment. Please, do not modify the structure of the template!

cp sample-credentials-cloud-api.yml credentials-cloud-api.yml
edit credentials-cloud-api.yml

Edit credentials-cloud-api.yml to add cloud credentials. You will find predefined sections in the template for each
cloud interface type MiCADO supports. Fill only the section belonging to your target cloud.

Optionally you can use the Ansible Vault mechanism to keep the credential data in an encrypted format. To achieve
this, create the above file using Vault with the command

ansible-vault create credentials-cloud-api.yml

This will launch the editor defined in the $EDITOR environment variable to make changes to the file. If you wish to
make any changes to the previously encrypted file, you can use the command

ansible-vault edit credentials-cloud-api.yml

Step 3a: Specify security settings and credentials to access MiCADO.

MiCADO master will use these security-related settings and credentials to authenticate its users for accessing the
REST API and Dashboard.

cp sample-credentials-micado.yml credentials-micado.yml
edit credentials-micado.yml

Specify the provisioning method for the x509 keypair used for TLS encryption of the management interface in the
tls subtree:

• The ‘self-signed’ option generates a new keypair with the specified hostname as subject (or ‘micado-master’ if
omitted).

• The ‘user-supplied’ option lets the user add the keypair as plain multiline strings (in unencrypted format) in the
ansible_user_data.yml file under the ‘cert’ and ‘key’ subkeys respectively.

Specify the default username and password for the administrative we user in the the authentication subtree.

Optionally you may use the Ansible Vault mechanism as described in Step 2 to protect the confidentiality and integrity
of this file as well.

Step 3b: (Optional) Specify credentials to use private Docker registries.

Set the Docker login credentials of your private Docker registry in which your private containers are stored. We
recommend making a copy of our predefined template and edit it. MiCADO expects the docker registry credentials in

1.1. Deployment 5

https://docs.ansible.com/ansible/2.4/vault.html

MiCADO Documentation

a file, called credentials-docker-registry.yml. Please, do not modify the structure of the template!

cp sample-credentials-docker-registry.yml credentials-docker-registry.yml
edit credentials-docker-registry.yml

Edit credentials-docker-registry.yml and add username, password, and registry url. To login to the default docker_hub,
leave DOCKER_REPO as is (https://index.docker.io/v1/).

Optionally you may use the Ansible Vault mechanism as described in Step 2 to protect the confidentiality and integrity
of this file as well.

Step 4: Launch an empty cloud VM instance for MiCADO master.

This new VM will host the MiCADO core services.

a) Default port number for MiCADO service is 443. Optionally, you can modify the port number stored by the
variable called web_listening_port defined in the ansible playbook file called micado-master.yml.

b) Configure a cloud firewall settings which opens the following ports on the MiCADO master virtual machine:

TCP: 22,2380,6443,8300,8301,8302,8500,8600,10252,[web_listening_port]
UDP: 2379,8301,8302,8472,8600,10250,10251

NOTE: replace [web_listening_port] with the actual value specified in Step 4a.

NOTE: MiCADO master has built-in firewall, therefore you can leave all ports open at cloud level.

c) Finally, launch the virtual machine with the proper settings (capacity, ssh keys, firewall): use any of aws, ec2, nova,
etc command-line tools or web interface of your target cloud to launch a new VM. We recommend a VM with 2 cores,
4GB RAM, 20GB disk. Make sure you can ssh to it (password-free i.e. ssh public key is deployed) and your user is
able to sudo (to install MiCADO as root). Store its IP address which will be referred as IP in the following steps.

Step 5: Customize the inventory file for the MiCADO master.

We recommend making a copy of our predefined template and edit it. Use the template inventory file, called sample-
hosts for customisation.

cp sample-hosts hosts
edit hosts

Edit the hosts file to set ansible variables for MiCADO master machine. Update the following parameters:

• ansible_host: specifies the publicly reachable ip address of MiCADO master. Set the public or floating ip of
the master regardless the deployment method is remote or local. The ip specified here is used by the Dashboard
for webpage redirection as well

• ansible_connection: specifies how the target host can be reached. Use “ssh” for remote or “local” for local
installation. In case of remote installation, make sure you can authenticate yourself against MiCADO master.
We recommend to deploy your public ssh key on MiCADO master before starting the deployment

• ansible_user: specifies the name of your sudoer account, defaults to “ubuntu”

• ansible_become: specifies if account change is needed to become root, defaults to “True”

• ansible_become_method: specifies which command to use to become superuser, defaults to “sudo”

• ansible_python_interpreter: specifies the interpreter to be used for ansible on the target host, defaults to
“/usr/bin/python3”

Please, revise all the parameters, however in most cases the default values are correct.

6 Chapter 1. Introduction

https://index.docker.io/v1/

MiCADO Documentation

Step 6: Start the installation of MiCADO master.

ansible-playbook -i hosts micado-master.yml

If you have used Vault to encrypt your credentials, you have to add the path to your vault credentials to the command
line as described in the Ansible Vault documentation or provide it via command line using the command

ansible-playbook -i hosts micado-master.yml --ask-vault-pass

1.1.3 After deployment

Once the deployment has successfully finished, you can proceed with

• visiting the Dashboard

• using the REST API

• playing with the Tutorials

• creating your Application description

1.1.4 Check the logs

You can SSH into MiCADO master and check the logs at any point after MiCADO is succesfully deployed. All
logs are kept under /var/log/micado and are organised by components. Scaling decisions, for example, can be
inspected under /var/log/micado/policykeeper

1.1.5 Accessing user-defined service

In case your application contains a container exposing a service, you will have to ensure the following to access it.

• First set kompose.service.type: ‘nodeport’ in the TOSCA description of your app. More information on this
in the section of the documentation titled application description

• The container will be accessible at <IP>:<port> . Both can be found on the Kubernetes Dashboard, with IP
under Nodes > my_micado_vm > Addresses and with port under Discovery and load balancing > Services >
my_app > Internal endpoints

1.2 Dashboard

MiCADO has a simple dashboard that collects web-based user interfaces into a single view. To access the Dashboard,
visit https://[IP]:[PORT], where

• [IP] is the ip address of MiCADO master, the virtual machine you have launched in Step 4 of Deployment

• [PORT] is the port number configured during Step 4 of Deployment, its value is held by the
web_listening_port variable specified in the micado-master.yml ansible file.

The following webpages are currently exposed:

• Kubernetes Dashboard: A read-only instance of the Kubernetes WebUI providing a full overview of the infras-
tructure. Simply SKIP the authentication pop-up to gain read-only access to the dashboard.

• Grafana: graphically visualize the resources (nodes, containers) in time. After deploying your application, you
can select the service whose metrics you want using the ‘Service’ drop down running above the graphs area.

1.2. Dashboard 7

https://docs.ansible.com/ansible/2.4/vault.html#providing-vault-passwords

MiCADO Documentation

• Prometheus: monitoring subsystem. Recommended for developers, experts.

1.3 REST API

MiCADO has a TOSCA compliant submitter to submit, update, list and remove MiCADO applications. The submitter
exposes the following REST API:

• To launch an application specified by a TOSCA description stored locally, use this command:

curl --insecure -s -F file=@[path to the TOSCA description] -X POST https://
→˓[username]:[password]@[IP]:[port]/toscasubmitter/v1.0/app/launch/file/

• To launch an application specified by a TOSCA description stored locally and specify an application id, use this
command:

curl --insecure -s -F file=@[path to the TOSCA description] -F id=[APPLICATION_ID] -
→˓X POST https://[username]:[password]@[IP]:[port]/toscasubmitter/v1.0/app/launch/
→˓file/

• To launch an application specified by a TOSCA description stored behind a url, use this command:

curl --insecure -s -d input="[url to TOSCA description]" -X POST https://
→˓[username]:[password]@[IP]:[port]/toscasubmitter/v1.0/app/launch/url/

• To launch an application specified by a TOSCA description stored behind an url and specify an application id,
use this command:

curl --insecure -s -d input="[url to TOSCA description]" -d id=[ID] -X POST https://
→˓[username]:[password]@[IP]:[port]/toscasubmitter/v1.0/app/launch/url/

• To update a running MiCADO application using a TOSCA description stored locally, use this command:

curl --insecure -s -F file=@"[path to the TOSCA description]" -X PUT https://
→˓[username]:[password]@[IP]:[port]/toscasubmitter/v1.0/app/udpate/file/[APPLICATION_
→˓ID]

• To update a running MiCADO application using a TOSCA description stored behind a url, use this command:

curl --insecure -s -d input="[url to TOSCA description]" -X PUT https://
→˓[username]:[password]@[IP]:[port]/toscasubmitter/v1.0/app/udpate/file/[APPLICATION_
→˓ID]

• To undeploy a running MiCADO application, use this command:

curl --insecure -s -X DELETE https://[username]:[password]@[IP]:[port]/toscasubmitter/
→˓v1.0/app/undeploy/[APPLICATION_ID]

• To query all the running MiCADO applications, use this command:

curl --insecure -s -X GET https://[username]:[password]@[IP]:[port]/toscasubmitter/v1.
→˓0/list_app/

• To query one running MiCADO application, use this command:

curl --insecure -s -X GET https://[username]:[password]@[IP]:[port]/toscasubmitter/v1.
→˓0/app/[APPLICATION_ID]

8 Chapter 1. Introduction

MiCADO Documentation

• To query the services of a running MiCADO application, use this command:

curl --insecure -s -X GET https://[username]:[password]@[IP]:[port]/toscasubmitter/v1.
→˓0/app/[APPLICATION_ID]/services

• To query the nodes hosting a running MiCADO application, use this command:

curl --insecure -s -X GET https://[username]:[password]@[IP]:[port]/toscasubmitter/v1.
→˓0/app/[APPLICATION_ID]/nodes

1.4 Application description

MiCADO executes applications described by the Application Descriptions following the TOSCA format. This section
details the structure of the application description.

Application description has four main sections:

• tosca_definitions_version: tosca_simple_yaml_1_0.

• imports: a list of urls pointing to custom TOSCA types. The default url points to the custom types defined for
MiCADO. Please, do not modify this url.

• repositories: docker repositories with their addresses.

• topology_template: the main part of the application description to define 1) kubernetes deployments (of docker
containers), 2) virtual machine (under the node_templates section) and 3) the scaling policy under the policies
subsection. These sections will be detailed in subsections below.

Here is an overview example for the structure of the MiCADO application description:

tosca_definitions_version: tosca_simple_yaml_1_0

imports:
- https://raw.githubusercontent.com/micado-scale/tosca/v0.6.0/micado_types.yaml

repositories:
docker_hub: https://hub.docker.com/

topology_template:
node_templates:
YOUR_KUBERNETES_APP:

type: tosca.nodes.MiCADO.Container.Application.Docker
properties:

...
artifacts:

...
...
YOUR_OTHER_KUBERNETES_APP:

type: tosca.nodes.MiCADO.Container.Application.Docker
properties:

...
artifacts:

...

YOUR_VIRTUAL_MACHINE:
type: tosca.nodes.MiCADO.Occopus.<CLOUD_API_TYPE>.Compute
properties:

(continues on next page)

1.4. Application description 9

MiCADO Documentation

(continued from previous page)

cloud:
interface_cloud: ...
endpoint_cloud: ...

capabilities:
host:
properties:

...

policies:
- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_VIRTUAL_MACHINE]
properties:

...
- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_KUBERNETES_APP]
properties:

...
- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_OTHER_KUBERNETES_APP]
properties:

...

1.4.1 Specification of Kubernetes Deployments (as Docker containers)

Under the node_templates section you can define one or more apps to create a Kubernetes Deployment (using
Docker compose nomenclature) (see YOUR_KUBERNETES_APP). Each app within the Kubernetes deployment
gets its own definition consisting of three main parts: type, properties and artifacts. The value of the type keyword
for the Kubernetes Deployment of a Docker container must always be tosca.nodes.MiCADO.Container.
Application.Docker. The properties section will contain most of the setting of the app to be deployed using
Kubernetes. Under the artifacts section the Docker image (see YOUR_DOCKER_IMAGE) must be defined.

topology_template:
node_templates:
YOUR_KUBERNETES_APP:

type: tosca.nodes.MiCADO.Container.Application.Docker
properties:

...
artifacts:
image:
type: tosca.artifacts.Deployment.Image.Container.Docker
file: YOUR_DOCKER_IMAGE
repository: docker_hub

The fields under the properties section of the Kubernetes app are derived from a docker-compose file and converted
using Kompose. You can find additional information about the properties in the docker compose documentation
<https://docs.docker.com/compose/compose-file/#service-configuration-reference> and see what Kompose supports
here <http://kompose.io/conversion/>. The syntax of the property values is currently the same as in docker-compose
file. The Compose properties will be translated into Kubernetes specs on deployment.

Under the properties section of an app (see YOUR_KUBERNETES_APP) you can specify the following keywords.:

• command: command line expression to be executed by the container.

10 Chapter 1. Introduction

MiCADO Documentation

• deploy: Orchestrated deployment options. CPU reservations should be set 0.1 lower than in Swarm (0.9 == 1.0)

• entrypoint: override the default entrypoint of container.

• environment: map of all required environment variables.

• expose: expose ports without publishing them to the host machine.

• volumes: list of bind mount (host-container) volumes for the service in the format
/source/etc/data:/target/etc/data

• ports: list of published ports to the host machine. Unlike Docker this does not make the container accessible
from the outside.

• labels: map of metadata like Docker labels and/or Kubernetes instructions (see NOTE).

NOTE labels can also be used to pass instructions to Kubernetes (full list: http://kompose.io/user-guide/#labels) *
kompose.service.type: ‘nodeport’ will make the container accessible at <worker_node_ip>:port where port can be
found on the Kubernetes Dashboard under Discovery and load balancing > Services > my_app > Internal endpoints

Under the artifacts section you can define the docker image for the kubernetes app. Three fields must be defined:

• type: tosca.artifacts.Deployment.Image.Container.Docker

• file: docker image for the kubernetes app (e.g. sztakilpds/cqueue_frontend:latest)

• repository: name of the repository where the image is located. The name used here (e.g. docker_hub), must be
defined at the top of the description under the repositories section.

Kubernetes networking is inherently different to the approach taken by Docker. This is a complex subject which is
worth a read: https://kubernetes.io/docs/concepts/cluster-administration/networking/

Since every pod gets its own IP, which any pod can by default use to communicate with any other pod, this means there
is no network to explicitly define. If ports is defined in the definition above, pods can reach each other over CoreDNS
via their hostname (container name).

1.4.2 Specification of the Virtual Machine

The collection of docker containers (kubernetes applications) specified in the previous section is orchestrated by Ku-
bernetes. This section introduces how the parameters of the virtual machine can be configured which will be hosts the
Kubernetes worker node. During operation MiCADO will instantiate as many virtual machines with the parameters
defined here as required during scaling. MiCADO currently supports four different cloud interfaces: CloudSigma,
CloudBroker, EC2, Nova. The following ports and protocols should be enabled on the virtual machine:

ICMP
TCP: 22,2377,7946,8300,8301,8302,8500,8600,9100,9200
UDP: 4789,7946,8301,8302,8600

The following subsections details how to configure them.

CloudSigma

To instantiate MiCADO workers on CloudSigma, please use the template below. MiCADO requires num_cpus,
mem_size, vnc_password, libdrive_id and public_key_id to instantiate VM on CloudSigma.

topology_template:
node_templates:
worker_node:

type: tosca.nodes.MiCADO.Occopus.CloudSigma.Compute

(continues on next page)

1.4. Application description 11

http://kompose.io/user-guide/#labels
https://kubernetes.io/docs/concepts/cluster-administration/networking/

MiCADO Documentation

(continued from previous page)

properties:
cloud:
interface_cloud: cloudsigma
endpoint_cloud: ADD_YOUR_ENDPOINT (e.g for cloudsigma https://zrh.

→˓cloudsigma.com/api/2.0)
capabilities:

host:
properties:
num_cpus: ADD_NUM_CPUS_FREQ (e.g. 4096)
mem_size: ADD_MEM_SIZE (e.g. 4294967296)
vnc_password: ADD_YOUR_PW (e.g. secret)
libdrive_id: ADD_YOUR_ID_HERE (eg. 87ce928e-e0bc-4cab-9502-514e523783e3)
public_key_id: ADD_YOUR_ID_HERE (e.g. d7c0f1ee-40df-4029-8d95-

→˓ec35b34dae1e)
firewall_policy: ADD_YOUR_ID_HERE (e.g. fd97e326-83c8-44d8-90f7-

→˓0a19110f3c9d)

• num_cpu is the speed of CPU (e.g. 4096) in terms of MHz of your VM to be instantiated. The CPU frequency
required to be between 250 and 100000

• mem_size is the amount of RAM (e.g. 4294967296) in terms of bytes to be allocated for your VM. The memory
required to be between 268435456 and 137438953472

• vnc_password set the password for your VNC session (e.g. secret).

• libdrive_id is the image id (e.g. 87ce928e-e0bc-4cab-9502-514e523783e3) on your CloudSigma cloud. Select
an image containing a base os installation with cloud-init support!

• public_key_id specifies the keypairs (e.g. d7c0f1ee-40df-4029-8d95-ec35b34dae1e) to be assigned to your VM.

• firewall_policy optionally specifies network policies (you can define multiple security groups in the form of a
list, e.g. fd97e326-83c8-44d8-90f7-0a19110f3c9d) of your VM.

CloudBroker

To instantiate MiCADO workers on CloudBroker, please use the template below. MiCADO requires deployment_id
and instance_type_id to instantiate a VM on CloudBroker.

topology_template:
node_templates:
worker_node:

type: tosca.nodes.MiCADO.Occopus.CloudBroker.Compute
properties:

cloud:
interface_cloud: cloudbroker
endpoint_cloud: ADD_YOUR_ENDPOINT (e.g https://cola-prototype.cloudbroker.

→˓com)
capabilities:

host:
properties:
deployment_id: ADD_YOUR_ID_HERE (e.g. e7491688-599d-4344-95ef-

→˓aff79a60890e)
instance_type_id: ADD_YOUR_ID_HERE (e.g. 9b2028be-9287-4bf6-bbfe-

→˓bcbc92f065c0)
key_pair_id: ADD_YOUR_ID_HERE (e.g. d865f75f-d32b-4444-9fbb-3332bcedeb75)
opened_port: ADD_YOUR_PORTS_HERE (e.g. '22,2377,7946,8300,8301,8302,8500,

→˓8600,9100,9200,4789')

12 Chapter 1. Introduction

MiCADO Documentation

• deployment_id is the id of a preregistered deployment in CloudBroker referring to a cloud, image, region, etc.
Make sure the image contains a base OS (preferably Ubuntu) installation with cloud-init support! The id is the
UUID of the deployment which can be seen in the address bar of your browser when inspecting the details of
the deployment.

• instance_type_id is the id of a preregistered instance type in CloudBroker referring to the capacity of the virtual
machine to be deployed. The id is the UUID of the instance type which can be seen in the address bar of your
browser when inspecting the details of the instance type.

• key_pair_id is the id of a preregistered ssh public key in CloudBroker which will be deployed on the virtual
machine. The id is the UUID of the key pair which can be seen in the address bar of your browser when
inspecting the details of the key pair.

• opened_port is one or more ports to be opened to the world. This is a string containing numbers separated by
a comma.

EC2

To instantiate MiCADO workers on a cloud through EC2 interface, please use the template below. MiCADO requires
region_name, image_id and instance_type to instantiate a VM through EC2.

topology_template:
node_templates:
worker_node:

type: tosca.nodes.MiCADO.Occopus.EC2.Compute
properties:

cloud:
interface_cloud: ec2
endpoint_cloud: ADD_YOUR_ENDPOINT (e.g https://ec2.eu-west-1.amazonaws.com)

capabilities:
host:
properties:
region_name: ADD_YOUR_REGION_NAME_HERE (e.g. eu-west-1)
image_id: ADD_YOUR_ID_HERE (e.g. ami-12345678)
instance_type: ADD_YOUR_INSTANCE_TYPE_HERE (e.g. t1.small)

• region_name is the region name within an EC2 cloud (e.g. eu-west-1).

• image_id is the image id (e.g. ami-12345678) on your EC2 cloud. Select an image containing a base os instal-
lation with cloud-init support!

• instance_type is the instance type (e.g. t1.small) of your VM to be instantiated.

• key_name optionally specifies the keypair (e.g. my_ssh_keypair) to be deployed on your VM.

• security_group_ids optionally specify security settings (you can define multiple security groups or just one,
but this property must be formatted as a list, e.g. [sg-93d46bf7]) of your VM.

• subnet_id optionally specifies subnet identifier (e.g. subnet-644e1e13) to be attached to the VM.

Nova

To instantiate MiCADO workers on a cloud through Nova interface, please use the template below. MiCADO requires
image_id flavor_name, project_id and network_id to instantiate a VM through Nova.

topology_template:
node_templates:

(continues on next page)

1.4. Application description 13

MiCADO Documentation

(continued from previous page)

worker_node:
type: tosca.nodes.MiCADO.Occopus.Nova.Compute
properties:

cloud:
interface_cloud: nova
endpoint_cloud: ADD_YOUR_ENDPOINT (e.g https://sztaki.cloud.mta.hu:5000/v3)

capabilities:
host:
properties:

image_id: ADD_YOUR_ID_HERE (e.g. d4f4e496-031a-4f49-b034-f8dafe28e01c)
flavor_name: ADD_YOUR_ID_HERE (e.g. 3)
project_id: ADD_YOUR_ID_HERE (e.g. a678d20e71cb4b9f812a31e5f3eb63b0)
network_id: ADD_YOUR_ID_HERE (e.g. 3fd4c62d-5fbe-4bd9-9a9f-c161dabeefde)
key_name: ADD_YOUR_KEY_HERE (e.g. keyname)
security_groups:
- ADD_YOUR_ID_HERE (e.g. d509348f-21f1-4723-9475-0cf749e05c33)

• project_id is the id of project you would like to use on your target Nova cloud.

• image_id is the image id on your Nova cloud. Select an image containing a base os installation with cloud-init
support!

• flavor_name is the name of flavor to be instantiated on your Nova cloud.

• server_name optionally defines the hostname of VM (e.g.:”helloworld”).

• key_name optionally sets the name of the keypair to be associated to the instance. Keypair name must be
defined on the target nova cloud before launching the VM.

• security_groups optionally specify security settings (you can define multiple security groups in the form of a
list) for your VM.

• network_id is the id of the network you would like to use on your target Nova cloud.

1.4.3 Description of the scaling policy

To utilize the autoscaling functionality of MiCADO, scaling policies can be defined on virtual machine and on the
application level. Scaling policies can be listed under the policies section. Each scalability subsection must have
the type set to the value of tosca.policies.Scaling.MiCADO and must be linked to a node defined under
node_template. The link can be implemented by specifying the name of the node under the targets subsection. The
details of the scaling policy can be defined under the properties subsection. The structure of the policies section can
be seen below.

topology_template:
node_templates:
YOUR_KUBERNETES_APP:

type: tosca.nodes.MiCADO.Container.Application.Docker
...

...
YOUR_OTHER_KUBERNETES_APP:

type: tosca.nodes.MiCADO.Container.Application.Docker
...

YOUR_VIRTUAL_MACHINE:
type: tosca.nodes.MiCADO.Occopus.<CLOUD_API_TYPE>.Compute
...

policies:
(continues on next page)

14 Chapter 1. Introduction

MiCADO Documentation

(continued from previous page)

- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_VIRTUAL_MACHINE]
properties:

...
- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_KUBERNETES_APP]
properties:

...
- scalability:
type: tosca.policies.Scaling.MiCADO
targets: [YOUR_OTHER_KUBERNETES_APP]
properties:

...

The scaling policies are evaluated periodically. In every turn, the virtual machine level scaling is evaluated, followed
by the evaluation of each scaling policies belonging to kubernetes-deployed applications.

The properties subsection defines the scaling policy itself. For monitoring purposes, MiCADO integrates the
Prometheus monitoring tool with two built-in exporters on each worker node: Node exporter (to collect data on nodes)
and CAdvisor (to collect data on containers). Based on Prometheus, any monitored information can be extracted using
the Prometheus query language and the returned value can be associated to a user-defined variable. Once variables
are updated, scaling rule is evaluated. It can be specified by a short Python code which can refer to the monitored
information. The structure of the scaling policy can be seen below.

- scalability:
...
properties:

sources:
- 'myprometheus.exporter.ip.address:portnumber'

constants:
LOWER_THRESHOLD: 50
UPPER_THRESHOLD: 90
MYCONST: 'any string'

queries:
THELOAD: 'Prometheus query expression'
MYEXPR: 'something refering to {{MYCONST}}'

alerts:
- alert: myalert
expr: 'Prometheus expression for an event important for scaling'
for: 1m

min_instances: 1
max_instances: 5
scaling_rule: |

if myalert:
m_node_count=5

if THELOAD>UPPER_THRESHOLD:
m_node_count+=1

if THELOAD<LOWER_THRESHOLD:
m_node_count-=1

The subsections have the following roles:

• sources supports the dynamic attachment of an external exporter by specifying a list endpoints of exporters
(see example above). Each item found under this subsection is configured under Prometheus to start collecting
the information provided/exported by the exporters. Once done, the values of the parameters provided by the

1.4. Application description 15

MiCADO Documentation

exporters become available.

• constants subsection is used to predefined fixed parameters. Values associated to the parameters can be referred
by the scaling rule as variable (see LOWER_THRESHOLD above) or in any other sections referred as Jinja2
variable (see MYEXPR above).

• queries contains the list of Prometheus query expressions to be executed and their variable name associated (see
THELOAD above)

• alerts subsection enables the utilisation of the alerting system of Prometheus. Each alert defined here is reg-
istered under Prometheus and fired alerts are represented with a variable of their name set to True during the
evaluation of the scaling rule (see myalert above).

• min_instances keyword specifies the lowest number of instances valid for the node.

• max_instances keyword specifies the highest number of instances valid for the node.

• scaling_rule specifies Python code to be evaluated periodically to decide on the number of instances. The
Python expression must be formalized with the following conditions:

– Each constant defined under the ‘constants’ section can be referred; its value is the one defined by the user.

– Each variable defined under the ‘queries’ section can be referred; its value is the result returned by
Prometheus in response to the query string.

– Each alert name defined under the ‘alerts’ section can be referred, its value is a logical True in case the
alert is firing, False otherwise

– Expression must follow the syntax of the Python language

– Expression can be multiline

– The following predefined variables can be referred; their values are defined and updated before the evalu-
ation of the scaling rule

* m_nodes: python list of nodes belonging to the kubernetes cluster

* m_node_count: the target number of nodes

* m_container_count: the target number of containers for the service the evaluation belongs to

* m_time_since_node_count_changed: time in seconds elapsed since the number of nodes changed

– In a scaling rule belonging to the virtual machine, the name of the variable to be updated is
m_node_count; as an effect the number stored in this variable will be set as target instance number
for the virtual machines.

– In a scaling rule belonging to a kubernetes deployment, the name of the variable to be set is
m_container_count; as an effect the number stored in this variable will be set as target instance
number for the kubernetes service.

For further examples, inspect the scaling policies of the demo examples detailed in the next section.

1.5 Tutorials

You can find test application(s) under the subdirectories of the ‘testing’ directory. The current stressng test can be
configured for use with CloudSigma, AWS EC2, OpenStack Nova and deployments via CloudBroker. The current
cqueue test is configured for CloudSigma.

16 Chapter 1. Introduction

MiCADO Documentation

1.5.1 stressng

This application contains a single service, performing a constant CPU load. The policy defined for this application
scales up/down both nodes and the stressng service based on cpu consumption. Helper scripts have been added to the
directory to ease application handling.

Note: make sure you have the jq tool installed required by the helper scripts.

• Step1: make a copy of the TOSCA file which is appropriate for your cloud - stressng_<your_cloud>.
yaml - and name it stressng.yaml (ie. by issuing the command cp stressng_cloudsigma.yaml
stressng.yaml)

• Step2: fill in the requested fields beginning with ADD_YOUR_... . These will differ depending on which cloud
you are using.

• In CloudSigma, for example, the libdrive_id , public_key_id and firewall_policy fields must
be completed. Without these, CloudSigma does not have enough information to launch your worker nodes. All
information is found on the CloudSigma Web UI. libdrive_id is the long alphanumeric string in the URL
when a drive is selected under “Storage/Library”. public_key_id is under the “Access & Security/Keys
Management” menu as Uuid. firewall_policy can be found when selecting a rule defined under the
“Networking/Policies” menu. The following ports must be opened for MiCADO workers: all inbound connec-
tions from MiCADO master

• Step3: Update the parameter file, called _settings. You need the ip address for the MiCADO master and
should name the application by setting the APP_ID *the application ID can not contain any underscores (_
) You should also change the SSL user/password/port information if they are different from the default.

• Step4: run 1-submit-tosca-stressng.sh to create the minimum number of MiCADO worker nodes
and to deploy the Kubernetes Deployment including the stressng app defined in the stressng.yaml TOSCA
description.

• Step4a: run 2-list-apps.sh to see currently running applications and their IDs

• Step5: run 3-stress-cpu-stressng.sh 85 to stress the service and increase the CPU load. After a
few minutes, you will see the system respond by scaling up virtual machines and containers to the maximum
specified.

• Step6: run 3-stress-cpu-stressng.sh 10 to update the service and decrease the CPU load. After
a few moments the system should respond by scaling down virtual machines and containers to the minimum
specified.

• Step7: run 4-undeploy-stressng.sh to remove the stressng stack and all the MiCADO worker nodes

1.5.2 cqueue

This application demonstrates a deadline policy using CQueue. CQueue provides a lightweight queueing service for
executing containers. CQueue server (implemented by RabbitMQ, Redis and a web-based frontend) stores items where
each represents a container execution. CQueue worker fetches an item and preform the execution of the container
locally. The demonstration below shows that the items can be consumed by deadline using MiCADO for scaling the
CQueue worker. The demonstration requires the deployment of a CQueue server separately, then the submission of
the CQueue worker to MiCADO with the appropriate (predefined) scaling policy.

Note: make sure you have the jq tool installed required by the helper scripts.

• Step1: Launch a separate VM and deploy CQueue server using the compose file, called
docker-compose-cqueue-server.yaml. You need to install docker and docker-compose to use
the compose file. This will be your cqueue server to store items representing container execution requests.
Important: you have to open ports defined under the ‘ports’ section for each of the four services defined in the
compose file.

1.5. Tutorials 17

MiCADO Documentation

• Step2: Update the parameter file, called _settings . You need the ip address for the MiCADO master and
for the CQueue server.

• Step3: Run ./1-submit-jobs.sh 50 to generate and send 50 jobs to CQueue server. Each item will be
a simple Hello World app (combined with some sleep) realized in a container. You can later override this with
your own container.

• Step4: Edit the TOSCA description file, called micado-cqworker.yaml.

– Replace each ‘cqueue.server.ip.address’ string with the real ip of CQueue server.

– Update each ‘ADD_YOUR_ID_HERE’ string with the proper value retrieved under your CloudSigma
account.

• Step5: Run ./2-get_date_in_epoch_plus_seconds.sh 600 to calculate the unix timestamp rep-
resenting the deadline by which the items (containers) must be finished. Take the value from the last line of the
output produced by the script. The value is 600 seconds from now.

• Step6: Edit the TOSCA description file, called micado-cqworker.yaml.

– Update the value for the ‘DEADLINE’ which is under the ‘policies/scalability/properties/constants’ sec-
tion. The value has been extracted in the previous step. Please, note that defining a deadline in the past
results in scaling the application to the maximum (2 nodes and 10 containers).

• Step7: Run ./3-deploy-cq-worker-to-micado.sh to deploy the CQworker service, which will con-
sume the items from the CQueue server i.e. execute the containers specified by the items.

• Step8a: Run ./4-list-running-apps.sh to list the apps running under MiCADO.

• Step8b: run query-services.sh to see the details of docker services of your application

• Step8c: run query-nodes.sh to see the details of docker nodes hosting your application

• Step9: Run ./5-undeploy-cq-worker-from-micado.sh to remove your application from MiCADO
when all items are consumed.

• Step10: You can have a look at the state ./cqueue-get-job-status.sh <task_id> or stdout of con-
tainer executions ./cqueue-get-job-status.sh <task_id> using one of the task id values printed
during Step 3.

1.6 Release Notes

v0.7.0 (12 Dec 2018)

• Introduce Kubernetes as the primary container orchestration engine

• Replace the swarm-visualiser with the Kubernetes Dashboard

v0.6.1 (15 Oct 2018)

• enable VM-only deployments

• add support for special characters in SSL credentials

• fix missing vm instance number reset at undeployment

• add option to disable auto-updates on worker nodes

• modify default launch-order of TOSCA adaptors

• add cloud-specific TOSCA templates and improve helper scripts for stressng

• flatten CPU scaling policies

18 Chapter 1. Introduction

MiCADO Documentation

• improve virtual machine build time

• fix Zorp starting dependency

• fix Docker login timing issue

• remove unnecessary port from docker compose file

• enable Prometheus DB export

v0.6.0 (10 Sept 2018)

• introduce documentation repository and host its content at http://micado-scale.readthedocs.io

• improve MiCADO master containers restart policy

• fix MTU issue in relation to Docker

• fix Occopus restart issue

• fix health-checking for Cloudbroker-AWS platform

• update host naming convention for worker and master nodes

• make wait-update task idempotent in ansible playbook

• fix issue with worker node deployment in EC2 clouds

• fix issue with user-defined Docker networks in OpenStack clouds

• make Submitter response message structure uniform

• add ‘nodes’ and ‘services’ query methods to REST API

• improve ‘stressng’ and ‘cqueue’ test helper scripts

• add more compose properties to custom TOSCA definition

• fix floating ip issues in the Dashboard component

• add new links to Dashboard to reflect the changes introduced by reverse proxying

• fix Dashboard to generate links based on the contents of the Host header to find the frontend URL automatically

• make consul security encryption based on generated random key instead of static key

• add reverse proxy, TLS encryption and application-level firewalling capabilities to the web interfaces exposed
by the MiCADO master node

• add packet filtering for closing down non-public ports

• add systemd unit for MiCADO services

• update the ansible playbook to use the built-in service module for installing and handling MiCADO services

• update the documentation to reflect the changes after the introduction of reverse proxying

• add support for form-based authentication of exposed web services

• add COLA-themed login page

• add the Credential Manager component to store and handle web service users and passwords securely

• add support for provisioning a user to the Credential Manager via Ansible

• add support for user and admin roles in the Credential Manager

• add support for authorization of the web services based on user role

• add documentation about the Ansible Vault mechanism to protect sensitive deployment details

1.6. Release Notes 19

http://micado-scale.readthedocs.io

MiCADO Documentation

• add support for HTTP basic authentication for APIs

• add support for making the web interface’s listening port configurable

• update the documentation of API calls in terms of authentication, encryption and reverse proxying

• add micadoctl tool for user and service management

• add HTTP method filter to firewall in order to control requests directed to containers

• add support for IPv6 exposure of services

• add IPv6 packet filtering

v0.5.0 (12 July 2018)

• introduce supporting TOSCA

• introduce supporting user-defined scaling policy

• dashboard added with Docker Visualizer, Grafana, Prometheus

• deployment with Ansible playbook

• support private docker registry

• improve persistence of MiCADO master services

20 Chapter 1. Introduction

	Introduction
	Deployment
	Dashboard
	REST API
	Application description
	Tutorials
	Release Notes

