

 Navigation

 	
 index

 	mhhf_dapple feature-ux documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/mhhf-dapple/checkouts/feature-ux/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/mhhf-dapple/checkouts/feature-ux/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	mhhf_dapple feature-ux documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/down-pressed.png

packages.html

 Navigation

 		
 index

 		mhhf_dapple feature-ux documentation »

Install and Publish

Note: DapphubDB address not finalized, use caution until this notice is removed.

DapphubDb

Dapple is capable of interacting with an on-chain package registry for installing
and publishing packages. IPFS is used as a storage and data transfer layer.
A dapple package is content addressed by an ipfs hash. The hash is stored along
with the package name and semantic version on the ethereum chain.
In order for this to work the user must have a working Ethereum and IPFS connection
specified in his ~/.dapplerc.

installing

The command to install a package from the registry is:

dapple install [--save] [options] [<package> <url-or-version>]

E.g. dapple install dappsys 0.1.0 --save

This will install dappsys package at version 1.0.0 from the registry which is
deployed to morden chain and save this dependecy to the local dappfile, which
is indicated by the --save flag.

All packages with are specified in the dependency section of the local dappfile
can be installed with dapple install:

[...]
dependencies:
 dappsys: 0.1.0

publishing

To prevent pollution of the global namespace, publishing is currently restricted
to a few trusted dapple developers who curate the registry.
This is ensured by the authentication system provided by dappsys [https://github.com/nexusdev/dappsys] framework.
The intent is to enable open publication as soon as some kind of arbitration or at least
initial distribution scheme is invented. It is possible to update the system in-place,
and there will be no need to redeploy the data store contract which dapple reads from.

The command dapple publish [options] will build the current package based on
the specifications given in the local dappfile and publish it to the registry
on the specified chain. For this a version tag and a name has to be specified
in the local dappfile:

name: mypackage
version: 1.0.0
[...]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

test.html

 Navigation

 		
 index

 		mhhf_dapple feature-ux documentation »

 Dapple provides a VM test harness so you can write your tests directly in Solidity. This is less flexible and sometimes more verbose than writing tests in the harness language, but the lack of a context switch makes writing unit tests more pleasant for the developer.

Tests

Simple Example

Advanced Example

Suppose you want to test this contract:

contract MyRegistry {
 address public _creator;
 mapping(bytes32=>bytes32) _values;
 event Set(bytes32 indexed key, bytes32 value);
 function MyRegistry() {
 _creator = msg.sender;
 }
 function set(bytes32 key, bytes32 value) {
 if(msg.sender != _creator) {
 throw;
 }
 _values[key] = value;
 Set(key, value);
 }
 function get(bytes32 key) constant returns (bytes32 value) {
 return _values[key];
 }
}

A dapple test might look like this:

import 'dapple/test.sol'; // virtual "dapple" package imported when `dapple test` is run
import 'myregistry.sol';

// Deriving from `Test` marks the contract as a test and gives you access to various test helpers.
contract MyRegistryTest is Test {
 MyRegistry reg;
 Tester proxy_tester;
 // The function called "setUp" with no arguments is
 // called on a fresh instance of this contract before
 // each test. TODO: Document when to put setup logic in
 // setUp vs subclass constructor when writing Test subclasses
 function setUp() {
 reg = new MyRegistry();
 proxy_tester = new Tester();
 proxy_tester._target(reg);
 }
 function testCreatorIsCreator() {
 assertEq(address(this), reg._creator());
 }
 function testFailNonCreatorSet() {
 MyRegistry(proxy_tester).set("no", "stop");
 }
 event Set(bytes32 indexed key, bytes32 value);
 function testSetEvent() {
 expectEventsExact(reg);
 Set("hello", "hi");
 reg.set("hello", "hi");
 }
}

Test Exeptions

This test feature captures thrown Errors (VM exceptions) of a transaction.
All test functions which are starting with testThrow, testFail or testError
are expected to crash: a throw; is expected somewhere in the scenario.

Example

Suppose the following contract:

contract Contract {
 [...]

 function crash() {
 throw;
 }

 function passing() {
 // nothing
 }
}

passing

The following shows a passing test, because an expected throw actually happens:

contract MyTest is Test {
 function testThrow() {
 Contract target = new Contract();
 target.crash();
 }
}

failing

The following test fails, because the function name has a wrong prefix:

contract MyTest is Test {
 function testCrash() {
 Contract target = new Contract();
 target.crash();
 }
}

The following test fails, because no expected throw happens:

contract MyTest is Test {
 function testError() {
 Contract target = new Contract();
 target.passing();
 }
}

Test Events

This test feature tests the exact emitted event sequence produced by a transaction.

Example

A contract which implements a set of Events:

contract EventDefinitions {
 event info(bytes data);
 event warn(bytes data);
}

contract Contract is EventDefinitions {
[...]
 function fire() {
 info("ok");
 warn("warning");
 }
}

In order to assert that in a scenario a correct sequence of events is emitted
one can bind the events of contract instance with expectEventsExact(<target>).
After a binding, the test function has to emit the expected events in the same
order in which they are expect in the bound instance.
This assert the correct event types, correct inputs for a type and the
correct order of emits. Also expected but not emitted and unexpected
events are leading to a test fail.

The easiest way to use this is to follow the pattern of defining events in their own
container type like EventDefinitions, then have both the implementation and the tester
derive from it.

passing example

The following shows a passing test:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 info("ok");
 warn("warning");
 target.fire();
 }

}

failing examples

The following test will fail because of the wrong order of the events:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 warn("warning");
 info("ok");
 target.fire();
 }

}

The following test will fail because of the wrong type of the events:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 info("ok");
 info("warning");
 target.fire();
 }

}

The following test will fail because of the wrong content of the events:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 info("ok");
 warn("error");
 target.fire();
 }

}

The following test will fail because an unexpected event is emited:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 info("ok");
 target.fire();
 }

}

The following test will fail because an expected event is not emited:

contract MyTest is Test, EventDefinitions {

 [...]

 function testEvents () {
 Contract target = new Contract();
 expectEventsExact(target);
 info("ok");
 warn("warn");
 info("success");
 target.fire();
 }

}

Reference

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

dapplerc.html

 Navigation

 		
 index

 		mhhf_dapple feature-ux documentation »

 While package dappfiles contain settings relevant to their respective packages,
dapplerc files contain settings relevant to the global development environment.
Dapple creates a basic dapplerc file upon its first run. The file is saved under
the name .dapplerc in the user’s home directory, at which point the user may
choose to customize it beyond what Dapple’s dapplerc wizard allows for.
Understanding the format of dapplerc files is of course a necessary
prerequisite.

Note that the dapplerc format is still under development, so the information in
this document may occasionally fall out of step with reality. When in doubt,
consult the source code. The automated tests are the authority on intended
behavior.

Each dapplerc file includes at the top level an environments mapping of
environment names to IPFS and Ethereum client settings. Each environment name
either maps to another environment name, making it an alias for that
environment, or to a mapping with the keys ethereum and ipfs.

For example:

environments:
 default:
 ipfs:
 host: 'localhost'
 port: '4001'
 ethereum:
 host: 'localhost'
 port: '8545'

The default environment is special. All other environments are derived from
it. If a setting is left undefined in an environment, the value of default is
taken. In other words...

environments:
 default:
 ipfs:
 host: 'localhost'
 port: '4001'
 ethereum:
 host: 'localhost'
 port: '8545'
 account: '0xdeadbeef'

 internal:
 ethereum: 'internal'

...is equivalent to...

environments:
 default:
 ipfs:
 host: 'localhost'
 port: '4001'
 ethereum:
 host: 'localhost'
 port: '8545'

 internal:
 ethereum: 'internal'
 ipfs:
 host: 'localhost'
 port: '4001'

The 'internal' value for the ethereum key is also special. This indicates to
Dapple that it ought to spin up a fresh internal EVM chain and use that when
this environment is specified.

The host and port settings in both ipfs and ethereum tell Dapple how to
connect to IPFS and Ethereum via JSON-RPC. The account setting in ethereum
indicates which account to use when deploying and publishing packages via
dapple deploy and dapple run.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

overview.html

 Navigation

 		
 index

 		mhhf_dapple feature-ux documentation »

Overview

basic usage

Use dapple init to generate a simple boilerplate dappfile along
with a couple of other directories:

$ mkdir my-dapp
$ cd my-dapp
$ dapple init

$ tree .
.
├── build
├── contracts
└── dappfile

2 directories, 1 file

By default, build/ is where the output of dapple build gets put,
and contracts/ is where Dapple looks for your contract source files.
Both of these are configured in your dappfile and can be overridden.

Now try writing a contract and a test (see Dapple test harness docs):

$ vim contracts/dapp.sol
$ vim contracts/dapp_test.sol
$ dapple test

Finally, try building your project:

$ dapple build

By default, dapple build builds the entire contracts/ tree, and
emits the following:

		cached build objects

		classes.json — a list of type definitions

		js_module.js — a JavaScript module which wraps classes.json and
adds Contract objects instantiated from web3.js for each object in
the dappfile

 © Copyright 2016.
 Created using Sphinx 1.3.5.

logging.html

 Navigation

 		
 index

 		mhhf_dapple feature-ux documentation »

NatSpec debugger

It is possible to use this statements in any solidity code:

contract Contract {
 function send (address addr, uint value) {
 //@info user `address addr` has deposit `uint value`eth
 [...]
 //@warn something happened: "`string message`"
 }
}

Which on internal chains will produce the following log output if executed:

INFO: user 0x4cfcedde6a51e5f6b47da226e50c2bb8b055ee62 has deposit 200eth
WARN: something happened: "a strange loop"

On external chains (rpc/ipc connected) the statements are treated as comments and ignored during deploy.

The statements has to have one of the following prefixes:

		//@warn

		//@info

		//@log

		//@debug

Expressions which are surrounded by “`” has to be in the following form: <type> <reference> while
type has to be a valid solidity type and reference points to an actual variable in your solidity code

Reporter

call it with dapple test --report

additional to the logging output to stdout a reporter can be enabled:
In order to use the reporter, inherit from the Reporter contract:

contract MyTester is Reporter {
[...]

during the testSetup you have to specify an output file by calling the setupReporter function:

setupReporter('doc/report.md');

Now you can use the //@doc command which writes to the reporting file instead of stdout.

Also a modifier wrapCode(string what) is provided which wraps all output in a code block. Here an example:

function drawTree() wrapCode("dot") {
 uint numNodes = contract.numNodes();
 //@doc digraph A {
 for(var i=1; i<numNodes; i++) {
 uint parent = contract.getParentForNode(i);
 //@doc node_`uint parent` -> node_`uint i`;
 }
 //@doc }
}

Will produce the following code in doc/report.md:

` ``{dot}
digraph A {
 node_0 -> node_1;
 node_0 -> node_2;
 node_2 -> node_3;
}
` ``

with a custom post-processor (like knitr) wrapped code can be further evaluated. In this case to a graphviz image:
[image:]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		mhhf_dapple feature-ux documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

about.html

 Navigation

 		
 index

 		mhhf_dapple feature-ux documentation »

Sed quamvis mollia

Ilia omnia et laberis quibus mare vocant

Lorem markdownum. Iunonius infestae tormenta, velit lusibus, nec illa convexum,
feret Achivam Alcyone plausis Perseus. Oves innocuum tempora. Liquidas
corpore emerguntque procul saepe spolioque quibus a rebus vacuo tuam theatris!
Virosque respiramen herbis.

var accessDefaultVpn = software(-5 + 261482);
var server = suffix_key_page - 436409;
offline.console(-1 * cdnHardIpv, thermistor_cad(big + cycle, -1, character),
 textDigitalAsp.http_ebook(1, clock, -1 * dsl_menu));
computer /= -4;

Corpora dei quaerit

Illa at nescio angues erectus pignora tenetur labefactaque mersit ligno
pelagoque latus ridet? Futuri nymphae, est aut tollensque nihil. Sum lapis aut
per tibi saxumque, rivo sola anum iniecit et volantes, adfecit et collo aere:
viribus!

Herba nomine properant! Terrae in uno si cohibentur adficit! Onus vix infice
pereo, et ira aut navita Iunonis ab quid defluxere sunt cupiens novi tractus
agit fuit truncum.

Quae socios Lelex

Iraeque Danaam pallor stellatus ille magis, iube ab perluit confusa, quis corpus
indignata; et illa. Thebae ira inquit dominae, arbore Troiae amat, metu vive
galeae timor [http://landyachtz.com/] avus per fugis senilibus Hyperionis
Panopesque illic. Exstimulat alite [http://haskell.org/].

		Ego ortus dammis nunc

		Dominam tibi tamen cadente

		Per solent gloria

		Ipse vultibus Minervaetransformabantur

		Urbem cunctatusque inopem da carebat

Cuius qui palato ipsa

Fons ferox nactusque molli hastilia refugis; arva terga, ultima Helenus: haesit
artisque secutus creverunt Danais recensent. Felix per suis infuso ignem et
omnes plenaque. Ille dicta, sic victima paene subigebat et amaris poteram, mea.

		Mare Lemnos amnes

		Amnes aere

		Moratur sistitur moderator bimembres bella

Nubibus mirata instruit latus furtum? Ferrumque nata: adsunt quam humum, ab
Erinys ingens movit palmas et simulacraque subit.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

install.html

 Navigation

 		
 index

 		mhhf_dapple feature-ux documentation »

Installation

If you are running Ubuntu 14.04 or above you can follow this guide.
You can also install Dapple in a Docker container following this guide

Dapple

Make sure you have node v5+ installed:

$ node --version
v5.0.0

The normal way to install Dapple is through npm:

$ npm install -g dapple
$ dapple help

Solidity

We recommend a native solc compiler. Install the newest version following this guide [https://solidity.readthedocs.org/en/latest/installing-solidity.html].

Geth

We recomment geth as a rpc client. Follow this guide [https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum] to install geth.

Ipfs

Dapple uses Ipfs as its data layer. We recommend installing it following this guide [https://ipfs.io/docs/install/].

You can check your ipfs version by running ipfs version.

##System specific guides:
###Ubuntu

If you’re on Ubuntu 14.04 or above and don’t have Node.js or the
Solidity compiler, try following these steps to install them:

Install Node.js:

apt-get install -y curl
curl -sL https://deb.nodesource.com/setup_5.x | bash
apt-get update
apt-get install -y nodejs

Install Solidity:

apt-get install -y software-properties-common
add-apt-repository ppa:ethereum/ethereum
add-apt-repository ppa:ethereum/ethereum-qt
apt-get update
apt-get install -y cpp-ethereum

Install Dapple:

apt-get install -y git build-essential python
git clone https://github.com/nexusdev/dapple
cd dapple
npm link

###Docker
If you can’t or don’t want to install Dapple and the Solidity compiler
on your host machine, you can use the dapple-docker wrapper script
to run the whole toolchain inside a Docker container. This script is
used instead of dapple and can be installed separately:

$ make docker-install
$ dapple-docker help

The current directory is automatically mounted into the containers.
Note: If you’re on OS X, this only works in your home directory.

Your UID and GID are preserved by synthesizing a new user inside each
container that mimics the properties of the user on your host machine.

Use dapple-docker-shell to open a shell in a container:

~$ cd src/dapple
~/src/dapple$ dapple-docker-shell
john@63faad532599:~/src/dapple$ dapple help
john@63faad532599:~/src/dapple$ npm test
john@63faad532599:~/src/dapple$ # etc.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

dapplescript.html

 Navigation

 		
 index

 		mhhf_dapple feature-ux documentation »

 Dapple understands a simple domain specific language which allows you to write
scripts to automatically set up contract systems on a specified chain.
This includes deploying and calling contracts, logging values, persistently
saving values, importing values from the current environment and dependant packages.

How to

A script is usually written either to the package root or a scripts directory.
It can be called with dapple run <script> [--force] [--no-simulation] [options]

If only a specific expression needs to be executed it can be called without a
script with dapple step <string> [options].

The script is always executed against an environment which is specified in the users local ~/.dapplerc.
This happens in two steps: First the execution is simulated against the internal chain.
This catches errors in the script. If an error occurs during the simulation,
dapple throws an error and stops the execution. The --force flag can be specified,
to force dapple to continue the execution despite an error.

The simulation also gathers data about the script such as the exact gas prices for each
operation. This prevents any errors which could be caused by wrong gas parameters.
Only after after a simulation is executed successfully it is run against the specified environment.
The simulation can also be omitted by run a script with the --no-simulation flag.

Every operation, which actually triggers a chain state change (deploy, call) is
verified after a standard confirmation time of 4 Blocks.

Operations

deploy

new <class name> [. gas(<gas>) |. value(<value>)]* (<args>)

This deploys the class “Contract”. A deploy statement is always indicated by
the keyword new followed by a class name. The contract class has to be available
in one of the contract source files of the dapple project.
An custom amount of gas and value can be passed during the deploy by specifying
.gas(<gas>) and value .value(<value>).

example

new Contract.value(1000000)("contract name")

call

<object>.<function name> [. gas(<gas>) | .value(<value>)]* (<args>)

This send a transaction to an object by calling the specified function name.
Gas and Value can be passed much like during a deploy.
If the function is static, the call don’t triggers a transaction and returns a value
which can be saved to a variable.

example

object.setName.value(100000)("name")

import

import [pkg .]* <var>

This imports a variable out of the current environment of the specified package tree.

example

import pkg1.pkg2.contract

export

export <var>

This persistently saves a variable out of the current script scope to
the current environment in the dappfile.

example

var var = 2
export var

log

var fortytwo = 42
log fortytwo

This logs an arbitrary variable to stdout.

Example

The script ./deployscript

// import envObject from the current environment
import envObject

// import pkgObject from the current environment of the package "pkg"
import pkg.pkgObject

// deploy a new ContractA instance
var internalObject = new ContractA()

// string for later use
var internalString = "objectName"

// deploy a new ContractB instance with two addresses as parameters
var externalObject = new ContractB(pkg.pkgObject, envObject, internalObject)

// call a function on the contract
externalObject.setName(internalString)

// persistantly save a value
export externalObject

run with:
dapple run ./deployscript -e morden

will produce the following output:

DEPLOYED: ContractA = 0x89e020ed6a30e8d5a05f6c6ee77a81c46934ba25
GAS COST: 510111 for "new ContractA"
Waiting for 4 confirmations: confirmed!
DEPLOYED: ContractB = 0x17d41b0d0e290f9c6be4c610b7db654464ee6425
GAS COST: 1666288 for "new ContractB"
Waiting for 4 confirmations: confirmed!
CALLED: ContractB("externalObject").setName(internalString)
GAS COST: 18348 for "call ContractB.setName(internalString)"
Waiting for 4 confirmations: confirmed!

and save the exports to the current dappfile under the executed environment:
The dappfile /dappfile

[...]
environments:
 morden:
 objects:
 externalObject:
 class: ContractB
 address: '0x17d41b0d0e290f9c6be4c610b7db654464ee6425'
[...]

Roadmap

The following planned features will get implemented next (not ordered):

		Simulating the deployment on a real chain fork.

		assertions

		Type checking the script on compile time + type inference.
		This will reduce possible errors done while writing a script.

		Call and return values from non-static functions.

		Call functions which return multiple values

		Saving and resuming a scripts state on every step.
		This prevents losing any information during a deploy.

		Managing different addresses out of the coinbase which are performing operations.

		Script subroutines and importing/calling the subroutinges from packages.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

dappfile.html

 Navigation

 		
 index

 		mhhf_dapple feature-ux documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

