
mgc Documentation
Release alpha

Sambit Panda

Dec 07, 2019

Contents

1 Motivation 3

2 Python 5

3 Free software 7

4 History 9

5 Documentation 11

6 Indices and tables 31

Index 33

i

ii

mgc Documentation, Release alpha

mgc (pronounced "Magic") is an open-source software package for independence and k-sample testing.

Contents 1

mgc Documentation, Release alpha

2 Contents

CHAPTER 1

Motivation

With the increase in the amount of data in many fields, a method to consistently and efficiently decipher relationships
within high dimensional data sets is important. Because many modern datasets are multivariate, univariate indepen-
dence tests are not applicable. While many multivariate independence tests have R packages available, the interfaces
are inconsistent and most are not available in Python. mgc is an extensive Python library that includes many state
of the art multivariate independence testing procedures using a common interface. The package is easy-to-use and is
flexible enough to enable future extensions.

3

mgc Documentation, Release alpha

4 Chapter 1. Motivation

CHAPTER 2

Python

Python is a powerful programming language that allows concise expressions of network algorithms. Python has a
vibrant and growing ecosystem of packages that mgc uses to provide more features such as numerical linear algebra
and plotting. In order to make the most out of mgc you will want to know how to write basic programs in Python.
Among the many guides to Python, we recommend the Python documentation.

5

https://docs.python.org/3/

mgc Documentation, Release alpha

6 Chapter 2. Python

CHAPTER 3

Free software

mgc is free software; you can redistribute it and/or modify it under the terms of the MIT . We welcome contributions.
Join us on GitHub.

7

https://github.com/neurodata/mgc

mgc Documentation, Release alpha

8 Chapter 3. Free software

CHAPTER 4

History

mgc is a rebranding of mgcpy, which was founded in September 2018. The original version was designed and written
by Satish Palaniappan, Sambit Panda Junhao Xiong, Sandhya Ramachandran, and Ronak Mehtra. This new version
was written by Sambit Panda.

9

mgc Documentation, Release alpha

10 Chapter 4. History

CHAPTER 5

Documentation

5.1 Install

Below we assume you have the default Python environment already configured on your computer and you intend to
install mgc inside of it. If you want to create and work with Python virtual environments, please follow instructions
on venv and virtual environments. We also highly recommend conda. For instructions to install this, please look at
conda.

First, make sure you have the latest version of pip (the Python package manager) installed. If you do not, refer to the
Pip documentation and install pip first.

5.1.1 Install from Github

You can manually download mgc by cloning the git repo master version and running the setup.py file. That is,
unzip the compressed package folder and run the following from the top-level source directory using the Terminal:

$ git clone https://github.com/neurodata/mgc
$ cd mgc
$ python3 setup.py install

5.1.2 Python package dependencies

mgc requires the following packages:

• numba

• numpy

• scipy

• scikit-learn

11

https://docs.python.org/3/library/venv.html
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://docs.conda.io/projects/conda/en/latest/user-guide/install/
https://pip.pypa.io/en/stable/installing/

mgc Documentation, Release alpha

5.1.3 Hardware requirements

mgc package requires only a standard computer with enough RAM to support the in-memory operations.

5.1.4 OS Requirements

This package is supported for all major operating systems. The following versions of operating systems was tested on
Travis CI:

• Linux: Ubuntu Xenial 16.04

• Windows: Windows Server, version 1803

5.1.5 Testing

mgc uses the Python pytest testing package. If you don’t already have that package installed, follow the directions
on the pytest homepage.

5.2 Reference

5.2.1 Independence

Distance Correlation (Dcorr)

class mgc.independence.Dcorr(compute_distance=<function euclidean>)
Class for calculating the Dcorr test statistic and p-value.

Dcorr is a measure of dependence between two paired random matrices of not necessarily equal dimensions.
The coefficient is 0 if and only if the matrices are independent. It is an example of an energy distance.

Parameters compute_distance : callable(), optional (default: euclidean)

A function that computes the distance among the samples within each data ma-
trix. Set to None if x and y are already distance matrices. To call a custom func-
tion, either create the distance matrix before-hand or create a function of the form
compute_distance(x) where x is the data matrix for which pairwise distances
are calculated.

See also:

Hsic Hilbert-Schmidt independence criterion test statistic and p-value.

HHG Heller Heller Gorfine test statistic and p-value.

Notes

The statistic can be derived as follows:

Let 𝑥 and 𝑦 be (𝑛, 𝑝) samples of random variables 𝑋 and 𝑌 . Let 𝐷𝑥 be the 𝑛× 𝑛 distance matrix of 𝑥 and 𝐷𝑦

be the 𝑛× 𝑛 be the distance matrix of 𝑦. The distance covariance is,

Dcov𝑛(𝑥, 𝑦) =
1

𝑛2
tr(𝐷𝑥𝐻𝐷𝑦𝐻)

12 Chapter 5. Documentation

https://docs.pytest.org/en/latest/

mgc Documentation, Release alpha

where tr(·) is the trace operator and 𝐻 is defined as 𝐻 = 𝐼 − (1/𝑛)𝐽 where 𝐼 is the identity matrix and 𝐽 is a
matrix of ones. The normalized version of this covariance is Dcorr1 and is

Dcorr𝑛(𝑥, 𝑦) =
Dcov𝑛(𝑥, 𝑦)√︀

Dcov𝑛(𝑥, 𝑥)Dcov𝑛(𝑦, 𝑦)

This version of distance correlation is defined using the following centering process where 1(·) is the indicator
function:

𝐶𝑥
𝑖𝑗 =

[︃
𝐷𝑥

𝑖𝑗 −
1

𝑛− 2

𝑛∑︁
𝑡=1

𝐷𝑥
𝑖𝑡 −

1

𝑛− 2

𝑛∑︁
𝑠=1

𝐷𝑥
𝑠𝑗 +

1

(𝑛− 1)(𝑛− 2)

𝑛∑︁
𝑠,𝑡=1

𝐷𝑥
𝑠𝑡

]︃
1𝑖 ̸=𝑗

and similarly for 𝐶𝑦 . Then, this unbiased Dcorr is,

UDcov𝑛(𝑥, 𝑦) =
1

𝑛(𝑛− 3)
tr(𝐶𝑥𝐶𝑦)

The normalized version of this covariance2 is

UDcorr𝑛(𝑥, 𝑦) =
UDcov𝑛(𝑥, 𝑦)√︀

UDcov𝑛(𝑥, 𝑥)UDcov𝑛(𝑦, 𝑦)

References

test(x, y, reps=1000, workers=1, random_state=None)
Calculates the Dcorr test statistic and p-value.

Parameters x, y : ndarray

Input data matrices. x and y must have the same number of samples. That is, the shapes
must be (n, p) and (n, q) where n is the number of samples and p and q are the number
of dimensions. Alternatively, x and y can be distance matrices, where the shapes must
both be (n, n).

reps : int, optional (default: 1000)

The number of replications used to estimate the null distribution when using the permu-
tation test used to calculate the p-value.

workers : int, optional (default: 1)

The number of cores to parallelize the p-value computation over. Supply -1 to use all
cores available to the Process.

random_state : int or np.random.RandomState instance, (default: None)

If already a RandomState instance, use it. If seed is an int, return a new RandomState
instance seeded with seed. If None, use np.random.RandomState.

Returns stat : float

The computed Dcorr statistic.

pvalue : float

The computed Dcorr p-value.

1 Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. The annals of statistics,
35(6), 2769-2794.

2 Székely, G. J., & Rizzo, M. L. (2014). Partial distance correlation with methods for dissimilarities. The Annals of Statistics, 42(6), 2382-2412.

5.2. Reference 13

mgc Documentation, Release alpha

Examples

>>> import numpy as np
>>> from mgc.independence import Dcorr
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = Dcorr().test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

The number of replications can give p-values with higher confidence (greater alpha levels).

>>> import numpy as np
>>> from mgc.independence import Dcorr
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = Dcorr().test(x, y, reps=10000)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

In addition, the inputs can be distance matrices. Using this is the, same as before, except the
compute_distance parameter must be set to None.

>>> import numpy as np
>>> from mgc.independence import Dcorr
>>> x = np.ones((10, 10)) - np.identity(10)
>>> y = 2 * x
>>> dcorr = Dcorr(compute_distance=None)
>>> stat, pvalue = dcorr.test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'0.0, 1.00'

Hilbert Schmidt Independence Criterion (Hsic)

class mgc.independence.Hsic(compute_kernel=<function gaussian>)
Class for calculating the Hsic test statistic and p-value.

Hsic is a kernel based independence test and is a way to measure multivariate nonlinear associations given a
specified kernel3. The default choice is the Gaussian kernel, which uses the median distance as the bandwidth,
which is a characteristic kernel that guarantees that Hsic is a consistent test34.

Parameters compute_kernel : callable(), optional (default: rbf kernel)

A function that computes the similarity among the samples within each data ma-
trix. Set to None if x and y are already similarity matrices. To call a custom func-
tion, either create the distance matrix before-hand or create a function of the form
compute_kernel(x) where x is the data matrix for which pairwise similarties are
calculated.

See also:

Dcorr Distance correlation test statistic and p-value.

HHG Heller Heller Gorfine test statistic and p-value.
3 Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. J. (2008). A kernel statistical test of independence. In Advances

in neural information processing systems (pp. 585-592).
4 Gretton, A., & GyĂśrfi, L. (2010). Consistent nonparametric tests of independence. Journal of Machine Learning Research, 11(Apr), 1391-

1423.

14 Chapter 5. Documentation

mgc Documentation, Release alpha

Notes

The statistic can be derived as follows3:

Let 𝑥 and 𝑦 be (𝑛, 𝑝) samples of random variables 𝑋 and 𝑌 . Let 𝐾𝑥 be the 𝑛× 𝑛 kernel similarity matrix of 𝑥
and 𝐷𝑦 be the 𝑛× 𝑛 be the kernel similarity matrix of 𝑦. The Hsic statistic is,

Hsic𝑛(𝑥, 𝑦) =
1

𝑛2
tr(𝐾𝑥𝐻𝐾𝑦𝐻)

where tr(·) is the trace operator and 𝐻 is defined as 𝐻 = 𝐼 − (1/𝑛)𝐽 where 𝐼 is the identity matrix and 𝐽 is a
matrix of ones. The normalized version of Hsic1 and is

Hsic𝑛(𝑥, 𝑦) =
Hsic𝑛(𝑥, 𝑦)√︀

Hsic𝑛(𝑥, 𝑥)Hsic𝑛(𝑦, 𝑦)

This version of Hsic is defined using the following centering process where 1(·) is the indicator function:

𝐶𝑥
𝑖𝑗 =

[︃
𝐷𝑥

𝑖𝑗 −
1

𝑛− 2

𝑛∑︁
𝑡=1

𝐷𝑥
𝑖𝑡 −

1

𝑛− 2

𝑛∑︁
𝑠=1

𝐷𝑥
𝑠𝑗 +

1

(𝑛− 1)(𝑛− 2)

𝑛∑︁
𝑠,𝑡=1

𝐷𝑥
𝑠𝑡

]︃
1𝑖 ̸=𝑗

and similarly for 𝐶𝑦 . Then, this unbiased Dcorr is,

UHsic𝑛(𝑥, 𝑦) =
1

𝑛(𝑛− 3)
tr(𝐶𝑥𝐶𝑦)

The normalized version of this covariance2 is

UHsic𝑛(𝑥, 𝑦) =
UHsic𝑛(𝑥, 𝑦)√︀

UHsic𝑛(𝑥, 𝑥)UHsic𝑛(𝑦, 𝑦)

References

test(x, y, reps=1000, workers=1, random_state=None)
Calculates the Hsic test statistic and p-value.

Parameters x, y : ndarray

Input data matrices. x and y must have the same number of samples. That is, the shapes
must be (n, p) and (n, q) where n is the number of samples and p and q are the number
of dimensions. Alternatively, x and y can be distance matrices, where the shapes must
both be (n, n).

reps : int, optional (default: 1000)

The number of replications used to estimate the null distribution when using the permu-
tation test used to calculate the p-value.

workers : int, optional (default: 1)

The number of cores to parallelize the p-value computation over. Supply -1 to use all
cores available to the Process.

random_state : int or np.random.RandomState instance, (default: None)

If already a RandomState instance, use it. If seed is an int, return a new RandomState
instance seeded with seed. If None, use np.random.RandomState.

Returns stat : float

The computed Hsic statistic.

pvalue : float

The computed Hsic p-value.

5.2. Reference 15

mgc Documentation, Release alpha

Examples

>>> import numpy as np
>>> from mgc.independence import Hsic
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = Hsic().test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

The number of replications can give p-values with higher confidence (greater alpha levels).

>>> import numpy as np
>>> from mgc.independence import Hsic
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = Hsic().test(x, y, reps=10000)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

In addition, the inputs can be distance matrices. Using this is the, same as before, except the
compute_kernel parameter must be set to None.

>>> import numpy as np
>>> from mgc.independence import Hsic
>>> x = np.ones((10, 10)) - np.identity(10)
>>> y = 2 * x
>>> hsic = Hsic(compute_kernel=None)
>>> stat, pvalue = hsic.test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'0.0, 1.00'

Heller Heller Gorfine (HHG)

class mgc.independence.HHG(compute_distance=<function euclidean>)
Class for calculating the HHG test statistic and p-value.

This is a powerful test for independence based on calculating pairwise euclidean distances and associations
between these distance matrices. The test statistic is a function of ranks of these distances, and is consistent
against similar tests5. It can also operate on multiple dimensions5.

Parameters compute_distance : callable(), optional (default: euclidean)

A function that computes the distance among the samples within each data ma-
trix. Set to None if x and y are already distance matrices. To call a custom func-
tion, either create the distance matrix before-hand or create a function of the form
compute_distance(x) where x is the data matrix for which pairwise distances
are calculated.

See also:

Dcorr Distance correlation test statistic and p-value.

Hsic Hilbert-Schmidt independence criterion test statistic and p-value.
5 Heller, R., Heller, Y., & Gorfine, M. (2012). A consistent multivariate test of association based on ranks of distances. Biometrika, 100(2),

503-510.

16 Chapter 5. Documentation

mgc Documentation, Release alpha

Notes

The statistic can be derived as follows5:

Let 𝑥 and 𝑦 be (𝑛, 𝑝) samples of random variables 𝑋 and 𝑌 . For every sample 𝑗 ̸= 𝑖, calculate the pairwise
distances in 𝑥 and 𝑦 and denote this as 𝑑𝑥(𝑥𝑖, 𝑥𝑗) and 𝑑𝑦(𝑦𝑖, 𝑦𝑗). The indicator function is denoted as 1{·}. The
cross-classification between these two random variables can be calculated as

𝐴11 =

𝑛∑︁
𝑘=1,𝑘 ̸=𝑖,𝑗

1{𝑑𝑥(𝑥𝑖, 𝑥𝑘) ≤ 𝑑𝑥(𝑥𝑖, 𝑥𝑗)}1{𝑑𝑦(𝑦𝑖, 𝑦𝑘) ≤ 𝑑𝑦(𝑦𝑖, 𝑦𝑗)}

and 𝐴12, 𝐴21, and 𝐴22 are defined similarly. This is organized within the following table:

𝑑𝑥(𝑥𝑖, ·) ≤ 𝑑𝑥(𝑥𝑖, 𝑥𝑗) 𝑑𝑥(𝑥𝑖, ·) ≤ 𝑑𝑥(𝑥𝑖, 𝑥𝑗)
𝑑𝑥(𝑥𝑖, ·) ≤ 𝑑𝑥(𝑥𝑖, 𝑥𝑗) 𝐴11(𝑖, 𝑗) 𝐴12(𝑖, 𝑗) 𝐴1·(𝑖, 𝑗)
𝑑𝑥(𝑥𝑖, ·) > 𝑑𝑥(𝑥𝑖, 𝑥𝑗) 𝐴21(𝑖, 𝑗) 𝐴22(𝑖, 𝑗) 𝐴2·(𝑖, 𝑗)

𝐴·1(𝑖, 𝑗) 𝐴·2(𝑖, 𝑗) 𝑛− 2

Here, 𝐴·1 and 𝐴·2 are the column sums, 𝐴1· and 𝐴2· are the row sums, and 𝑛 − 2 is the number of degrees of
freedom. From this table, we can calculate the Pearson’s chi squared test statistic using,

𝑆(𝑖, 𝑗) =
(𝑛− 2)(𝐴12𝐴21 −𝐴11𝐴22)2

𝐴1·𝐴2·𝐴·1𝐴·2

and the HHG test statistic is then,

HHG𝑛(𝑥, 𝑦) =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1,𝑗 ̸=𝑖

𝑆(𝑖, 𝑗)

References

test(x, y, reps=1000, workers=1, random_state=None)
Calculates the HHG test statistic and p-value.

Parameters x, y : ndarray

Input data matrices. x and y must have the same number of samples. That is, the shapes
must be (n, p) and (n, q) where n is the number of samples and p and q are the number
of dimensions. Alternatively, x and y can be distance matrices, where the shapes must
both be (n, n).

reps : int, optional (default: 1000)

The number of replications used to estimate the null distribution when using the permu-
tation test used to calculate the p-value.

workers : int, optional (default: 1)

The number of cores to parallelize the p-value computation over. Supply -1 to use all
cores available to the Process.

random_state : int or np.random.RandomState instance, (default: None)

If already a RandomState instance, use it. If seed is an int, return a new RandomState
instance seeded with seed. If None, use np.random.RandomState.

Returns stat : float

The computed HHG statistic.

5.2. Reference 17

mgc Documentation, Release alpha

pvalue : float

The computed HHG p-value.

Examples

>>> import numpy as np
>>> from mgc.independence import HHG
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = HHG().test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'160.0, 0.00'

The number of replications can give p-values with higher confidence (greater alpha levels).

>>> import numpy as np
>>> from mgc.independence import HHG
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = HHG().test(x, y, reps=10000)
>>> '%.1f, %.2f' % (stat, pvalue)
'160.0, 0.00'

In addition, the inputs can be distance matrices. Using this is the, same as before, except the
compute_distance parameter must be set to None.

>>> import numpy as np
>>> from mgc.independence import HHG
>>> x = np.ones((10, 10)) - np.identity(10)
>>> y = 2 * x
>>> hhg = HHG(compute_distance=None)
>>> stat, pvalue = hhg.test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'0.0, 1.00'

Cannonical Correlation Analysis (CCA)

class mgc.independence.CCA
Class for calculating the CCA test statistic and p-value.

This test can be thought of inferring information from cross-covariance matrices6. It has been thought that
virtually all parametric tests of significance can be treated as a special case of CCA7. The method was first
introduced by Harold Hotelling in 19368.

See also:

Pearson Pearson product-moment correlation test statistic and p-value.

RV RV test statistic and p-value.
6 Härdle, W. K., & Simar, L. (2015). Canonical correlation analysis. In Applied multivariate statistical analysis (pp. 443-454). Springer, Berlin,

Heidelberg.
7 Knapp, T. R. (1978). Canonical correlation analysis: A general parametric significance-testing system. Psychological Bulletin, 85(2), 410.
8 Hotelling, H. (1992). Relations between two sets of variates. In Breakthroughs in statistics (pp. 162-190). Springer, New York, NY.

18 Chapter 5. Documentation

mgc Documentation, Release alpha

Notes

The statistic can be derived as follows9:

Let 𝑥 and 𝑦 be :math:‘(n, p) samples of random variables 𝑋 and 𝑌 . We can center 𝑥 and 𝑦 and then calculate
the sample covariance matrix Σ̂𝑥𝑦 = 𝑥𝑇 𝑦 and the variance matrices for 𝑥 and 𝑦 are defined similarly. Then, the
CCA test statistic is found by calculating vectors 𝑎 ∈ R𝑝 and 𝑏 ∈ R𝑞 that maximize

CCA𝑛(𝑥, 𝑦) = max
𝑎∈R𝑝,𝑏∈R𝑞

𝑎𝑇 Σ̂𝑥𝑦𝑏√︀
𝑎𝑇 Σ̂𝑥𝑥𝑎

√︁
𝑏𝑇 Σ̂𝑦𝑦𝑏

References

test(x, y, reps=1000, workers=1, random_state=None)
Calculates the CCA test statistic and p-value.

Parameters x, y : ndarray

Input data matrices. x and y must have the same number of samples and dimensions.
That is, the shapes must be (n, p) where n is the number of samples and p is the number
of dimensions.

reps : int, optional (default: 1000)

The number of replications used to estimate the null distribution when using the permu-
tation test used to calculate the p-value.

workers : int, optional (default: 1)

The number of cores to parallelize the p-value computation over. Supply -1 to use all
cores available to the Process.

random_state : int or np.random.RandomState instance, (default: None)

If already a RandomState instance, use it. If seed is an int, return a new RandomState
instance seeded with seed. If None, use np.random.RandomState.

Returns stat : float

The computed CCA statistic.

pvalue : float

The computed CCA p-value.

Examples

>>> import numpy as np
>>> from mgc.independence import CCA
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = CCA().test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

The number of replications can give p-values with higher confidence (greater alpha levels).
9 Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods.

Neural computation, 16(12), 2639-2664.

5.2. Reference 19

mgc Documentation, Release alpha

>>> import numpy as np
>>> from mgc.independence import CCA
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = CCA().test(x, y, reps=10000)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

RV

class mgc.independence.RV
Class for calculating the RV test statistic and p-value.

RV is the multivariate generalization of the squared Pearson correlation coefficient10. The RV coefficient can
be thought to be closely related to principal component analysis (PCA), canonical correlation analysis (CCA),
multivariate regression, and statistical classification10.

See also:

Pearson Pearson product-moment correlation test statistic and p-value.

CCA CCA test statistic and p-value.

Notes

The statistic can be derived as follows1011:

Let 𝑥 and 𝑦 be (𝑛, 𝑝) samples of random variables 𝑋 and 𝑌 . We can center 𝑥 and 𝑦 and then calculate the
sample covariance matrix Σ̂𝑥𝑦 = 𝑥𝑇 𝑦 and the variance matrices for 𝑥 and 𝑦 are defined similarly. Then, the RV
test statistic is found by calculating

RV𝑛(𝑥, 𝑦) =
tr
(︁

Σ̂𝑥𝑦Σ̂𝑦𝑥

)︁
tr
(︁

Σ̂2
𝑥𝑥

)︁
tr
(︁

Σ̂2
𝑦𝑦

)︁
where tr(·) is the trace operator.

References

test(x, y, reps=1000, workers=1, random_state=None)
Calculates the RV test statistic and p-value.

Parameters x, y : ndarray

Input data matrices. x and y must have the same number of samples and dimensions.
That is, the shapes must be (n, p) where n is the number of samples and p is the number
of dimensions.

reps : int, optional (default: 1000)

The number of replications used to estimate the null distribution when using the permu-
tation test used to calculate the p-value.

10 Robert, P., & Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: the RV-coefficient. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 25(3), 257-265.

11 Escoufier, Y. (1973). Le traitement des variables vectorielles. Biometrics, 751-760.

20 Chapter 5. Documentation

mgc Documentation, Release alpha

workers : int, optional (default: 1)

The number of cores to parallelize the p-value computation over. Supply -1 to use all
cores available to the Process.

random_state : int or np.random.RandomState instance, (default: None)

If already a RandomState instance, use it. If seed is an int, return a new RandomState
instance seeded with seed. If None, use np.random.RandomState.

Returns stat : float

The computed RV statistic.

pvalue : float

The computed RV p-value.

Examples

>>> import numpy as np
>>> from mgc.independence import RV
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = RV().test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

The number of replications can give p-values with higher confidence (greater alpha levels).

>>> import numpy as np
>>> from mgc.independence import RV
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = RV().test(x, y, reps=10000)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

Pearson

class mgc.independence.Pearson
Class for calculating the Pearson test statistic and p-value.

Pearson product-moment correlation coefficient is a measure of the linear correlation between two random
variables12. It has a value between +1 and -1 where 1 is the total positive linear correlation, 0 is not linear
correlation, and -1 is total negative correlation.

See also:

RV RV test statistic and p-value.

CCA CCA test statistic and p-value.

Spearman Spearman’s rho test statistic and p-value.

Kendall Kendall’s tau test statistic and p-value.
12 Pearson, K. (1895). VII. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58(347-

352), 240-242.

5.2. Reference 21

mgc Documentation, Release alpha

Notes

This class is a wrapper of scipy.stats.pearsonr. The statistic can be derived as follows12:

Let 𝑥 and 𝑦 be (𝑛, 1) samples of random variables 𝑋 and 𝑌 . Let ˆcov(𝑥, 𝑦) is the sample covariance, and �̂�𝑥 and
�̂�𝑦 are the sample variances for 𝑥 and 𝑦. Then, the Pearson’s correlation coefficient is,

Pearson𝑛(𝑥, 𝑦) =
ˆcov(𝑥, 𝑦)

�̂�𝑥�̂�𝑦

References

test(x, y)
Calculates the Pearson test statistic and p-value.

Parameters x, y : ndarray

Input data matrices. x and y must have the same number of samples and dimensions.
That is, the shapes must be (n, 1) where n is the number of samples.

Returns stat : float

The computed Pearson statistic.

pvalue : float

The computed Pearson p-value.

Examples

>>> import numpy as np
>>> from mgc.independence import Pearson
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = Pearson().test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

Kendall’s tau

class mgc.independence.Kendall
Class for calculating the Kendall’s 𝜏 test statistic and p-value.

Kendall’s 𝜏 coefficient is a statistic to meassure ordinal associations between two quantities. The Kendall’s 𝜏
correlation between high when variables similar rank relative to other observations13. Both this and the closely
related Spearman’s 𝜌 coefficient are special cases of a general correlation coefficient.

See also:

Pearson Pearson product-moment correlation test statistic and p-value.

Spearman Spearman’s rho test statistic and p-value.
13 Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.

22 Chapter 5. Documentation

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html

mgc Documentation, Release alpha

Notes

This class is a wrapper of scipy.stats.kendalltau. The statistic can be derived as follows13:

Let 𝑥 and 𝑦 be (𝑛, 1) samples of random variables 𝑋 and 𝑌 . Define (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) as concordant if the
ranks agree: 𝑥𝑖 > 𝑥𝑗 and 𝑦𝑖 > 𝑦𝑗 or x_i > x_j and 𝑦𝑖 < 𝑦𝑗 . They are discordant if the ranks disagree: 𝑥𝑖 > 𝑥𝑗

and 𝑦𝑖 < 𝑦𝑗 or 𝑥𝑖 < 𝑥𝑗 and 𝑦𝑖 > 𝑦𝑗 . If 𝑥𝑖 > 𝑥𝑗 and 𝑦𝑖 < 𝑦𝑗 , the pair is said to be tied. Let 𝑛𝑐 and 𝑛𝑑 be the
number of concordant and discordant pairs respectively and 𝑛0 = 𝑛(𝑛 − 1)/2. In the case of no ties, the test
statistic is defined as

Kendall𝑛(𝑥, 𝑦) =
𝑛𝑐 − 𝑛𝑑

𝑛0

Further, define 𝑛1 =
∑︀

𝑖
𝑡𝑖(𝑡𝑖−1)

2 , 𝑛2 =
∑︀

𝑗
𝑢𝑗(𝑢𝑗−1)

2 , 𝑡𝑖 be the number of tied values in the 𝑖 be the number of
tied values in the :math:‘j‘th group. Then, the statistic is14,

Kendall𝑛(𝑥, 𝑦) =
𝑛𝑐 − 𝑛𝑑√︀

(𝑛0 − 𝑛1)(𝑛0 − 𝑛2)

References

test(x, y)
Calculates the Kendall’s 𝜏 test statistic and p-value.

Parameters x, y : ndarray

Input data matrices. x and y must have the same number of samples and dimensions.
That is, the shapes must be (n, 1) where n is the number of samples.

Returns stat : float

The computed Kendall’s tau statistic.

pvalue : float

The computed Kendall’s tau p-value.

Examples

>>> import numpy as np
>>> from mgc.independence import Kendall
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = Kendall().test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

Spearman’s rho

class mgc.independence.Spearman
Class for calculating the Spearman’s 𝜌 test statistic and p-value.

Spearman’s 𝜌 coefficient is a nonparametric measure or rank correlation between two variables. It is equivalent
to the Pearson’s correlation with ranks.

See also:
14 Agresti, A. (2010). Analysis of ordinal categorical data (Vol. 656). John Wiley & Sons.

5.2. Reference 23

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.kendalltau.html#scipy.stats.kendalltau

mgc Documentation, Release alpha

Pearson Pearson product-moment correlation test statistic and p-value.

Kendall Kendall’s tau test statistic and p-value.

Notes

This class is a wrapper of scipy.stats.spearmanr. The statistic can be derived as follows15:

Let 𝑥 and 𝑦 be (𝑛, 1) samples of random variables 𝑋 and 𝑌 . Let 𝑟𝑔𝑥 and 𝑟𝑔𝑦 are the 𝑛 raw scores. Let
ˆcov(𝑟𝑔𝑥, 𝑟𝑔𝑦) is the sample covariance, and �̂�𝑟𝑔𝑥 and �̂�𝑟𝑔𝑥 are the sample variances of the rank variables. Then,

the Spearman’s 𝜌 coefficient is,

Spearman𝑛(𝑥, 𝑦) =
ˆcov(𝑟𝑔𝑥, 𝑟𝑔𝑦)

�̂�𝑟𝑔𝑥 �̂�𝑟𝑔𝑦

References

test(x, y)
Calculates the Spearman’s 𝜌 test statistic and p-value.

Parameters x, y : ndarray

Input data matrices. x and y must have the same number of samples and dimensions.
That is, the shapes must be (n, 1) where n is the number of samples.

Returns stat : float

The computed Spearman’s rho statistic.

pvalue : float

The computed Spearman’s rho p-value.

Examples

>>> import numpy as np
>>> from mgc.independence import Spearman
>>> x = np.arange(7)
>>> y = x
>>> stat, pvalue = Spearman().test(x, y)
>>> '%.1f, %.2f' % (stat, pvalue)
'1.0, 0.00'

5.2.2 K -Sample

Non-parametric K -Sample Test

class mgc.ksample.KSample(indep_test, compute_distance=<function euclidean>)
Class for calculating the k-sample test statistic and p-value.

A k-sample test tests equality in distribution among groups. Groups can be of different sizes, but generally have
the same dimensionality. There are not many non-parametric k-sample tests, but this version cleverly leverages
the power of some of the implemented independence tests to test this equality of distribution.

15 Myers, J. L., Well, A. D., & Lorch Jr, R. F. (2013). Research design and statistical analysis. Routledge.

24 Chapter 5. Documentation

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.spearmanr.html#scipy.stats.spearmanr

mgc Documentation, Release alpha

Parameters indep_test : {"CCA", "Dcorr", "HHG", "RV", "Hsic"}

A string corresponding to the desired independence test from mgc.independence.

compute_distance : callable(), optional (default: euclidean)

A function that computes the distance among the samples within each data ma-
trix. Set to None if x and y are already distance matrices. To call a custom func-
tion, either create the distance matrix before-hand or create a function of the form
compute_distance(x) where x is the data matrix for which pairwise distances
are calculated.

Notes

The ideas behind this can be found in an upcoming paper:

The k-sample testing problem can be thought of as a generalization of the two sample testing problem. Define
{𝑢𝑖

𝑖𝑖𝑑∼ 𝐹𝑈 , 𝑖 = 1, ..., 𝑛} and {𝑣𝑗
𝑖𝑖𝑑∼ 𝐹𝑉 , 𝑗 = 1, ...,𝑚} as two groups of samples deriving from different

distributions with the same dimensionality. Then, problem that we are testing is thus,

𝐻0 : 𝐹𝑈 = 𝐹𝑉

𝐻𝐴 : 𝐹𝑈 ̸= 𝐹𝑉

The closely related independence testing problem can be generalized similarly: Given a set of paired data
{(𝑥𝑖, 𝑦𝑖)

𝑖𝑖𝑑∼ 𝐹𝑋𝑌 , 𝑖 = 1, ..., 𝑁}, the problem that we are testing is,

𝐻0 : 𝐹𝑋𝑌 = 𝐹𝑋𝐹𝑌

𝐻𝐴 : 𝐹𝑋𝑌 ̸= 𝐹𝑋𝐹𝑌

By manipulating the inputs of the k-sample test, we can create concatenated versions of the inputs and another
label matrix which are necessarily paired. Then, any nonparametric test can be performed on this data.

test(*args, reps=1000, workers=1, random_state=None)
Calculates the k-sample test statistic and p-value.

Parameters *args : ndarrays

Variable length input data matrices. All inputs must have the same number of samples.
That is, the shapes must be (n, p) and (m, p) where n and m are the number of samples
and p are the number of dimensions. Alternatively, inputs can be distance matrices,
where the shapes must all be (n, n).

reps : int, optional (default: 1000)

The number of replications used to estimate the null distribution when using the permu-
tation test used to calculate the p-value.

workers : int, optional (default: 1)

The number of cores to parallelize the p-value computation over. Supply -1 to use all
cores available to the Process.

random_state : int or np.random.RandomState instance, optional

If already a RandomState instance, use it. If seed is an int, return a new RandomState
instance seeded with seed. If None, use np.random.RandomState. Default is None.

Returns stat : float

The computed k-Sample statistic.

pvalue : float

5.2. Reference 25

mgc Documentation, Release alpha

The computed k-Sample p-value.

Examples

>>> import numpy as np
>>> from mgc.ksample import KSample
>>> x = np.arange(7)
>>> y = x
>>> z = np.arange(10)
>>> stat, pvalue = KSample("Dcorr").test(x, y)
>>> '%.3f, %.1f' % (stat, pvalue)
'-0.136, 1.0'

The number of replications can give p-values with higher confidence (greater alpha levels).

>>> import numpy as np
>>> from mgc.ksample import KSample
>>> x = np.arange(7)
>>> y = x
>>> z = np.ones(7)
>>> stat, pvalue = KSample("Dcorr").test(x, y, z, reps=10000)
>>> '%.3f, %.1f' % (stat, pvalue)
'0.224, 0.0'

5.2.3 Simulations

Independence Simulations

mgc.sims.linear(n, p, noise=False, low=-1, high=1)
Simulates univariate or multivariate linear data.

Parameters n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : float, (default: 1)

The noise amplitude of the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of
samples and p is the number of dimensions.

26 Chapter 5. Documentation

mgc Documentation, Release alpha

Notes

Linear (𝑋,𝑌) ∈ R𝑝 × R:

𝑋 ∼ 𝒰(−1, 1)𝑝

𝑌 = 𝑤𝑇𝑋 + 𝜅𝜖

Examples

>>> from mgc.sims import linear
>>> x, y = linear(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

mgc.sims.exponential(n, p, noise=False, low=0, high=3)
Simulates univariate or multivariate exponential data.

Parameters n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : float, (default: 10)

The noise amplitude of the simulation.

low : float, (default: 0)

The lower limit of the uniform distribution simulated from.

high : float, (default: 3)

The upper limit of the uniform distribution simulated from.

Returns x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of
samples and p is the number of dimensions.

Notes

Exponential (𝑋,𝑌) ∈ R𝑝 × R:

𝑋 ∼ 𝒰(0, 3)𝑝

𝑌 = exp(𝑤𝑇𝑋) + 10𝜅𝜖

Examples

>>> from mgc.sims import exponential
>>> x, y = exponential(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

mgc.sims.cubic(n, p, noise=False, low=-1, high=1, cubs=[-12, 48, 128], scale=0.3333333333333333)
Simulates univariate or multivariate cubic data.

5.2. Reference 27

mgc Documentation, Release alpha

Parameters n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : float, (default: 80)

The noise amplitude of the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

cubs : list of ints (default: [-12, 48, 128])

Coefficients of the cubic function where each value corresponds to the order of the cubic
polynomial.

scale : float (default: 1/3)

Scaling center of the cubic.

Returns x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of
samples and p is the number of dimensions.

Notes

Cubic (𝑋,𝑌) ∈ R𝑝 × R:

𝑋 ∼ 𝒰(−1, 1)𝑝

𝑌 = 128

(︂
𝑤𝑇𝑋 − 1

3

)︂3

+ 48

(︂
𝑤𝑇𝑋 − 1

3

)︂2

− 12

(︂
𝑤𝑇𝑋 − 1

3

)︂
+ 80𝜅𝜖

Examples

>>> from mgc.sims import cubic
>>> x, y = cubic(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

mgc.sims.spiral(n, p, noise=False, low=0, high=5)
Simulates univariate or multivariate spiral data.

Parameters n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : int, (default: 0.4)

The noise amplitude of the simulation.

28 Chapter 5. Documentation

mgc Documentation, Release alpha

low : float, (default: 0)

The lower limit of the uniform distribution simulated from.

high : float, (default: 5)

The upper limit of the uniform distribution simulated from.

Returns x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of
samples and p is the number of dimensions.

Notes

Spiral (𝑋,𝑌) ∈ R𝑝 × R: For 𝑈 ∼ 𝒰(0, 5), 𝜖 ∼ 𝒩 (0, 1)

𝑋|𝑑| = 𝑈 sin(𝜋𝑈) cos𝑑(𝜋𝑈) for 𝑑 = 1, ..., 𝑝− 1

𝑋|𝑝| = 𝑈 cos𝑝(𝜋𝑈)

𝑌 = 𝑈 sin(𝜋𝑈) + 0.4𝑝𝜖

Examples

>>> from mgc.sims import spiral
>>> x, y = spiral(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

5.3 License

mgc is distributed with a MIT license.

MIT License

Copyright (c) 2019 Sambit Panda

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

5.3. License 29

mgc Documentation, Release alpha

30 Chapter 5. Documentation

CHAPTER 6

Indices and tables

• genindex

• search

31

mgc Documentation, Release alpha

32 Chapter 6. Indices and tables

Index

C
CCA (class in mgc.independence), 18
cubic() (in module mgc.sims), 27

D
Dcorr (class in mgc.independence), 12

E
exponential() (in module mgc.sims), 27

H
HHG (class in mgc.independence), 16
Hsic (class in mgc.independence), 14

K
Kendall (class in mgc.independence), 22
KSample (class in mgc.ksample), 24

L
linear() (in module mgc.sims), 26

P
Pearson (class in mgc.independence), 21

R
RV (class in mgc.independence), 20

S
Spearman (class in mgc.independence), 23
spiral() (in module mgc.sims), 28

T
test() (mgc.independence.CCA method), 19
test() (mgc.independence.Dcorr method), 13
test() (mgc.independence.HHG method), 17
test() (mgc.independence.Hsic method), 15
test() (mgc.independence.Kendall method), 23
test() (mgc.independence.Pearson method), 22

test() (mgc.independence.RV method), 20
test() (mgc.independence.Spearman method), 24
test() (mgc.ksample.KSample method), 25

33

	Motivation
	Python
	Free software
	History
	Documentation
	Indices and tables
	Index

