MuG - FASTQ Pipelines Documentation

Release 0.1

Mark McDowall

Nov 19, 2018

Contents:

1 Requirements and Installation 1
L1 Requirements v v v i it e 1
1.2 Imstallation L e e 2
1.3 Documentation ittt e 3
2 Full Installation 5
2.1 Setup the System Environment L e 5
2.2 Setup pyenv and pyenv-virtualenv L e e e e e e e 5
2.3 Installation Process L e e 6
24 Setupthe symlinks L e e e e e e e e 8
2.5 Prepare the Python Environment e e 11
2.6 PostInstallation Tidyup e 12
3 Pipelines 13
3.1 Download and index genome files L Lo e e e 13
3.2 BioBamBam Alignment Filtering L e 14
33 Bowtie2Z Alignment. e e 16
34 BSgenome Builder 17
3.5 BSSeeker2Indexer 18
3.6 BS Seeker2 ALner i e e e e e e e e 20
3.7 BiSulphate Sequencing Filter e 21
3.8 BS Seeker2 Methylation Peak Caller L o oL 23
39 BWA Alignment-bwaaln 23
3.10 BWA Alignment -bwamem o v v vt e 24
3,11 ChIP-Seq Analysis v o v i e e e e e e e e e e e e 26
3.12 iDamID-Seq Analysis e e e e 28
303 ANPS L 29
3.14 MACS2 AnalySiS v v v i i e e e e e e 30
3.15 Mnase-Seq AnalySis e e e e e 32
3.16 RNA-Seq AnalysSis . . . v v v v i e e e e e e e e e e e e e e e e e e e 33
317 TrimGalore L. 35
3.18 Whole Genome BiSulphate Sequencing Analysis 36
3.19 Hi-C Analysis e 36
4 Tools for processing FastQ files 39
4.1 File Validation e 39
42 Indexers e e e e e e e e e 41

4.3 ALIGNErs e e e e 45
4.4 FIIters o o e e e e e e e e e e e e e 51
45 Peak Calling L e e e e e e 54
4.6 Hi-CParsing e e 58
Utility Functions 71
5.1 Common Functions e e e 71
52 Alignment Utilities e 71
53 BamUtilities e e e 73
5.4 FASTQFUNCLioONS i e e e e e e e e 77
Continuous Integration with Travis 81
6.1 Getting Started e e 81
6.2 Making .travissyml File e 81
6.3 Making harness.sh File e e 82
6.4 Running Docker container L e e e e e e e e 82
6.5 Settingup Shims e 82
Setting up and using a Docker Container 83
7.1 Ourreason forusing acontainer it 83
7.2 Getting Started e e 83
7.3 Constructing a docker containero i e e e e e 84
Architectural Design Record 87
8.1 2017-08-15 - Implementation of pigz e 87
8.2 2018-01-26 - Disable no-self-use for @tasks L 87
8.3 2018-02-28 - BAM Merge Strategy v v v v v v i e e e e e e e e e e e e e e e e e 87
8.4 2018-04-26 - BAM SpIitting e e e 88
8.5 2018-05-01 - Compression of FASTQ e 88
8.6 2018-05-09 - Handling aligner index decompression 88
8.7 2018-05-22-GEM Naming vttt e e e e e e e e e 88
8.8 2018-05-22-TrimGalore e e 88
8.9 2018-05-31 - Public genomes and indexes o v v it e e e e e e 88
8.10 2018-06-01 - Separated WGBS Code Testing i i it 89
8.11 2018-06-01 - Travis Caching o ettt 89
8.12 2018-06-04 - Split the WGBS test scriptso v v ittt e 89
8.13 2018-06-05 - Use of the logger PROGRESS 89
8.14 2018-06-14 - Paired end alignment e e e e e 89
8.15 2018-06-18 - Branch tidying during alignment 89
8.16 2018-06-27 - Remove reads marked as duplicate by BioBamBam 90
8.17 2018-07-11 - Changes FASTQ splitter file management 90
8.18 2018-07-16 - Modified handling of file locations 90
8.19 2018-08-02 - Added in Paired End BAM file handling for MACS2 90
8.20 2018-07-16 - Modified handling of file locations 90
8.21 2018-08-07 - Storing tool parameters as part of the metadata 90
8.22 2018-08-07 - Extra output files from MACS2 o 90
8.23 2018-08-13 - Normalised the use of OSError 91
8.24 2018-08-15 - Use the config.json executionpath 91
8.25 2018-08-16 - Prevent further duplicate filteringby MACS2 91
8.26 2018-09-04 - Adding functionality to bam_utilsand MACS2 91
8.27 2018-09-17 - Updates to tool and piplinerun() 91
8.28 2018-08-22 - Improvement of tadbit tools wrappers 91
8.29 2018-09-25 - Converting the Kallisto TSV filetoBED 91
8.30 2018-10-18 - Multi File handling for the DamID-seq Pipeline 92
8.31 2018-10-25 - WGBS Pipeline Create BigWig files as standard 92

8.32 2018-10-31 - Modify the file names for docker script 92
8.33 2018-11-08 - Modifications for the movementoffiles. 92
8.34 2018-11-16 - Reading of Gzipped FASTQfiles 92
9 License 93
10 Testing 97
10.1 Sample Data e e 97
10.2 Pipelines o e e e e e e e e e e e 109
103 TOOIS . o . o e e e e e e e e e 113
11 Indices and tables 117
Python Module Index 119

CHAPTER 1

Requirements and Installation

Source (github)

1.1 Requirements

1.1.1 Software

* Python 2.7.10+ or 3.6+

bedtools (specifically bamtobed)

bedToBigBed - http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/

wigToBigWig - http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/

BioBamBam?2
Bowtie2
BWA
FastQC
GEMtools
HDF5
iNPS
Kallisto
libmaus?2
pyenv
R29.1+
SAMtools

https://github.com/Multiscale-Genomics/mg-process-fastq
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/

L S

)

- o v R oW

MuG - FASTQ Pipelines Documentation, Release 0.1

« MCL
* pigz

1.1.2 Python Modules

* numpy

* h5py

* pysam

* pyBigWig
* scipy

* matplotlib

* py2

Instructions for the follownig modules are listed in the installation section. All other python modules should be

installed with pip prior to the following libraries.
* BS-Seeker2
* TADbit

1.2 Installation

For a guide to the full installation procedure the Full Installation.

Directly from GitHub:

cd S$S{HOME}/code
git clone https://github.com/Multiscale-Genomics/mg-process—fastqg.git

cd mg-process—fastqg

Create the Python environment

pyenv-virtualenv 2.7.10 mg-process—-fastqg
pip install --editable .

Install the pyTADbit modules

cd ${HOME}/1lib

wget https://github.com/3DGenomes/tadbit/archive/master.zip -0 tadbit.zip
unzip tadbit.zip

cd tadbit-master

pyenv activate mg-process-fastqg
pip install .

Check out the following software for use by the process_wgbs.py pipeline:

2 Chapter 1. Requirements and Installation

)

MuG - FASTQ Pipelines Documentation, Release 0.1

cd

cd ${HOME}/lib

gti clone https://github.com/BSSeeker/BSseeker2.git

cd
cd
In
1n
1n

cd
1n

S{HOME} /code

mg-process—fastg

-s $code_root/bs_align bs_align
—-s S$Scode_root/bs_index bs_index
-s Scode_root/bs_utils bs_utils

cd ${HOME}/code/mg-process-fastqg/tool
-s Scode_root/FilterReads.py FilterReads.py

1.3 Documentation

To build the documentation:

pip install Sphinx

pip install sphinx-autobuild
cd docs

make html

1.3. Documentation

MuG - FASTQ Pipelines Documentation, Release 0.1

4 Chapter 1. Requirements and Installation

CHAPTER 2

Full Installation

The following document is for the full installation of all software required by the mg-process-fastq module and all
programmes that it uses. The document has been written with Ubuntu Linux in mind, although many of the commands
are cross platform (*nix) complient.

If you already have certain packages installed feel free to skip over certain steps. Likewise the bin, lib and code
directories are relative to the home dir; if this is not the case for your system then make the required changes when
running these commands.

2.1 Setup the System Environment

sudo apt-get install -y make build-essential libssl-dev zliblg-dev N\
libbz2-dev libreadline-dev libsqglite3-dev wget curl 1llvm libncurses5-dev \\
libncurseswbS-dev xz-utils tk-dev unzip mcl libgtk2.0-dev r-base-core AN\

libcurl4-gnutls—-dev python-rpy2 git libtbb2 pigz liblzma-dev libhdf5-dev \\
texlive-latex—-base tree libblas-dev liblapack-dev

cd ${HOME}
mkdir bin lib code
echo 'export PATH="${HOME}/bin:S$PATH"' >> ~/.bash_profile

2.2 Setup pyenv and pyenv-virtualenv

This is required for managing the version of Python and the installation environment for the Python modules so that
they can be installed in the user space.

git clone https://github.com/pyenv/pyenv.git ~/.pyenv

echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bash_profile
echo 'export PATH="$PYENV_ROOT/bin:S$PATH"' >> ~/.bash_profile
echo 'eval "$ (pyenv init -)"' >> ~/.bash_profile

(continues on next page)

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

Add the .bash_profile to your .bashrc file
echo 'source ~/.bash_profile"' >> ~/.bashrc

git clone https://github.com/pyenv/pyenv-virtualenv.git ${PYENV_ROOT}/plugins/pyenv—
—virtualenv

pyenv install 2.7.12
pyenv virtualenv 2.7.12 mg-process—-fastqg

Python 3 environment required by iNPS
pyenv install 3.5.3
In -s ${HOME}/.pyenv/versions/3.5.3/bin/python ${HOME}/bin/py3

2.3 Installation Process

2.3.1 UCSC Tools

cd ${HOME}/1lib
wget http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/bedToBigBed
wget http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/wigToBigWig

wget http://hgdownload.soce.ucsc.edu/admin/exe/linux.x86_64/faToTwoBit
wget http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/twoBitInfo

chmod +x bedToBigBed wigToBigWig faToTwoBit twoBitInfo

2.3.2 BioBamBam2

BioBamBam is used for the filtering of aligned reads as part of the ChIP-seq pipeline. It also requires the libmaus2
package to be installed.

cd S${HOME}/1lib

git clone https://github.com/gtl/libmaus2.git
cd libmaus2

libtoolize

aclocal

autoheader

automake --force-missing --add-missing
autoconf

./configure —--prefix=${HOME}/lib/libmaus2
make

make install

cd S${HOME}/1lib

git clone https://github.com/gtl/biobambam2.git

cd biobambam?2

autoreconf -i -f

./configure --with-libmaus2=${HOME}/lib/libmaus2 —--prefix=${HOME}/lib/biobambam?2
make install

6 Chapter 2. Full Installation

MuG - FASTQ Pipelines Documentation, Release 0.1

2.3.3 Bowtie2 Aligner

cd ${HOME}/1lib

wget —-max-redirect 1 https://downloads.sourceforge.net/project/bowtie-bio/bowtie2/2.
—3.4/bowtie2-2.3.4-1inux-x86_64.zip

unzip bowtie2-2.3.4-1inux-x86_64.zip

2.3.4 BWA Sequence Aligner

cd ${HOME}/1lib

git clone https://github.com/1h3/bwa.git
cd bwa

make

2.3.5 FastQC

cd ${HOME}/1lib

wget http://www.bioinformatics.babraham.ac.uk/projects/fastgc/fastgc_v0.11.5.zip
unzip fastgc_v0.11.5.zip

cd FastQC/

chmod 755 fastgc

2.3.6 GEM Sequence Aligner

cd ${HOME}/1lib
wget http://barnaserver.com/gemtools/releases/GEMTools-static-core2-1.7.1.tar.gz
tar -xzf GEMTools-static-core2-1.7.1l.tar.gz

2.3.7 iNPS Peak Caller

cd ${HOME}/lib

mkdir iNPS

cd iNPS

wget http://www.picb.ac.cn/hanlab/files/iNPS_V1.2.2.zip
unzip iNPS_V1.2.2.zip

cd ${HOME}/bin

touch iNPS

cat iNPS <<EOL

#!/usr/bin/env bash

py3 S${HOME}/1lib/iNPS/iNPS_V1.2.2.py "s@"
EOL

chmod 777 iNPS

2.3. Installation Process 7

MuG - FASTQ Pipelines Documentation, Release 0.1

2.3.8 Kallisto

cd ${HOME}/1lib

wget https://github.com/pachterlab/kallisto/releases/download/v0.43.1/kallisto_linux-—
—v0.43.1.tar.gz

tar -xzf kallisto_linux-v0.43.1l.tar.gz

2.3.9 SAMtools

cd ${HOME}/lib

git clone https://github.com/samtools/htslib.git
cd htslib

autoheader

autoconf

./configure —--prefix=${HOME}/lib/htslib

make

make install

cd ${HOME}/1lib

git clone https://github.com/samtools/samtools.git
cd samtools

autoheader

autoconf -Wno-syntax

./configure —--prefix=${HOME}/lib/samtools

make

make install

2.3.10 bedTools

cd ${HOME}/1lib

wget https://github.com/arg5x/bedtools2/releases/download/v2.26.0/bedtools-2.26.0.tar.
—gz

tar -zxvf bedtools-2.26.0.tar.gz

cd bedtools2

make

2.4 Setup the symlinks

cd S${HOME}/bin

1n -s ${HOME}/lib/bedtools2/bin/bedtools bedtools
In -s ${HOME}/lib/bedToBigBed bedToBigBed

In -s ${HOME}/lib/wigToBigWig wigToBigWig

1In -s ${HOME}/lib/faToTwoBit faToTwoBit

1In -s ${HOME}/lib/twoBitInfo twoBitInfo

1n -s S${HOME}/lib/bwa/bwa bwa

In -s ${HOME}/lib/bowtie2-2.3.4-1inux-x86_64/bowtie2 bowtie2

(continues on next page)

8 Chapter 2. Full Installation

20

21

22

23

24

25

26

27

36

37

38

39

40

41

42

43

44

45

46

47

48

49

58

59

60

61

62

63

64

65

66

67

68

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

In -s ${HOME}/lib/bowtie2-2.3.4-1inux-x86_64/bowtie2-align-s bowtie2-align-s
In -s ${HOME}/lib/bowtie2-2.3.4-1inux-x86_64/bowtie2-align-1 bowtie2-align-1
In —-s ${HOME}/lib/bowtie2-2.3.4-1inux-x86_64/bowtie2-build bowtie2-build

ln -s S{HOME}/lib/bowtie2-2.3.4-1inux-x86_64/bowtie2-build-s bowtie2-build-s
In -s ${HOME}/lib/bowtie2-2.3.4-1inux-x86_64/bowtie2-build-1 bowtie2-build-1
In -s ${HOME}/lib/bowtie2-2.3.4-1inux-x86_64/bowtie2-inspect bowtie2-inspect
1In -s ${HOME}/lib/bowtie2-2.3.4-1inux-x86_64/bowtie2-inspect-s bowtie2-inspect-s
In -s ${HOME}/lib/bowtie2-2.3.4-1inux-x86_64/bowtie2-inspect-1 bowtie2-inspect-1
1In -s ${HOME}/lib/FastQC/fastqgc

In -s ${HOME}/lib/gemtools—-1.7.1-core2/bin/gem-2-bed gem—-2-bed

In -s ${HOME}/lib/gemtools—-1.7.1-core2/bin/gem-2-gem gem-2-gem

In -s ${HOME}/lib/gemtools-1.7.1-core2/bin/gem-2-sam gem-2-sam

In -s ${HOME}/lib/gemtools—-1.7.1-core2/bin/gem-2-wig gem—-2-wig

In -s ${HOME}/lib/gemtools—-1.7.1-core2/bin/gem-indexer gem-indexer

In -s ${HOME}/lib/gemtools-1.7.1-core2/bin/gem-indexer_bwt-dna gem-indexer_bwt-dna
In -s ${HOME}/lib/gemtools—-1.7.1l-core2/bin/gem-indexer_fastaZmeta+cont gem—-indexer_
—fastaZ2meta+cont

In -s ${HOME}/lib/gemtools-1.7.1-core2/bin/gem-indexer_generate gem-indexer_generate
In -s ${HOME}/lib/gemtools—-1.7.1l-core2/bin/gem-info gem—-info

In -s ${HOME}/lib/gemtools-1.7.1-core2/bin/gem—-mapper gem-mapper

In -s ${HOME}/lib/gemtools-1.7.1-core2/bin/gemtools gemtools

In -s ${HOME}/1lib/iNPS/iNPS_V1.2.2.py iNPS_V1.2.2.py

In -s ${HOME}/lib/kallisto_linux-v0.43.1/kallisto kallisto

In -s ${HOME}/lib/htslib/bin/bgzip bgzip

In -s ${HOME}/lib/htslib/bin/htsfile htsfile

In -s ${HOME}/lib/htslib/bin/tabix tabix

1In -s ${HOME}/lib/samtools/bin/ace2sam ace2sam

In -s ${HOME}/lib/samtools/bin/blast2sam.pl blast2sam.pl

In -s ${HOME}/lib/samtools/bin/bowtie2sam.pl bowtie2sam.pl

In -s ${HOME}/lib/samtools/bin/export2sam.pl export2sam.pl

In -s ${HOME}/lib/samtools/bin/interpolate_sam.pl interpolate_sam.pl

In -s ${HOME}/lib/samtools/bin/mag2sam-long mag2sam—-long

In -s ${HOME}/lib/samtools/bin/mag2sam-short mag2sam-short

ln -s ${HOME}/lib/samtools/bin/md5fa md5fa

In -s ${HOME}/lib/samtools/bin/md5sum-lite md5sum-lite

In -s ${HOME}/lib/samtools/bin/novo2sam.pl novo2sam.pl

In -s ${HOME}/lib/samtools/bin/plot-bamstats plot-bamstats

In -s ${HOME}/lib/samtools/bin/psl2sam.pl psl2sam.pl

In -s ${HOME}/lib/samtools/bin/sam2vcf.pl sam2vcf.pl

1ln -s ${HOME}/lib/samtools/bin/samtools samtools

In -s ${HOME}/lib/samtools/bin/samtools.pl samtools.pl

In -s ${HOME}/lib/samtools/bin/seq_cache_populate.pl seq_cache_populate.pl
In -s ${HOME}/lib/samtools/bin/socap2sam.pl soap2sam.pl

In -s ${HOME}/lib/samtools/bin/varfilter.py varfilter.py

In -s ${HOME}/lib/samtools/bin/wgsim wgsim

In -s ${HOME}/lib/samtools/bin/wgsim_eval.pl wgsim_eval.pl

In -s ${HOME}/lib/samtools/bin/zoom2sam.pl zoom2sam.pl

In -s ${HOME}/lib/biobambam?2/bin/baml2auxmerge baml2auxmerge

In -s ${HOME}/lib/biobambam2/bin/baml2split baml2split

In -s ${HOME}/lib/biobambam2/bin/baml2strip baml2strip

In -s ${HOME}/lib/biobambam2/bin/bamadapterclip bamadapterclip

(continues on next page)

2.4. Setup the symlinks 9

69

70

71

2

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

1In -s ${HOME}/lib/biobambam?2/bin/bamadapterfind bamadapterfind

In -s ${HOME}/lib/biobambam2/bin/bamalignfrac bamalignfrac

In -s ${HOME}/lib/biobambam2/bin/bamauxmerge bamauxmerge

1ln -s S{HOME}/lib/biobambam2/bin/bamauxsort bamauxsort

1ln -s S${HOME}/lib/biobambam2/bin/bamcat bamcat

ln -s ${HOME}/lib/biobambam?2/bin/bamchecksort bamchecksort

1In -s ${HOME}/lib/biobambam2/bin/bamclipreinsert bamclipreinsert

1In -s ${HOME}/lib/biobambam2/bin/bamcollate bamcollate

1n -s ${HOME}/lib/biobambam2/bin/bamcollate2 bamcollate2

1In -s ${HOME}/lib/biobambam2/bin/bamdownsamplerandom bamdownsamplerandom
In -s ${HOME}/lib/biobambam2/bin/bamexplode bamexplode

1ln -s ${HOME}/lib/biobambam2/bin/bamfilteraux bamfilteraux

In -s ${HOME}/lib/biobambam2/bin/bamfilterflags bamfilterflags

In -s ${HOME}/lib/biobambam2/bin/bamfilterheader bamfilterheader

1ln -s ${HOME}/lib/biobambam2/bin/bamfilterheader2 bamfilterheader?2

In -s ${HOME}/lib/biobambam2/bin/bamfilterlength bamfilterlength

1In -s ${HOME}/lib/biobambam2/bin/bamfiltermc bamfiltermc

ln -s ${HOME}/lib/biobambam2/bin/bamfilternames bamfilternames

1In -s ${HOME}/lib/biobambam2/bin/bamfilterrg bamfilterrg

In -s ${HOME}/lib/biobambam2/bin/bamfixmateinformation bamfixmateinformation
In -s ${HOME}/lib/biobambam2/bin/bamflagsplit bamflagsplit

In -s ${HOME}/lib/biobambam2/bin/bamheap?2 bamheap?2

1In -s ${HOME}/lib/biobambam2/bin/bamindex bamindex

ln -s ${HOME}/lib/biobambam2/bin/bamintervalcomment bamintervalcomment
1In -s ${HOME}/lib/biobambam2/bin/bamintervalcommenthist bamintervalcommenthist
In -s ${HOME}/lib/biobambam2/bin/bamlastfilter bamlastfilter

In -s ${HOME}/lib/biobambam2/bin/bammapdist bammapdist

In -s ${HOME}/lib/biobambam2/bin/bammarkduplicates bammarkduplicates

In -s ${HOME}/lib/biobambam2/bin/bammarkduplicates?2 bammarkduplicates?2
In -s ${HOME}/lib/biobambam?2/bin/bammarkduplicatesopt bammarkduplicatesopt
In -s ${HOME}/lib/biobambam2/bin/bammaskflags bammaskflags

In -s ${HOME}/lib/biobambam2/bin/bammdnm bammdnm

In -s ${HOME}/lib/biobambam2/bin/bammerge bammerge

1In -s ${HOME}/lib/biobambam?2/bin/bamnumericalindex bamnumericalindex

In -s ${HOME}/lib/biobambam2/bin/bamrank bamrank

ln -s S${HOME}/lib/biobambam2/bin/bamranksort bamranksort

In -s ${HOME}/lib/biobambam2/bin/bamrecalculatecigar bamrecalculatecigar
In -s ${HOME}/lib/biobambam2/bin/bamrecompress bamrecompress

ln -s ${HOME}/lib/biobambam2/bin/bamreset bamreset

In -s ${HOME}/lib/biobambam2/bin/bamscrapcount bamscrapcount

In -s ${HOME}/lib/biobambam2/bin/bamseqchksum bamsegchksum

In -s ${HOME}/lib/biobambam?2/bin/bamsormadup bamsormadup

In -s ${HOME}/lib/biobambam2/bin/bamsort bamsort

In -s ${HOME}/lib/biobambam2/bin/bamsplit bamsplit

In -s ${HOME}/lib/biobambam?2/bin/bamsplitdiv bamsplitdiv

In -s ${HOME}/lib/biobambam2/bin/bamstreamingmarkduplicates bamstreamingmarkduplicates
In -s ${HOME}/lib/biobambam2/bin/bamtagconversion bamtagconversion

In -s ${HOME}/lib/biobambam2/bin/bamtofastqg bamtofastqg

In -s ${HOME}/lib/biobambam2/bin/bamvalidate bamvalidate

In -s ${HOME}/lib/biobambam2/bin/bamzztoname bamzztoname

In -s ${HOME}/lib/biobambam2/bin/fastaexplode fastaexplode

In -s ${HOME}/lib/biobambam2/bin/fastgtobam fastgtobam

In -s ${HOME}/lib/biobambam2/bin/fastqgtobampar fastgtobampar

ln -s ${HOME}/lib/biobambam2/bin/filtersam filtersam

In -s ${HOME}/lib/biobambam2/bin/kmerprob kmerprob

In -s ${HOME}/lib/biobambam2/bin/lasToBAM lasToBAM

1In -s ${HOME}/lib/biobambam2/bin/normalisefasta normalisefasta

10 Chapter 2. Full Installation

MuG - FASTQ Pipelines Documentation, Release 0.1

2.5 Prepare the Python Environment

2.5.1 Install APIs and Pipelines

Checkout the code for the DM API and the mg-process-fastq pipelines:

cd ${HOME}/code

pyenv activate mg-process-fastqg

pip install git+https://github.com/Multiscale-Genomics/mg-dm-api.git
pip install git+https://github.com/Multiscale-Genomics/mg-tool-api.git

git clone https://github.com/Multiscale-Genomics/mg-process—-fastqg.git
cd mg-process—fastqg

pip install -e

pip install -r requirements.txt

2.5.2 Install MACS2

This should get installed as part of the installation in the mg-process-fastq package, if not then it will need to be
installed separately.

For Python 2.7:

cd S${HOME}/code
pyenv activate mg-process-fastqg
pip install MACS2

In -s ${HOME}/.pyenv/versions/mg-process—-fastg/bin/macs2 ${HOME}/bin/macs2

For Python 3.6:

cd ${HOME}/code

pyenv activate mg-process—-fastqg

git clone https://github.com/taocliu/MACS.git
cd MACS

git checkout MACS2p3

cython MACS2/x.pyx
cython MACS2/I0/*.pyx
python setup_w_cython.py install

pip install
alias macs2="macs2p3"

2.5.3 Install IDEAR

cd S${HOME}/1lib

source ("https://bioconductor.org/biocLite.R")
biocLite ("BSgenome")

biocLite ("DESeqg2")

if (!require ("devtools")) install.packages ("devtools")
devtools::install_bitbucket ("juanlmateo/idear")

2.5. Prepare the Python Environment 11

MuG - FASTQ Pipelines Documentation, Release 0.1

2.5.4 Install TADDbit

cd ${HOME}/1lib

wget https://github.com/3DGenomes/TADbit/archive/dev.zip -0 tadbit.zip
unzip tadbit.zip

cd TADbit-dev

If the pyenv env is not called mg-process-fastg then change this to match,

the same is true for the version of python

python setup.py install --install-1ib=${HOME}/.pyenv/versions/mg-process—fastqg/lib/
—python2.7/site-packages/ —-—-install-scripts=${HOME}/bin

2.5.5 Install BSseeker

cd ${HOME}/1lib
git clone https://github.com/BSSeeker/BSseeker2.git

cd ${HOME}/code/mg-process—fastqg

In -s ${HOME}/lib/BSseeker2/bs_align bs_align
ln -s $S{HOME}/lib/BSseeker2/bs_index bs_index
In -s ${HOME}/lib/BSseeker2/bs_utils bs_utils

2.5.6 Trim Galore

cd ${HOME}/1lib

pip install cutadapt

wget —-O trim_galore.tar.gz https://github.com/FelixKrueger/TrimGalore/archive/0.5.0.
—tar.gz

tar —-xzf trim_galore.tar.gz

cd ${HOME}/bin
In -s ${HOME}/lib/TrimGalore-0.5.0/trim_galore trim_galore

Running on a COMPSs VM the symlink will need to be created in a system accessible area:

sudo 1ln -s ${HOME}/lib/TrimGalore-0.4.3/trim_galore /usr/local/bin/trim_galore
pip install cutadapt

2.6 Post Installation Tidyup

cd ${HOME}/1lib
rm *.zip x.tar.gz

12 Chapter 2. Full Installation

[S

CHAPTER 3

Pipelines

3.1 Download and index genome files

This pipeline is for the indexing of genomes once they have been loaded into the VRE. It indexes each new genome
with Bowtie2, BWA and GEM. These indexes can then be used by the other pipelines.

3.1.1 Running from the command line

Parameters

taxon_id [int] Species taxonomic ID
assembly [str] Genomic assembly ID
genome [str] Location of the genomes FASTA file

Returns

Bowtie2 index files BWA index files GEM index file

Example

When running the pipeline on a local machine without COMPSs:

python process_genome.py \
—--config tests/json/config_genome_indexer. json \
-—in_metadata tests/json/input_genome_indexer.json \
-—out_metadata tests/json/output_genome_indexer. json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

13

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

L L N N

MuG - FASTQ Pipelines Documentation, Release 0.1

runcompss \
--lang=python \
—-—library_path=${HOME}/bin \

——-pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \

—--log_level=debug \

process_genome.py \
—--config tests/json/config_genome_indexer. json \
—-—-in_metadata tests/json/input_genome_indexer.json \
--out_metadata tests/json/output_genome_indexer. json

3.1.2 Methods

class process_genome.process_genome (configuration=None)
Workflow to download and pre-index a given genome

run (input_files, metadata, output_files)

Main run function for the indexing of genome assembly FASTA files. The pipeline uses Bowtie2, BWA

and GEM ready for use in pipelines that rely on alignment.
Parameters

* input_files (dict)—
genome [str] List of file locations

* metadata (dict) —
genome [dict] Required meta data

e output_files (dict)—
bwa_index [str] Location of the BWA index archive files
bwt_index [str] Location of the Bowtie2 index archive file

gem_index [str] Location of the GEM index file

genome_gem [str] Location of a the FASTA file generated for the GEM indexing step

Returns
* outputfiles (dict) — List of locations for the output index files

* output_metadata (dict) — Metadata about each of the files

3.2 BioBamBam Alignment Filtering

This pipeline to filter sequencing artifacts from aligned reads.

3.2.1 Running from the command line

Parameters

config [str] Configuration JSON file
in_metadata [str] Location of input JSON metadata for files

out_metadata [str] Location of output JSON metadata for files

14 Chapter 3.

Pipelines

L S

R T - NV S e S

MuG - FASTQ Pipelines Documentation, Release 0.1

Returns

filtered [file] Filtered bam file

Example

REQUIREMENT - Needs an aligned bam file

When running the pipeline on a local machine without COMPSs:

python process_biobambam.py \
-—-config tests/json/config_biobambam. json \
--in_metadata tests/json/input_biobambam. json \
—-—-out_metadata tests/json/output_biobambam.json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
--lang=python \
—-—library_path=${HOME}/bin \
——-pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
--log_level=debug \
process_biobambam.py \
--config tests/json/config_biobambam. json \
——-in_metadata tests/json/input_biobambam. json \
——out_metadata tests/json/output_biobambam. json

3.2.2 Methods

class process_biobambam.process_biobambam (configuration=None)
Functions for filtering FastQ alignments with BioBamBam.

run (input_files, metadata, output_files)
Main run function for filtering FastQ aligned reads using BioBamBam.

Parameters
e input_files (dict)— Location of the initial input files required by the workflow
bam [str] Location of BAM file
* metadata (dict) - Input file meta data associated with their roles
bam : str
e output_files (dict)— Output file locations
filtered : str
Returns
* output_files (dict) — Output file locations associated with their roles, for the output
filtered [str] Filtered version of the bam file
* output_metadata (dict) — Output metadata for the associated files in output_files

filtered : Metadata

3.2. BioBamBam Alignment Filtering 15

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - FASTQ Pipelines Documentation, Release 0.1

3.3 Bowtie2 Alignment

This pipeline aligns FASTQ reads to a given indexed genome. The pipeline can handle single-end and paired-end
reads.

3.3.1 Running from the command line

Parameters

config [str] Configuration JSON file

in_metadata [str] Location of input JSON metadata for files

out_metadata [str] Location of output JSON metadata for files

Returns

bam [file] Aligned reads in bam file

Example

REQUIREMENT - Needs the indexing step to be run first

When running the pipeline on a local machine without COMPSs:

python process_align_bowtie.py \

--config tests/Jjson/config_bowtie2.json \
-—in_metadata tests/json/input_bowtie2.json \
—-—-out_metadata tests/Jjson/output_bowtie2.json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \

-—lang=python \
—-library_path=${HOME}/bin \
——pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/
-—log_level=debug \
process_align_bowtie.py \
—--config tests/json/config_bowtie2_single.json \
—--in_metadata tests/json/input_bowtie2_single_metadata. json
—--out_metadata tests/json/output_bowtie2_single. json

runcompss \

—--lang=python \
——library_path=${HOME}/bin \
——-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/
--log_level=debug \
process_align_bowtie.py \
—--config tests/json/config_bowtie2_paired.json \
-—-in_metadata tests/json/input_bowtie2_paired_metadata.json
—-—out_metadata tests/json/output_bowtie2_paired. json

16

Chapter 3. Pipelines

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - FASTQ Pipelines Documentation, Release 0.1

3.3.2 Methods

class process_align_bowtie.process_bowtie (configuration=None)
Functions for aligning FastQ files with Bowtie2

run (input_files, metadata, output_files)
Main run function for aligning FastQ reads with Bowtie2.

Currently this can only handle a single data file and a single background file.

Parameters

e input_files (dict)— Location of the initial input files required by the workflow

genome [str] Genome FASTA file
index [str] Location of the BWA archived index files
loc [str] Location of the FASTQ reads files

fastq2 [str] [OPTIONAL] Location of the FASTQ reads file for paired end data

* metadata (dict)— Input file meta data associated with their roles
genome : str index : str loc : str fastq?2 : str

e output_files (dict)— Output file locations
bam [str] Output bam file location

Returns

* output_files (dict) — Output file locations associated with their roles, for the output

bam [str] Aligned FASTQ short read file locations

* output_metadata (dict) — Output metadata for the associated files in output_files

bam : Metadata

3.4 BSgenome Builder

This pipeline can process FASTQ to identify protein-DNA binding sites.

3.4.1 Running from the command line

Parameters

config [str] Configuration JSON file
in_metadata [str] Location of input JSON metadata for files

out_metadata [str] Location of output JSON metadata for files

Returns

bsgenome [file] BSgenome index
genome_2bit [file] Compressed representation of the genome required for generating the index

chrom_size [file] Location of the chrom.size file

3.4. BSgenome Builder

17

L S

I = N S

MuG - FASTQ Pipelines Documentation, Release 0.1

seed_file [file] Configuaration file for generating the BSgenome R package

Example

When running the pipeline on a local machine without COMPSs:

python process_bsgenome.py \
-—-config tests/Jjson/config_bsgenome. json \
-—-in_metadata tests/json/input_bsgenome. json \
——out_metadata tests/json/output_bsgenome. json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/

software-and-apps/software-list/comp-superscalar/):

runcompss \
--lang=python \
—--library_path=${HOME} /bin \
——-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/ \
--log_level=debug \
process_bsgenome.py \
—--config tests/json/config_bsgenome. json \
—--in_metadata tests/json/input_bsgenome. json \
—-—out_metadata tests/json/output_bsgenome. json

3.4.2 Methods

class process_bsgenome.process_bsgenome (configuration=None)
Workflow to download and pre-index a given genome

run (input_files, metadata, output_files)

Main run function for the indexing of genome assembly FASTA files. The pipeline uses Bowtie2, BWA

and GEM ready for use in pipelines that rely on alignment.
Parameters
e input_files (dict)—
genome [str] Location of the FASTA input file
* metadata (dict) —
genome [dict] Required meta data
e output_files (dict)—
BSgenome [str] Location of a the BSgenome R package
Returns
* outputfiles (dict) — List of locations for the output index files

¢ output_metadata (dicr) — Metadata about each of the files

3.5 BS Seeker2 Indexer

This pipeline can process FASTQ to identify protein-DNA binding sites.

18

Chapter 3.

Pipelines

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

[S

L L= N N

MuG - FASTQ Pipelines Documentation, Release 0.1

3.5.1 Running from the command line

Parameters

config [str] Configuration JSON file
in_metadata [str] Location of input JSON metadata for files
out_metadata [str] Location of output JSON metadata for files

Returns

index [file] BS Seeker2 index

Example

When running the pipeline on a local machine without COMPSs:

python process_bs_seeker_index.py \
--config tests/json/config_wgbs_index. json \
-—in_metadata tests/json/input_wgbs_index_metadata.json \
—-—out_metadata tests/json/output_wgbs_index.json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
--lang=python \
—--library_path=${HOME} /bin \
——-pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
--log_level=debug \
process_bs_seeker_index.py \
—--config tests/json/config_wgbs_index.json \
—-—-in_metadata tests/json/input_wgbs_index_metadata.json \
—--out_metadata tests/json/output_wgbs_index. json

3.5.2 Methods
class process_bs_seeker_index.process_bs_seeker_ index (configuration=None)
Functions for aligning FastQ files with BWA

run (input_files, metadata, output_files)
Main run function for generatigng the index files required by BS Seeker2.

Parameters
e input_files (dict) — List of strings for the locations of files. These should include:
genome_fa [str] Genome assembly in FASTA
* metadata (dict) - Input file meta data associated with their roles
genome : str
* output_files (dict)— Output file locations

bam [str] Output bam file location

3.5. BS Seeker2 Indexer 19

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

L S

MuG - FASTQ Pipelines Documentation, Release 0.1

Returns

output_files — Output file locations associated with their roles, for the output

index : str

Return type dict

3.6 BS Seeker2 Aligner

This pipeline aligns FASTQ paired end reads using BS Seeker2 and Bowtie2.

3.6.1 Running from the command line

Parameters

config [str] Configuration JSON file

in_metadata [str] Location of input JSON metadata for files
out_metadata [str] Location of output JSON metadata for files
Returns

bam [file] Aligned Bam file

bai [file] Aligned Bam index file

Example

When running the pipeline on a local machine without COMPSs:

python process_bs_seeker_aligner.py \
-—-config tests/json/config_wgbs_align. json \
--in_metadata tests/json/input_wgbs_align_metadata.json \
—-—-out_metadata tests/Jjson/output_wgbs_align.json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/

software-and-apps/software-list/comp-superscalar/):

runcompss \
-—lang=python \
——library_path=${HOME}/bin \
—--pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
--log_level=debug \
process_bs_seeker_aligner.py \
--config tests/json/config_wgbs_align.json \
—-—-in_metadata tests/json/input_wgbs_align_metadata.json \
—-—out_metadata tests/json/output_wgbs_align. json

20

Chapter 3. Pipelines

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - FASTQ Pipelines Documentation, Release 0.1

3.6.2 Methods

class process_bs_seeker_aligner.process_bs_seeker_aligner (configuration=None)
Functions for downloading and processing whole genome bisulfate sequencings (WGBS) files. Files are filtered,
aligned and analysed for points of methylation

run (input_files, metadata, output_files)
This pipeline processes paired-end FASTQ files to identify methylated regions within the genome.

Parameters
e input_files (dict) — List of strings for the locations of files. These should include:
genome_fa [str] Genome assembly in FASTA
fastql [str] Location for the first filtered FASTQ file for single or paired end reads
fastq2 [str] Location for the second filtered FASTQ file if paired end reads
index [str] Location of the index file
* metadata (dict)— Input file meta data associated with their roles
genome_fa : dict fastql : dict fastq2 : dict index : dict
e output_files (dict)—bam: strbai: str
Returns bamlbai — Location of the alignment bam file and the associated index

Return type str

3.7 BiSulphate Sequencing Filter

This pipeline processes FASTQ files to filter out duplicate reads.

3.7.1 Running from the command line

Parameters

config [str] Configuration JSON file

in_metadata [str] Location of input JSON metadata for files

out_metadata [str] Location of output JSON metadata for files

Returns

fastql_filteredlifastql_filtered [str] Locations of the filtered FASTQ files from which alignments were made
fastq2_filteredlfastq2_filtered [str] Locations of the filtered FASTQ files from which alignments were made
Example

When running the pipeline on a local machine without COMPSs:

3.7. BiSulphate Sequencing Filter 21

L S

R - NV R S OO O

MuG - FASTQ Pipelines Documentation, Release 0.1

python process_bs_seeker_filter.py \

-—-config tests/json/config_wgbs_filter.json \
—-—-in_metadata tests/json/input_wgbs_filter_metadata.json \
—--out_metadata tests/json/output_metadata.json \

—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
—-lang=python \
—-library_path=${HOME} /bin \
—-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/ \
—--log_level=debug \
process_bs_seeker_filter.py \

--config tests/json/config_wgbs_filter.json \
—--in_metadata tests/json/input_wgbs_filter_metadata.json \
—--out_metadata tests/Jjson/output_metadata. json

3.7.2 Methods

class process_bs_seeker_filter.process_bsFilter (configuration=None)

Functions for filtering FASTQ files. Files are filtered for removal of duplicate reads. Low quality reads in gseq
file can also be filtered.

run (input_files, metadata, output_files)
This pipeline processes FASTQ files to filter duplicate entries

Parameters
* input_files (dict) — List of strings for the locations of files. These should include:
fastql [str] Location for the first FASTQ file for single or paired end reads
fastq2 [str] Location for the second FASTQ file if paired end reads [OPTIONAL]
* metadata (dict) - Input file meta data associated with their roles
fastql : str
fastq2 [str] [OPTIONAL]
e output_files (dict) —fastql_filtered : str
fastq2_filtered [str] [OPTIONAL]
Returns

« fastql_filteredlfastql_filtered (str) — Locations of the filtered FASTQ files from which
alignments were made

* fastq2_filteredlfastq2_filtered (str) — Locations of the filtered FASTQ files from which
alignments were made

22

Chapter 3. Pipelines

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

L S

o - NV R S O SR

R N v

MuG - FASTQ Pipelines Documentation, Release 0.1

3.8 BS Seeker2 Methylation Peak Caller

3.9 BWA Alighment - bwa aln

This pipeline aligns FASTQ reads to a given indexed genome. The pipeline can handle single-end and paired-end
reads.

3.9.1 Running from the command line

Parameters

config [str] Configuration JSON file
in_metadata [str] Location of input JSON metadata for files
out_metadata [str] Location of output JSON metadata for files

Returns

bam ([file] Aligned reads in bam file

Example

REQUIREMENT - Needs the indexing step to be run first

When running the pipeline on a local machine without COMPSs:

python process_align_bwa.py \
—-—config tests/Jjson/config_chipseq. json \
-—-in_metadata tests/json/input_chipseqg.json \
—-—out_metadata tests/Jjson/output_chipseq. json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \

—-lang=python \

——library_path=${HOME}/bin \

—-—-pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \

—--log_level=debug \

process_align_bwa.py \
—--config tests/json/config_bwa_aln_single.json \
—-—-in_metadata tests/json/input_bwa_aln_single_metadata.json \
——out_metadata tests/Jjson/output_bwa_aln_single. json

runcompss \
-—lang=python \
—--library_path=${HOME} /bin \
——pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
-—log_level=debug \
process_align_bwa.py \
—--config tests/json/config_bwa_aln_paired.json \

(continues on next page)

3.8. BS Seeker2 Methylation Peak Caller 23

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

——-in_metadata tests/json/input_bwa_aln_paired_metadata.json \
——out_metadata tests/Jjson/output_bwa_aln_paired. json

3.9.2 Methods
class process_align_bwa.process_bwa (configuration=None)
Functions for aligning FastQ files with BWA ALN

run (input_files, metadata, output_files)
Main run function for aligning FastQ reads with BWA ALN.

Parameters
e input_files (dict)— Location of the initial input files required by the workflow
genome [str] Genome FASTA file
index [str] Location of the BWA archived index files
loc [str] Location of the FASTQ reads files
fastq2 [str] [OPTIONAL] Location of the FASTQ reads file for paired end data
* metadata (dict)— Input file meta data associated with their roles
genome : str index : str loc : str fastq2 : str
* output_files (dict)— Output file locations
bam [str] Output bam file location
Returns
* output_files (dict) — Output file locations associated with their roles, for the output
bam [str] Aligned FASTQ short read file locations
* output_metadata (dict) — Output metadata for the associated files in output_files

bam : Metadata

3.10 BWA Alighment - bwa mem

This pipeline aligns FASTQ reads to a given indexed genome. The pipeline can handle single-end and paired-end
reads.

3.10.1 Running from the command line

Parameters

config [str] Configuration JSON file
in_metadata [str] Location of input JSON metadata for files

out_metadata [str] Location of output JSON metadata for files

24 Chapter 3. Pipelines

MuG - FASTQ Pipelines Documentation, Release 0.1

Returns

bam [file] Aligned reads in bam file

Example

REQUIREMENT - Needs the indexing step to be run first

When running the pipeline on a local machine without COMPSs:

python process_align_bwa.py \
—-—config tests/Jjson/config_chipseq.json \
--in_metadata tests/json/input_chipseq. json \
—-—-out_metadata tests/json/output_chipseq.json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \

--lang=python \

—-—library_path=${HOME}/bin \

——-pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \

--log_level=debug \

process_align_bwa_mem.py \
—--config tests/json/config_bwa_mem_single.json \
—-—-in_metadata tests/json/input_bwa_mem_single_metadata.json \
——out_metadata tests/Jjson/output_bwa_mem_single. json

runcompss \

-—lang=python \

—-library_path=${HOME} /bin \

——pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \

-—log_level=debug \

process_align_bwa_mem.py \
—--config tests/json/config_bwa_mem_paired.json \
——-in_metadata tests/json/input_bwa_mem_paired_metadata.json \
—-—-out_metadata tests/Jjson/output_bwa_mem_paired. json

3.10.2 Methods
class process_align_bwa_mem.process_bwa_mem (configuration=None)
Functions for aligning FastQ files with BWA MEM

run (input_files, metadata, output_files)
Main run function for aligning FastQ data with BWA MEM.

Parameters
* input_files (dict) - Location of the initial input files required by the workflow
genome [str] Genome FASTA file
index [str] Location of the BWA archived index files
loc [str] Location of the FASTQ reads files
fastq2 [str] [OPTIONAL] Location of the FASTQ reads file for paired end data

3.10. BWA Alignment - bwa mem 25

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

[S

[S

MuG - FASTQ Pipelines Documentation, Release 0.1

* metadata (dict) - Input file meta data associated with their roles
genome : str index : str loc : str fastq2 : str

* output_files (dict)— Output file locations
bam [str] Output bam file location

Returns

« output_files (dict) — Output file locations associated with their roles, for the output
bam [str] Aligned FASTQ short read file locations

* output_metadata (dict) — Output metadata for the associated files in output_files

bam : Metadata

3.11 ChIP-Seq Analysis

This pipeline can process FASTQ to identify protein-DNA binding sites.

3.11.1 Running from the command line

Parameters

config [str] Configuration JSON file
in_metadata [str] Location of input JSON metadata for files
out_metadata [str] Location of output JSON metadata for files

Returns

bed [file] Bed files with the locations of transcription factor binding sites within the genome

Example

REQUIREMENT - Needs the indexing step to be run first

When running the pipeline on a local machine without COMPSs:

python process_chipseq.py \
--config tests/Jjson/config_chipseq. json \
-—in_metadata tests/json/input_chipseqg.json \
—-—-out_metadata tests/Jjson/output_chipseq. json \
—--local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
--lang=python \
——library_path=${HOME}/bin \
——-pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
—--log_level=debug \

(continues on next page)

26 Chapter 3. Pipelines

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

process_chipseq.py \
—-—-config tests/json/config_chipseq. json \
-—-in_metadata tests/Jjson/input_chipseqg.json \
—--out_metadata tests/json/output_chipseq. json

3.11.2 Methods

class process_chipseq.process_chipseq (configuration=None)
Functions for processing Chip-Seq FastQ files. Files are the aligned, filtered and analysed for peak calling

run (input_files, metadata, output_files)
Main run function for processing ChIP-seq FastQ data. Pipeline aligns the FASTQ files to the genome
using BWA. MACS 2 is then used for peak calling to identify transcription factor binding sites within the
genome.

Currently this can only handle a single data file and a single background file.
Parameters

e input_files (dict)— Location of the initial input files required by the workflow
genome [str] Genome FASTA file
index [str] Location of the BWA archived index files
loc [str] Location of the FASTQ reads files
fastq2 [str] Location of the paired end FASTQ file [OPTIONAL]
bg_loc [str] Location of the background FASTQ reads files [OPTIONAL]
fastq2_bg [str] Location of the paired end background FASTQ reads files [OPTIONAL]

* metadata (dict)— Input file meta data associated with their roles
genome : str index : str
bg_loc [str] [OPTIONAL]

* output_files (dict)— Output file locations

bam [, “bam_bg”] : str filtered [, “filtered_bg”] : str narrow_peak : str summits : str
broad_peak : str gapped_peak : str

Returns
 output_files (dict) — Output file locations associated with their roles, for the output

bam [, “bam_bg”] [str] Aligned FASTQ short read file [and aligned background file]
locations

filtered [, “filtered_bg”] [str] Filtered versions of the respective bam files
narrow_peak [str] Results files in bed4+1 format

summits [str] Results files in bed6+4 format

broad_peak [str] Results files in bed6+3 format

gapped_peak [str] Results files in bed12+3 format

3.11. ChIP-Seq Analysis 27

[S

© ® N v R W N —

MuG - FASTQ Pipelines Documentation, Release 0.1

* output_metadata (dict) — Output metadata for the associated files in output_files

bam [, “bam_bg”] : Metadata filtered [, “filtered_bg”] : Metadata narrow_peak : Metadata
summits : Metadata broad_peak : Metadata gapped_peak : Metadata

3.12 iDamID-Seq Analysis

This pipeline can process FASTQ to identify protein-DNA binding sites.

3.12.1 Running from the command line

Parameters

config [str] Configuration JSON file
in_metadata [str] Location of input JSON metadata for files
out_metadata [str] Location of output JSON metadata for files

Returns

bigwig [file] Bigwig file of the binding profile of transcription factors

Example

REQUIREMENT - Needs the indexing step to be run first

When running the pipeline on a local machine without COMPSs:

python process_damidseq.py \
--config tests/Jjson/config_idamidseq. json \
——-in_metadata tests/json/input_idamidseq. json \
-—out_metadata tests/json/output_idamidseq.json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
-—lang=python \
——library_path=${HOME} /bin \
——-pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
-—log_level=debug \
process_damidseq.py \
—--config tests/json/config_idamidseq. json \
——-in_metadata tests/json/input_idamidseq. json \
—-—-out_metadata tests/Jjson/output_idamidseq. json

3.12.2 Methods

class process_damidseq.process_damidseq (configuration=None)
Functions for processing Chip-Seq FastQ files. Files are the aligned, filtered and analysed for peak calling

28 Chapter 3. Pipelines

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - FASTQ Pipelines Documentation, Release 0.1

run (input_files, metadata, output_files)
Main run function for processing DamID-seq FastQ data. Pipeline aligns the FASTQ files to the genome
using BWA. iDEAR is then used for peak calling to identify transcription factor binding sites within the
genome.

Currently this can only handle a single data file and a single background file.
Parameters
e input_files (dict)— Location of the initial input files required by the workflow
genome [str] Genome FASTA file
index [str] Location of the BWA archived index files
fastq_1 [str] Location of the FASTQ reads files
fastq_2 [str] Location of the FASTQ repeat reads files
bg_fastq_1 [str] Location of the background FASTQ reads files
bg_fastq_2 [str] Location of the background FASTQ repeat reads files
* metadata (dict)— Input file meta data associated with their roles
genome : str index : str fastq_1 : str fastq_2 : str bg_fastq_1 : str bg_fastq_2 : str
* output_files (dict)— Output file locations
bam [, “bam_bg”] : str filtered [, “filtered_bg”] : str
Returns
* output_files (dict) — Output file locations associated with their roles, for the output

bam [, “bam_bg”] [str] Aligned FASTQ short read file [and aligned background file]
locations

filtered [, “filtered_bg”] [str] Filtered versions of the respective bam files
bigwig [str] Location of the bigwig peaks
 output_metadata (dict) — Output metadata for the associated files in output_files

bam [, “bam_bg”] : Metadata filtered [, “filtered_bg”] : Metadata bigwig : Metadata

3.13 iNPS

This pipeline can process bam file to identify nucleosome positions.

3.13.1 Running from the command line

Parameters

config [str] Configuration JSON file
in_metadata [str] Location of input JSON metadata for files

out_metadata [str] Location of output JSON metadata for files

3.13. iNPS 29

L S

R = NV S S

MuG - FASTQ Pipelines Documentation, Release 0.1

Returns

bed [file] Bed files with the locations of nucleosome binding sites within the genome

Example

REQUIREMENT - Needs the indexing step to be run first

When running the pipeline on a local machine without COMPSs:

python process_iNPS.py \
—--config tests/json/config_inps.json \
--in_metadata tests/json/input_iNPS_metadata. json \
—--out_metadata tests/json/output_iNPS. json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
—--lang=python \
—-—library_path=${HOME}/bin \

——-pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
--log_level=debug \
process_iNPS.py \
—-—config tests/json/config_inps.json \
-—-in_metadata tests/json/input_iNPS_metadata.json \
-—-out_metadata tests/json/output_iNPS. json

3.13.2 Methods

class process_1iNPS.process_iNPS (configuration=None)
Functions for improved nucleosome positioning algorithm (iNPS). Bam Files are analysed for peaks for nucle-
osome positioning

run (input_files, metadata, output_files)
This pipeline processes bam files to identify nucleosome regions within the genome and generates bed
files.

Parameters
e input_files (dict)—bam_file: str Location of the aligned sequences in bam format

e output_files (dict)—peak_bed : str Location of the collated bed file of nucleosome
peak calls

Returns peak_bed — Location of the collated bed file of nucleosome peak calls

Return type str

3.14 MACS2 Analysis

Transcript binding site peak caller for ChIP-seq data

30 Chapter 3. Pipelines

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - FASTQ Pipelines Documentation, Release 0.1

3.14.1 Running from the command line

Parameters

config [str] Configuration JSON file
in_metadata [str] Location of input JSON metadata for files
out_metadata [str] Location of output JSON metadata for files

Returns

bam [file] Aligned reads in bam file

Example

REQUIREMENT - Needs the indexing step to be run first

When running the pipeline on a local machine without COMPSs:

python process_align_bwa.py \
--config tests/Jjson/config_macs2.json \
--in_metadata tests/json/input_macs2.json \
-—out_metadata tests/json/output_macs2.json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
--lang=python \
——library_path=${HOME}/bin \
——-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/ \
--log_level=debug \
process_macs2.py \
—--config tests/json/config_macs2_single. json \
--in_metadata tests/json/input_macs2_metadata. json \
-—out_metadata tests/Json/output_macs2.json

runcompss \

-—lang=python \

—-library_path=${HOME} /bin \

——pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \

-—log_level=debug \

process_macs2.py \
—-—-config tests/json/config_macs2_bgd_paired.json \
——-in_metadata tests/json/input_macs2_bgd_paired_metadata.json \
—-—-out_metadata tests/Jjson/output_macs2_bgd. json

3.14.2 Methods

class process_macs2.process_macs2 (configuration=None)
Functions for processing Chip-Seq FastQ files. Files are the aligned, filtered and analysed for peak calling

3.14. MACS2 Analysis 31

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - FASTQ Pipelines Documentation, Release 0.1

run (input_files, metadata, output_files)
Main run function for processing ChIP-seq FastQ data. Pipeline aligns the FASTQ files to the genome
using BWA. MACS 2 is then used for peak calling to identify transcription factor binding sites within the
genome.

Currently this can only handle a single data file and a single background file.
Parameters
e input_files (dict)— Location of the initial input files required by the workflow
bam [str] Location of the aligned reads file
bam_bg [str] Location of the background aligned FASTQ reads file [OPTIONAL]
* metadata (dict)— Input file meta data associated with their roles
bam : str
bam_bg [str] [OPTIONAL]
e output_files (dict)— Output file locations
narrow_peak : str summits : str broad_peak : str gapped_peak : str
Returns
* output_files (dict) — Output file locations associated with their roles, for the output
narrow_peak [str] Results files in bed4+1 format
summits [str] Results files in bed6+4 format
broad_peak [str] Results files in bed6+3 format
gapped_peak [str] Results files in bed12+3 format
* output_metadata (dict) — Output metadata for the associated files in output_files

narrow_peak : Metadata summits : Metadata broad_peak : Metadata gapped_peak : Meta-
data

3.15 Mnase-Seq Analysis

This pipeline can process FASTQ to identify nucleosome binding sites.

3.15.1 Running from the command line

Parameters

config [str] Configuration JSON file

in_metadata [str] Location of input JSON metadata for files
out_metadata [str] Location of output JSON metadata for files

Returns

bed [file] Bed files with the locations of nucleosome binding sites within the genome

32 Chapter 3. Pipelines

[T

I S v R

MuG - FASTQ Pipelines Documentation, Release 0.1

Example

REQUIREMENT - Needs the indexing step to be run first

When running the pipeline on a local machine without COMPSs:

python process_mnaseseq.py \
--config tests/json/config_mnaseseq. json \
-—in_metadata tests/json/input_mnaseseq.json \
——out_metadata tests/json/output_mnaseseq.json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
—--lang=python \
——library_path=${HOME}/bin \

——-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/ \
--log_level=debug \
process_mnaseseq.py \

—--config tests/json/config_mnaseseq. json \

——-in_metadata tests/json/input_mnaseseq. json \

—-—-out_metadata tests/json/output_mnaseseq. json

3.15.2 Methods

class process_mnasesed.process_mnasesed (configuration=None)
Functions for downloading and processing Mnase-seq FastQ files. Files are downloaded from the European
Nucleotide Archive (ENA), then aligned, filtered and analysed for peak calling

run (input_files, metadata, output_files)
Main run function for processing MNase-Seq FastQ data. Pipeline aligns the FASTQ files to the genome
using BWA. iNPS is then used for peak calling to identify nucleosome position sites within the genome.

Parameters
e files_ids (1ist)— List of file locations
* metadata (1ist)— Required meta data
Returns outputfiles — List of locations for the output bam, bed and tsv files

Return type list

3.16 RNA-Seq Analysis

This pipeline can process FASTQ to quantify the level of expression of cDNAs.

3.16.1 Running from the command line

Parameters

config [str] Configuration JSON file

3.16. RNA-Seq Analysis 33

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

woR W =

© w9 v AW =

MuG - FASTQ Pipelines Documentation, Release 0.1

in_metadata [str] Location of input JSON metadata for files

out_metadata [str] Location of output JSON metadata for files

Returns

bed [file] WIG file with the levels of expression for genes

Example

When running the pipeline on a local machinewithout COMPSs:

python process_rnaseq.py \
--config tests/Jjson/config_rnaseq.json \
-—-in_metadata tests/json/input_rnaseq.json \
—--out_metadata tests/Jjson/output_rnaseq.json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
—--lang=python \
——library_path=${HOME}/bin \

—-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/ \
-—log_level=debug
process_rnaseq.py \

--config tests/json/config_rnaseq.json \

-—-in_metadata tests/json/input_rnaseq.json \

—-—out_metadata tests/json/output_rnaseq.json

3.16.2 Methods

class process_rnaseq.process_rnased (configuration=None)
Functions for downloading and processing RNA-seq FastQ files. Files are downloaded from the European
Nucleotide Archive (ENA), then they are mapped to quantify the amount of cDNA

run (input_files, metadata, output_files)
Main run function for processing RNA-Seq FastQ data. Pipeline aligns the FASTQ files to the genome
using Kallisto. Kallisto is then also used for peak calling to identify levels of expression.

Parameters

e files_ids (dict) — List of file locations (genome FASTA, FASTQ_01, FASTQ_02
(for paired ends))

* metadata (1ist)— Required meta data

* output_files (1ist)— List of output file locations
e input_files (1ist)— List of file locations

* metadata — Required meta data

* output_files — List of output file locations

Returns outputfiles — List of locations for the output bam, bed and tsv files

34 Chapter 3. Pipelines

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

woR WD —

© ® 9 v AW —

MuG - FASTQ Pipelines Documentation, Release 0.1

Return type list
Returns
* outputfiles (dict) — List of locations for the output index files

¢ output_metadata (dicr) — Metadata about each of the files

3.17 TrimGalore

This pipeline can process FASTQ to trim poor base quality or adapter contamination.

3.17.1 Running from the command line

Parameters

config [str] Configuration JSON file
in_metadata [str] Location of input JSON metadata for files
out_metadata [str] Location of output JSON metadata for files

Returns

fastq_trimmed ([file] Location of a fastq file containing the sequences after poor base qualities or contamination
trimming

A full description of the Trim Galore files can be found at https://github.com/FelixKrueger/TrimGalore

Example

When running the pipeline on a local machine without COMPSs:

python process_trim_galore.py \
-—-config tests/json/config_trimgalore. json \
-—-in_metadata tests/json/input_trimgalore_metadata.json \
——out_metadata tests/Jjson/output_trimgalore.json \
—-—local

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
—--lang=python \
——library_path=${HOME}/bin \
——-pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/ \
—--log_level=debug \
process_trim_galore.py \

—--config tests/json/config_trimgalore.json \
-—-in_metadata tests/Jjson/input_trimgalore_metadata.json \
—-out_metadata tests/Jjson/output_trimgalore. json

3.17. TrimGalore 35

https://github.com/FelixKrueger/TrimGalore
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - FASTQ Pipelines Documentation, Release 0.1

3.17.2 Methods

class process_trim_galore.process_trim galore (configuration=None)
Functions for filtering FASTQ files. Files are filtered for removal of duplicate reads. Low quality reads in gseq
file can also be filtered.

run (input_files, metadata, output_files)
This pipeline processes FASTQ files to trim low quality base calls and adapter sequences

Parameters input_files (dict) — List of strings for the locations of files. These should
include:

fastq [str] Location for the first FASTQ file for single or paired end reads
metadata [dict] Input file meta data associated with their roles

output_files : dict
fastq_trimmed : str
Returns fastq_trimmedIfastq_trimmed — Locations of the filtered FASTQ files from which
trimmings were made

Return type str

3.18 Whole Genome BiSulphate Sequencing Analysis

3.19 Hi-C Analysis

This pipeline can process paired end FASTQ files to identify structural interactions that occur so that the genome can
fold into the confines of the nucleus

3.19.1 Running from the command line

Parameters

genome [str] Location of the genomes FASTA file

genome_gem [str] Location of the genome GEM index file

taxon_id [int] Species taxonomic ID

assembly [str] Genomic assembly ID

filel [str] Location of FASTQ file 1

file2 [str] Location of FASTQ file 2

resolutions [str] Comma separated list of resolutions to calculate the matrix for. [DEFAULT : 1000000,10000000]
enzyme_name [str] Name of the enzyme used to digest the genome (example ‘Mbol’)

window_type [str] iter | frag. Analysis windowing type to use

windows1 [str] FASTQ sampling window sizes to use for the first paired end FASTQ file, the default is to use [[1,25],
[1,50], [1,75], [1,100]]. This would be represented as 1,25,50,75,100 as input for this variable

36 Chapter 3. Pipelines

MuG - FASTQ Pipelines Documentation, Release 0.1

windows2 [str] FASTQ sampling window sizes to use for the second paired end FASTQ file, the default is to use
[[1,25], [1,50], [1,75], [1,100]]. This would be represented as 1,25,50,75,100 as input for this variable

normalized [int] 1 | 0. Determines whether the counts of alignments should be normalized

tag [str] Name for the experiment output files to use

Returns

Adjacency List : file HDF5 Adjacency Array : file

Example

REQUIREMENT - Needs the indexing step to be run first

When running the pipeline on a local machine:

python process_hic.py
—-—genome /<dataset_dir>/Homo_sapiens.GRCh38.fasta
—-—genome_gem /<dataset_dir>/Homo_sapiens.GRCh38.gem
——assembly GCA_000001405.25
——taxon_id 9606
—--filel /<dataset_dir>/<file_name>_1.fastqg
—--file2 /<dataset_dir>/<file_name>_2.fastqg
—-—-resolutions 1000000,10000000
——enzyme_name Mbol
——-windowsl 1,100
--windows2 1,100
--normalized 1
--tag Human.SRR1658573 \
--window_type frag

P A O

When using a local version of the [COMPS virtual machine](https://www.bsc.es/research-and-development/
software-and-apps/software-list/comp-superscalar/):

runcompss \
--lang=python \
—-—library_path=${HOME}/bin \
——-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/ \
--log_level=debug \
process_hic.py \
——taxon_id 9606 \
—-—-genome /<dataset_dir>/.Human.GCA_000001405.22_gem.fasta \
-—assembly GRCh38 \

—--filel /<dataset_dir>/Human.SRR1658573_1.fastqg \

——-file2 /<dataset_dir>/Human.SRR1658573_2.fastqg \

——genome_gem /<dataset_dir>/Human.GCA_000001405.22_gem.fasta.gem \
—-—enzyme_name Mbol \

—-resolutions 10000,100000 \

—-windowsl 1,100 \

——windows2 1,100 \

—-normalized 1 \

--tag Human.SRR1658573 \

—--window_type frag

3.19. Hi-C Analysis 37

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

MuG - FASTQ Pipelines Documentation, Release 0.1

3.19.2 Methods

class process_hic.process_hic (configuration=None)
Functions for downloading and processing Mnase-seq FastQ files. Files are downloaded from the European
Nucleotide Archive (ENA), then aligned, filtered and analysed for peak calling

run (input_files, metadata, output_files)
Main run function for processing MNase-Seq FastQ data. Pipeline aligns the FASTQ files to the genome
using BWA. iNPS is then used for peak calling to identify nucleosome position sites within the genome.

Parameters
e files_ids (1ist) - List of file locations
* metadata (1ist)— Required meta data
e output_files (11ist)— List of output file locations
Returns outputfiles — List of locations for the output bam, bed and tsv files

Return type list

38 Chapter 3. Pipelines

CHAPTER 4

Tools for processing FastQ files

4.1 File Validation

Pipelines and functions assessing the quality of input files.

4.1.1 FastQC

class tool.validate_fastqgc.fastqcTool (configuration=None)
Tool for running indexers over a genome FASTA file

run (input_files, input_metadata, output_files)
Tool for assessing the quality of reads in a FastQ file

Parameters
e input_files (dict)-—
fastq [str] List of file locations
* metadata (dict) —
fastq [dict] Required meta data
* output_files (dict)—
report [str] Location of the HTML

Returns array — First element is a list of the index files. Second element is a list of the matching
metadata

Return type list

validate (**kwargs)
FastQC Validator

Parameters

e FastQC_file (str)— Location of the FastQ file

39

MuG - FASTQ Pipelines Documentation, Release 0.1

* report_loc (str)— Location of the output report file

4.1.2 TrimGalore
class tool.trimgalore.trimgalore (configuration=None)
Tool for trimming FASTQ reads that are of low quality

static get_trimgalore_params (params)
Function to handle for extraction of commandline parameters

Parameters params (dict)—
Returns
Return type list

run (input_files, input_metadata, output_files)
The main function to run TrimGalore to remove low quality and very short reads. TrimGalore uses Cu-

tAdapt and FASTQC for the analysis.
Parameters
* input_files (dict)—
fastql [string] Location of the FASTQ file
fastq2 [string] [OPTIONAL] Location of the paired end FASTQ file
* metadata (dict)— Matching metadata for the inpit FASTQ files
Returns
* output_files (dict) -
fastql_trimmed [str] Location of the trimmed FASTQ file
fastq2_trimmed [str] [OPTIONAL] Location of a trimmed paired end FASTQ file
* output_metadata (dict) — Matching metadata for the output files

trimgalore_paired (**kwargs)
Trims and removes low quality subsections and reads from paired-end FASTQ files

Parameters
» fastqg file_ in (str)— Location of the input fastq file
e fastqg file out (str)- Location of the output fastq file
e params (dict)— Parameters to use in TrimGalore

Returns Indicator of the success of the function

Return type bool

trimgalore_single (**kwargs)
Trims and removes low quality subsections and reads from a singed-ended FASTQ file

Parameters
» fastqg file in (str)- Location of the input fastq file
e fastqg file_ out (str)- Location of the output fastq file
e params (dict) — Parameters to use in TrimGalore

Returns Indicator of the success of the function

40 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

Return type bool

trimgalore_version (**kwargs)
Trims and removes low quality subsections and reads from a singed-ended FASTQ file

Parameters
» fastqg file_in (str)— Location of the input fastq file
» fastq file_out (str) - Location of the output fastq file
e params (dict) — Parameters to use in TrimGalore

Returns Indicator of the success of the function

Return type bool

4.2 Indexers

4.2.1 Bowtie 2

class tool.bowtie_indexer.bowtieIndexerTool (configuration=None)
Tool for running indexers over a genome FASTA file

bowtie2_indexer (**kwargs)
Bowtie2 Indexer

Parameters
e file_loc (str) - Location of the genome assembly FASTA file
e idx_loc (str)— Location of the output index file

run (input_files, input_metadata, output_files)
Tool for generating assembly aligner index files for use with the Bowtie 2 aligner

Parameters

* input_files (Iist)— List with a single str element with the location of the genome
assembly FASTA file

e metadata (I1ist)—

Returns array — First element is a list of the index files. Second element is a list of the matching
metadata

Return type list

4.2.2 BSgenome Index
class tool.forge_bsgenome.bsgenomeTool (configuration=None)
Tool for peak calling for iDamID-seq data

bsgenome_creater (**kwargs)
Make BSgenome index files.Uses an R script that wraps the required code.

Parameters
* genome (str)—

* circo_chrom (str)— Comma separated list of chromosome ids that are circular in the
genome

4.2. Indexers a

MuG - FASTQ Pipelines Documentation, Release 0.1

* seed_file_param(dict)— Parameters required for the function to build the seed file
* genome_2bit (str)-—

e chrom_size (str)-—

* seed_file(str)-

* bsgenome (str)—

static genome_to_2bit (genome, genome_2bit)
Generate the 2bit genome file from a FASTA file

Parameters

* genome (str)— Location of the FASRA genome file

* genome_2bit (str)— Location of the 2bit genome file
Returns True if successful, False if not.
Return type bool

static get_chrom_size (genome_2bit, chrom_size, circ_chrom)
Generate the chrom.size file and identify the available chromosomes in the 2Bit file.

Parameters

* genome_2bit (str)— Location of the 2bit genome file

e chrom_size (str)— Location to save the chrom.size file to

* circ_chrom (1ist)— List of chromosomes that are known to be circular
Returns

o [If successful 2 lists — [0] : List of the linear chromosomes in the 2bit file [1] : List of
circular chromosomes in the 2bit file

* Returns (False, False) if there is an IOError

run (input_files, input_metadata, output_files)
The main function to run iNPS for peak calling over a given BAM file and matching background BAM
file.

Parameters

e input_files (1ist)— List of input bam file locations where 0 is the bam data file and
1 is the matching background bam file

e metadata (dict) —
Returns
* output_files (/ist) — List of locations for the output files.

* output_metadata (/isr) — List of matching metadata dict objects

4.2.3 BS-Seeker2 Indexer

class tool.bs_seeker_indexer.bssIndexerTool (configuration=None)
Script from BS-Seeker2 for building the index for alignment. In this case it uses Bowtie2.

bss_build_index (**kwargs)
Function to submit the FASTA file for the reference sequence and build the required index file used by the
aligner.

42 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

Parameters
e fasta_file (str)— Location of the genome FASTA file

* aligner (str)— Aligner to use by BS-Seeker2. Currently only bowtie2 is available in
this build

* aligner_path (str)— Location of the aligners binary file

* bss_path — Location of the BS-Seeker?2 libraries

* idx_out (str) - Location of the output compressed index file
Returns bam_out — Location of the output bam alignment file
Return type str

static get_bss_index_params (params)
Function to handle to extraction of commandline parameters and formatting them for use in the aligner for

BWA ALN
Parameters params (dict) -
Returns
Return type list

run (input_files, input_metadata, output_files)
Tool for indexing the genome assembly using BS-Seeker2. In this case it is using Bowtie2

Parameters
e input_files (1ist)- FASTQ file
* metadata (I1ist)—
Returns array — Location of the filtered FASTQ file

Return type list

4.2.4 BWA
class tool.bwa_indexer.bwaIndexerTool (configuration=None)
Tool for running indexers over a genome FASTA file

bwa_indexer (**kwargs)
BWA Indexer

Parameters
e file_loc (str)— Location of the genome assebly FASTA file
e idx_out (str)— Location of the output index file

Returns

Return type bool

run (input_files, input_metadata, output_files)
Function to run the BWA over a genome assembly FASTA file to generate the matching index for use with

the aligner
Parameters

e input_files (dict) — List containing the location of the genome assembly FASTA
file

4.2. Indexers 43

MuG - FASTQ Pipelines Documentation, Release 0.1

* meta_data (dict) -
* output_files (dict) — List of outpout files generated
Returns
 output_files (dict) —
index [str] Location of the index file defined in the input parameters
* output_metadata (dict) —

index [Metadata] Metadata relating to the index file

4.2.5 GEM

class tool.gem_indexer.gemIndexerTool (configuration=None)
Tool for running indexers over a genome FASTA file

gem_indexer (**kwargs)
GEM Indexer

Parameters
* genome_file (str)— Location of the genome assembly FASTA file
e idx_1loc (str)— Location of the output index file

run (input_files, input_metadata, output_files)
Tool for generating assembly aligner index files for use with the GEM indexer

Parameters

* input_files (1ist)— List with a single str element with the location of the genome
assembly FASTA file

* input_metadata (l1ist)-—

Returns array — First element is a list of the index files. Second element is a list of the matching
metadata

Return type list

4.2.6 Kallisto

class tool.kallisto_indexer.kallistoIndexerTool (configuration=None)
Tool for running indexers over a genome FASTA file

kallisto_indexer (**kwargs)
Kallisto Indexer

Parameters
e file_loc (str)— Location of the cDNA FASTA file for a genome
e idx_loc (str)— Location of the output index file

run (input_files, input_metadata, output_files)
Tool for generating assembly aligner index files for use with Kallisto

Parameters

* input_files (1ist)— FASTA file location will all the cDNA sequences for a given
genome

44 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

* input_metadata (l1ist)—

Returns array — First element is a list of the index files. Second element is a list of the matching
metadata

Return type list

4.3 Aligners

4.3.1 Bowtie2

class tool.bowtie_aligner.bowtie2AlignerTool (configuration=None)
Tool for aligning sequence reads to a genome using BWA

bowtie2_aligner_paired (**kwargs)
Bowtie2 Aligner - Paired End

Parameters
* genome_file_loc (str)— Location of the genomic fasta
e read_file_locl (str) - Location of the FASTQ file
e read_file_loc2 (str) - Location of the FASTQ file
* bam_loc (str)— Location of the output aligned bam file
e bt2_1_ file (str)— Location of the <genome>.1.bt2 index file
e bt2_2_ file (str)— Location of the <genome>.2.bt2 index file
e bt2_3_file (str) - Location of the <genome>.3.bt2 index file
e bt2_4_file (str) - Location of the <genome>.4.bt2 index file
* bt2_revl_ file (str)— Location of the <genome>.rev.1.bt2 index file
* bt2_rev2_ file (str)— Location of the <genome>.rev.2.bt2 index file
* aln_params (dict)— Alignment parameters
Returns bam_loc — Location of the output file
Return type str

bowtie2_aligner_single (**kwargs)
Bowtie2 Aligner - Single End

Parameters
* genome_file_loc (str) - Location of the genomic fasta
e read_file locl (str)- Location of the FASTQ file
* bam_loc (str)— Location of the output aligned bam file
e bt2_1_ file (str)— Location of the <genome>.1.bt2 index file
e bt2 2 file (str)- Location of the <genome>.2.bt2 index file
e bt2_3_file (str) - Location of the <genome>.3.bt2 index file
e bt2_4_file (str)- Location of the <genome>.4.bt2 index file

* bt2_revl_ file (str)— Location of the <genome>.rev.1.bt2 index file

4.3. Aligners 45

MuG - FASTQ Pipelines Documentation, Release 0.1

* bt2_rev2_file (str)— Location of the <genome>.rev.2.bt2 index file
* aln_params (dict) — Alignment parameters

Returns bam_loc — Location of the output file

Return type str

static get_aln_params (params, paired=False)
Function to handle to extraction of commandline parameters and formatting them for use in the aligner for
Bowtie2

Parameters

* params (dict)—

e paired (bool) - Indicate if the parameters are paired-end specific. [DEFAULT=False]
Returns
Return type list

run (input_files, input_metadata, output_files)
The main function to align bam files to a genome using Bowtie2

Parameters
e input_files (dict) - File 0 is the genome file location, file 1 is the FASTQ file
e metadata (dict) —
* output_files (dict)—

Returns

* output_files (dict) — First element is a list of output_bam_files, second element is the
matching meta data

* output_metadata (dict)

untar_index (**kwargs)
Extracts the Bowtie2 index files from the genome index tar file.

Parameters

* genome_file name (str) - Location string of the genome fasta file

e genome_idx (str)— Location of the Bowtie2 index file

e bt2_1_file (str)- Location of the <genome>.1.bt2 index file

e bt2_2_ file (str)— Location of the <genome>.2.bt2 index file

e bt2_3_file (str) - Location of the <genome>.3.bt2 index file

e bt2_4_file (str)- Location of the <genome>.4.bt2 index file

* bt2_revl_ file (str)— Location of the <genome>.rev.1.bt2 index file

* bt2_rev2_ file (str)— Location of the <genome>.rev.2.bt2 index file
Returns Boolean indicating if the task was successful

Return type bool

46 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

4.3.2 BWA - ALN

class tool.bwa_aligner.bwaAlignerTool (configuration=None)
Tool for aligning sequence reads to a genome using BWA

bwa_aligner_paired (**kwargs)
BWA ALN Aligner - Paired End

Parameters
* genome_file_loc (str)— Location of the genomic fasta
e read_file_locl (str)— Location of the FASTQ file
e read_file_loc2 (str)- Location of the FASTQ file
* bam_loc (str)— Location of the output aligned bam file
e amb_file (str)— Location of the amb index file
* ann_file (str)— Location of the ann index file
e bwt_file (str)— Location of the bwt index file
e pac_file (str) - Location of the pac index file
e sa_file (str) - Location of the sa index file
* aln_params (dict) — Alignment parameters

Returns bam_loc — Location of the output file

Return type str

bwa_aligner_single (**kwargs)
BWA ALN Aligner - Single Ended

Parameters
* genome_file_loc (str)— Location of the genomic fasta
e read_file_loc (str) - Location of the FASTQ file
* bam_loc (str)— Location of the output aligned bam file
e amb_file (str) - Location of the amb index file
e ann_file (str)— Location of the ann index file
e bwt_file (str)— Location of the bwt index file
* pac_file (str) - Location of the pac index file
e sa_ file (str) - Location of the sa index file
* aln_params (dict)— Alignment parameters
Returns bam_loc — Location of the output file
Return type str

static get_aln_params (params)
Function to handle to extraction of commandline parameters and formatting them for use in the aligner for
BWA ALN

Parameters params (dict)—

Returns

4.3. Aligners 47

MuG - FASTQ Pipelines Documentation, Release 0.1

Return type list

run (input_files, input_metadata, output_files)
The main function to align bam files to a genome using BWA

Parameters
e input_files (dict)—File 0 is the genome file location, file 1 is the FASTQ file
e metadata (dict) —
e output_files (dict)—

Returns

» output_files (dict) — First element is a list of output_bam_files, second element is the
matching meta data

* output_metadata (dict)

untar_index (**kwargs)
Extracts the BWA index files from the genome index tar file.

Parameters
e genome_file_name (str)— Location string of the genome fasta file
* genome_idx (str)— Location of the BWA index file
e amb_file (str)— Location of the amb index file
e ann_file (str)— Location of the ann index file
e bwt_file (str)— Location of the bwt index file
* pac_file (str)— Location of the pac index file
e sa_file (str)— Location of the sa index file
Returns Boolean indicating if the task was successful

Return type bool

4.3.3 BWA - MEM

class tool.bwa_mem_aligner.bwaAlignerMEMTool (configuration=None)
Tool for aligning sequence reads to a genome using BWA

bwa_aligner_paired (**kwargs)
BWA MEM Aligner - Paired End

Parameters
* genome_file_loc (str) - Location of the genomic fasta
e read_file_locl (str) - Location of the FASTQ file
e read_file_loc2 (str) - Location of the FASTQ file
* bam_1loc (str)— Location of the output aligned bam file
e amb_file (str) - Location of the amb index file
e ann_file (str)— Location of the ann index file
e bwt_file (str)— Location of the bwt index file

* pac_file (str) - Location of the pac index file

48 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

e sa_file (str) - Location of the sa index file

* mem_params (dict) — Alignment parameters
Returns bam_loc — Location of the output file
Return type str

bwa_aligner_single (**kwargs)
BWA MEM Aligner - Single Ended

Parameters
* genome_file_loc (str)— Location of the genomic fasta
e read_file_loc (str) - Location of the FASTQ file
* bam_loc (str)— Location of the output aligned bam file
e amb_file (str) - Location of the amb index file
e ann_file (str)— Location of the ann index file
e bwt_file (str)— Location of the bwt index file
* pac_file (str) - Location of the pac index file
e sa_ file (str)- Location of the sa index file
* mem_params (dict) — Alignment parameters
Returns bam_loc — Location of the output file
Return type str

static get_mem_ params (params)
Function to handle to extraction of commandline parameters and formatting them for use in the aligner for
BWA MEM

Parameters params (dict)—
Returns
Return type list

run (input_files, input_metadata, output_files)
The main function to align bam files to a genome using BWA

Parameters
e input_files (dict)— File 0 is the genome file location, file 1 is the FASTQ file
* metadata (dict) —
* output_files (dict)—

Returns

 output_files (dict) — First element is a list of output_bam_files, second element is the
matching meta data

¢ output_metadata (dicr)

untar_index (**kwargs)
Extracts the BWA index files from the genome index tar file.

Parameters

* genome_file_name (str)— Location string of the genome fasta file

4.3. Aligners 49

MuG - FASTQ Pipelines Documentation, Release 0.1

* genome_idx (str)— Location of the BWA index file

e amb_file (str)— Location of the amb index file

e ann_file (str)— Location of the ann index file

e bwt_file (str)— Location of the bwt index file

* pac_file (str)— Location of the pac index file

e sa_file (str)—- Location of the sa index file
Returns Boolean indicating if the task was successful

Return type bool

4.3.4 BS-Seeker2 Aligner

class tool.bs_seeker_aligner.bssAlignerTool (configuration=None)
Script from BS-Seeker2 for building the index for alignment. In this case it uses Bowtie2.

bs_seeker_aligner (**kwargs)
Alignment of the paired ends to the reference genome

Generates bam files for the alignments

This is performed by running the external program rather than reimplementing the code from the main
function to make it easier when it comes to updating the changes in BS-Seeker2

Parameters

* input_fastql (str) - Location of paired end FASTQ file 1

e input_fastq2 (str)— Location of paired end FASTQ file 2

* aligner (str)— Aligner to use

* aligner_path (str) - Location of the aligner

* genome_fasta (str) - Location of the genome FASTA file

* genome_idx (str) — Location of the tar.gz genome index file

* bam_out (str)— Location of the aligned bam file
Returns bam_out — Location of the BAM file generated during the alignment.
Return type file

bs_seeker_aligner_single (**kwargs)
Alignment of the paired ends to the reference genome

Generates bam files for the alignments

This is performed by running the external program rather than reimplementing the code from the main
function to make it easier when it comes to updating the changes in BS-Seeker2

Parameters
* input_fastql (str) - Location of paired end FASTQ file 1
e input_fastq2 (str)— Location of paired end FASTQ file 2
* aligner (str)— Aligner to use
* aligner_path (str) - Location of the aligner

* genome_fasta (str)— Location of the genome FASTA file

50 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

* genome_idx (str)— Location of the tar.gz genome index file

* bam_out (str)— Location of the aligned bam file
Returns bam_out — Location of the BAM file generated during the alignment.
Return type file

static get_aln_params (params, paired=False)
Function to handle to extraction of commandline parameters and formatting them for use in the aligner for
Bowtie2

Parameters

* params (dict)—

e paired (bool) - Indicate if the parameters are paired-end specific. [DEFAULT=False]
Returns
Return type list

run (input_files, input_metadata, output_files)
Tool for indexing the genome assembly using BS-Seeker2. In this case it is using Bowtie2

Parameters

e input_files (1ist)— FASTQ file

* output_files (1ist)— Results files.

* metadata (I1ist)—
Returns array — Location of the filtered FASTQ file
Return type list

run_aligner (genome_idx, bam_out, script, params)
Run the aligner

Parameters
* genome_idx (str)— Location of the genome index archive
* bam_out (str)— Location of the output bam file
* script (str)—Location of the BS Seeker2 aligner script
* params (11ist)— Parameter list for the aligner
Returns True if the function completed successfully

Return type bool

4.4 Filters

4.4.1 BioBamBam Filter

class tool.biobambam_ filter.biobambam (configuration=None)

Tool to sort and filter bam files

biobambam_filter_ alignments (**kwargs)
Sorts and filters the bam file.

4.4. Filters 51

MuG - FASTQ Pipelines Documentation, Release 0.1

It is important that all duplicate alignments have been removed. This can be run as an intermediate step,
but should always be run as a check to ensure that the files are sorted and duplicates have been removed.

Parameters

* bam_file_ in (str)- Location of the input bam file

* bam_file_ out (str) - Location of the output bam file

* tmp_dir (str)- Tmp location for intermediate files during the sorting
Returns bam_file_out — Location of the output bam file
Return type str

run (input_files, input_metadata, output_files)
The main function to run BioBAMBAMfilter to remove duplicates and spurious reads from the FASTQ
files before analysis.

Parameters
e input_files (dict) — List of input bam file locations where 0 is the bam data file
* metadata (dict)— Matching meta data for the input files
e output_files (dict) - List of output file locations
Returns
* output_files (dict) — Filtered bam fie.

* output_metadata (dict) — List of matching metadata dict objects

4.4.2 BS-Seeker?2 Filter

class tool.bs_seeker_filter.filterReadsTool (configuration=None)
Script from BS-Seeker?2 for filtering FASTQ files to remove repeats

bss_seeker_filter (**kwargs)
This is optional, but removes reads that can be problematic for the alignment of whole genome datasets.

If performing RRBS then this step can be skipped

This is a function that is installed as part of the BS-Seeker installation process.
Parameters infile (str)— Location of the FASTQ file
Returns outfile — Location of the filtered FASTQ file
Return type str

run (input_files, input_metadata, output_files)
Tool for filtering duplicate entries from FASTQ files using BS-Seeker2

Parameters

e input_files (1ist)—FASTQ file

e input_metadata (list)-—
Returns array — Location of the filtered FASTQ file
Return type list

52 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

4.4.3 Trim Galore
class tool.trimgalore.trimgalore (configuration=None)
Tool for trimming FASTQ reads that are of low quality

static get_trimgalore_params (params)
Function to handle for extraction of commandline parameters

Parameters params (dict)—
Returns
Return type list

run (input_files, input_metadata, output_files)
The main function to run TrimGalore to remove low quality and very short reads. TrimGalore uses Cu-

tAdapt and FASTQC for the analysis.
Parameters
e input_files (dict)—
fastql [string] Location of the FASTQ file
fastq2 [string] [OPTIONAL] Location of the paired end FASTQ file
* metadata (dict)— Matching metadata for the inpit FASTQ files
Returns
¢ output_files (dict) —
fastql_trimmed [str] Location of the trimmed FASTQ file
fastq2_trimmed [str] [OPTIONAL] Location of a trimmed paired end FASTQ file
* output_metadata (dict) — Matching metadata for the output files

trimgalore_paired (**kwargs)
Trims and removes low quality subsections and reads from paired-end FASTQ files

Parameters
» fastqg file_ in (str)— Location of the input fastq file
» fastg file_ out (str)— Location of the output fastq file
e params (dict)— Parameters to use in TrimGalore

Returns Indicator of the success of the function

Return type bool

trimgalore_single (**kwargs)
Trims and removes low quality subsections and reads from a singed-ended FASTQ file

Parameters
» fastqg file_in (str) - Location of the input fastq file
» fastq file_ out (str)- Location of the output fastq file
e params (dict) — Parameters to use in TrimGalore

Returns Indicator of the success of the function

Return type bool

4.4. Filters 53

MuG - FASTQ Pipelines Documentation, Release 0.1

trimgalore_version (**kwargs)
Trims and removes low quality subsections and reads from a singed-ended FASTQ file

Parameters
» fastg file_in (str)- Location of the input fastq file
* fastqg file_ out (str)- Location of the output fastq file
* params (dict)— Parameters to use in TrimGalore

Returns Indicator of the success of the function

Return type bool

4.5 Peak Calling

4.5.1 BS-Seeker2 Methylation Caller

4.5.2 iDEAR

class tool.idear.idearTool (configuration=None)

Tool for peak calling for iDamID-seq data

idear_ peak_calling (**kwargs)
Make iDamID-seq peak calls. These are saved as bed files That can then get displayed on genome
browsers. Uses an R script that wraps teh iDEAR protocol.

Parameters
* sample_name (str)—
* bg_name (str) -
* sample_bam tar_file (str)— Location of the aligned sequences in bam format

* bg bam_tar file (str) — Location of the aligned background sequences in bam
format

* species (str)— Species name for the alignments
* assembly (str)— Assembly used for teh aligned sequences
* peak_bed (str)— Location of the peak bed file

Returns peak_bed — Location of the collated bed file

Return type str

run (input_files, input_metadata, output_files)
The main function to run iNPS for peak calling over a given BAM file and matching background BAM
file.

Parameters

e input_files (1ist)— List of input bam file locations where 0 is the bam data file and
1 is the matching background bam file

* metadata (dict) —
Returns

 output_files (lisr) — List of locations for the output files.

54

Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

* output_metadata (/ist) — List of matching metadata dict objects

4.5.3 iNPS

class tool.inps.inps (configuration=None)
Tool for peak calling for MNase-seq data

inps_peak_calling (**kwargs)
Convert Bam to Bed then make Nucleosome peak calls. These are saved as bed files That can then get
displayed on genome browsers.

Parameters

* bam_file (str) - Location of the aligned sequences in bam format

* peak_bed (str)— Location of the collated bed file of nucleosome peak calls
Returns peak_bed — Location of the collated bed file of nucleosome peak calls
Return type str

run (input_files, input_metadata, output_files)
The main function to run iNPS for peak calling over a given BAM file and matching background BAM

file.
Parameters
e input_files (1ist)— List of input bam file locations where 0 is the bam data file and
1 is the matching background bam file
e metadata (dict) —
Returns

* output_files (/ist) — List of locations for the output files.

* output_metadata (/ist) — List of matching metadata dict objects

4.5.4 Kallisto Quantification

class tool.kallisto_quant.kallistoQuantificationTool (configuration=None)
Tool for quantifying RNA-seq alignments to calculate expression levels of genes within a genome.

kallisto_quant_paired (**kwargs)
Kallisto quantifier for paired end RNA-seq data

Parameters

e idx_loc (str)— Location of the output index file

* fastq file loc_01 (str)— Location of the FASTQ sequence file

» fastqg file_loc_02 (str)— Location of the paired FASTQ sequence file
Returns wig_file_loc — Location of the wig file containing the levels of expression
Return type loc

kallisto_quant_single (**kwargs)
Kallisto quantifier for single end RNA-seq data

Parameters

e idx_loc (str)— Location of the output index file

4.5. Peak Calling 55

MuG - FASTQ Pipelines Documentation, Release 0.1

* fastqg file_ loc (str)— Location of the FASTQ sequence file
Returns wig_file_loc — Location of the wig file containing the levels of expression
Return type loc

kallisto_tsv2bed (**kwargs)

So that the TSV file can be viewed within the genome browser it is handy to convert the file to a BigBed
file

kallisto_tsv2gff (**kwargs)

So that the TSV file can be viewed within the genome browser it is handy to convert the file to a BigBed
file

static load_gff ensembl (gff file)
Function to extract all of the genes and their locations from a GFF file generated by ensembl

static load gff ucsc (gff_file)
Function to extract all of the genes and their locations from a GFF file generated by ensembl

run (input_files, input_metadata, output_files)
Tool for calculating the level of expression

Parameters

e input_files (1ist) — Kallisto index file for the FASTQ file for the experiemtnal
alignments

e input_metadata (1ist)-—

Returns array — First element is a list of the index files. Second element is a list of the matching
metadata

Return type list

static seq read_stats (file_in)

Calculate the mean and standard deviation of the reads in a fastq file
Parameters file_ in (str) - Location of a FASTQ file

Returns mean : Mean length of sequenced strands std : Standard deviation of lengths of se-
quenced strands

Return type dict

4.5.5 MACS2

class tool.macs2.macs2 (configuration=None)

Tool for peak calling for ChIP-seq data

static get_macs2_params (params)

Function to handle to extraction of commandline parameters and formatting them for use in the aligner for
BWA ALN

Parameters params (dict) -
Returns

Return type list

macs2_peak_calling (**kwargs)

Function to run MACS2 for peak calling on aligned sequence files and normalised against a provided
background set of alignments.

56

Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

Parameters
* name (str) - Name to be used to identify the files
* bam_file (str)— Location of the aligned FASTQ files as a bam file
e bai_file (str)— Location of the bam index file

* bam_file_bgd (str)— Location of the aligned FASTQ files as a bam file representing
background values for the cell

* bai_file_bgd (str) - Location of the background bam index file
* narrowpeak (str)— Location of the output narrowpeak file

e summits_bed (str)— Location of the output summits bed file

* broadpeak (str)— Location of the output broadpeak file

* gappedpeak (str) — Location of the output gappedpeak file

* chromosome (str) — If the tool is to be run over a single chromosome the matching
chromosome name should be specified. If None then the whole bam file is analysed

Returns
» narrowPeak (file) - BED6+4 file - ideal for transcription factor binding site identification
» summitPeak (file) - BED4+1 file - Contains the peak summit locations for everypeak
* broadPeak (file) — BED6+3 file - ideal for histone binding site identification

» gappedPeak (file) - BED12+3 file - Contains a merged set of the broad and narrow peak
files

* Definitions defined for each of these files have come from the MACS?2
* documentation described in the docs at https (/github.com/taoliu/MACS)

macs2_peak_calling_nobgd (**kwargs)
Function to run MACS?2 for peak calling on aligned sequence files without a background dataset for nor-
malisation.

Parameters
* name (str)— Name to be used to identify the files
* bam_file (str) - Location of the aligned FASTQ files as a bam file
e bai_file (str)— Location of the bam index file
* narrowpeak (str)— Location of the output narrowpeak file
e summits_bed (str)— Location of the output summits bed file
* broadpeak (str)— Location of the output broadpeak file
* gappedpeak (str)— Location of the output gappedpeak file

* chromosome (str) — If the tool is to be run over a single chromosome the matching
chromosome name should be specified. If None then the whole bam file is analysed

Returns
* narrowPeak (file) - BED6+4 file - ideal for transcription factor binding site identification
» summitPeak (file) - BED4+1 file - Contains the peak summit locations for everypeak

* broadPeak (file) - BED6+3 file - ideal for histone binding site identification

4.5. Peak Calling 57

MuG - FASTQ Pipelines Documentation, Release 0.1

 gappedPeak (file) — BED12+3 file - Contains a merged set of the broad and narrow peak
files

* Definitions defined for each of these files have come from the MACS?2
¢ documentation described in the docs at https (/github.com/taoliu/MACS)

run (input_files, input_metadata, output_files)
The main function to run MACS 2 for peak calling over a given BAM file and matching background BAM

file.
Parameters
e input_files (dict)— List of input bam file locations where 0 is the bam data file and
1 is the matching background bam file
* metadata (dict) —
Returns

* output_files (dict) — List of locations for the output files.

* output_metadata (dicr) — List of matching metadata dict objects

4.6 Hi-C Parsing

The following tools are a split out of the Hi-C pipelines generated to use the TADbit library.

4.6.1 FASTQ mapping

class tool.tb_full mapping.tbFullMappingTool

Tool for mapping fastq paired end files to the GEM index files

run (input_files, input_metadata, output_files)
The main function to map the FASTQ files to the GEM file over different window sizes ready for alignment

Parameters
* input_files (list)—
gem_file [str] Location of the genome GEM index file
fastq_file_bgd [str] Location of the FASTQ file
* metadata (dict) —
windows [list] List of lists with the window sizes to be computed
enzyme_name [str] Restriction enzyme used [OPTIONAL]
Returns
* output_files (/ist) — List of locations for the output files.
* output_metadata (/ist) — List of matching metadata dict objects

tb_full_mapping_ frag (**kwargs)
Function to map the FASTQ files to the GEM file based on fragments derived from the restriction enzyme
that was used.

Parameters

e gem_file (str)— Location of the genome GEM index file

58

Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

e fastq file_bgd (str)— Location of the FASTQ file
* enzyme_name (str)— Restriction enzyme name (Mbol)
* windows (11ist)— List of lists with the window sizes to be computed
¢ window_file (str) - Location of the first window index file
Returns window_file — Location of the window index file
Return type str

tb_full mapping_iter (**kwargs)
Function to map the FASTQ files to the GEM file over different window sizes ready for alignment

Parameters
* gem_file (str)— Location of the genome GEM index file
e fastqg file_bgd (str) - Location of the FASTQ file
* windows (1ist) — List of lists with the window sizes to be computed
¢ windowl (str) - Location of the first window index file
* window2 (str) - Location of the second window index file
¢ window3 (str) - Location of the third window index file
* window4 (str) — Location of the fourth window index file
Returns
e windowl1 (str) — Location of the first window index file
¢ window?2 (str) — Location of the second window index file
e window3 (str) — Location of the third window index file

¢ window4 (str) — Location of the fourth window index file

4.6.2 Map Parsing
class tool.tb_parse_mapping.tbParseMappingTool
Tool for parsing the mapped reads and generating the list of paired ends that have a match at both ends.

run (input_files, input_metadata, output_files)
The main function to map the aligned reads and return the matching pairs. Parsing of the mappings can
be either iterative of fragment based. If it is to be iteractive then the locations of 4 output file windows
for each end of the paired end window need to be provided. If it is fragment based, then only 2 window
locations need to be provided along within an enzyme name.

Parameters
e input_files (list)-—
genome_file [str] Location of the genome FASTA file
windowl_1 [str] Location of the first window index file
windowl_2 [str] Location of the second window index file

]

]
windowl_3 [str] [OPTIONAL] Location of the third window index file
windowl_4 [str] [OPTIONAL] Location of the fourth window index file
]

window2_1 [str] Location of the first window index file

4.6. Hi-C Parsing 59

MuG - FASTQ Pipelines Documentation, Release 0.1

window2_2 [str] Location of the second window index file
window2_3 [str] [OPTIONAL] Location of the third window index file
window2_4 [str] [OPTIONAL] Location of the fourth window index file
* metadata (dict) —
windows [list] List of lists with the window sizes to be computed
enzyme_name [str] Restricture enzyme name
mapping [list] The mapping function used. The options are iter or frag.
Returns
* output_files (lisr) — List of locations for the output files.

* output_metadata (dict) — Dict of matching metadata dict objects

Example

Iterative:

from tool import tb_parse_mapping

genome_file = 'genome.fasta'

root_name_1 = "/tmp/data/expt_source_1".split
root_name_2 = "/tmp/data/expt_source_2".split
windows = [[1,25], [1,50], [1,751, [1,1001]
windowsl = []

windows2 = []

for w in windows:
tail = "_full " + w[O0] + "=-" + w[l] + ".map"
windowsl.append('/'.Jjoin (root_name_1) + tail)
windows2.append('/'.join (root_name_2) + tail)

files = [genome_file] + windowsl + windows2
tpm = tb_parse_mapping.tb_parse_mapping ()

—= 'test'}
tpm_files, tpm_meta = tpm.run(files, metadata)

metadata = {'enzyme_name' : 'MboI', 'mapping' : ['iter', 'iter'],

'expt_name'

Fragment based mapping:

from tool import tb_parse_mapping

genome_file = 'genome.fasta'

root_name_1 = "/tmp/data/expt_source_1".split
root_name_2 = "/tmp/data/expt_source_2".split

windows = [[1,100]]

start = windows[0][0]
end windows [0] [1]

(continues on next page)

60 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

windowl_1 = '/'.join(root_name_1) + "_full " + start + "-" + end + ".map"
windowl_2 = '/'.join(root_name_1) " frag_" + start + "-" + end + ".map"
window2_1 = '/'.join(root_name_2) + "_full " + start + "-" + end + ".map"
window2_2 = '/'.join(root_name_2) + "_frag " + start + "-" + end + ".map"
files = [

genome_file,

windowl_1, windowl_2,

window2_1, window2_2,
]
tpm = tb_parse_mapping.tb_parse_mapping ()
metadata = {'enzyme_name' 'MboI', 'mapping' ["frag', 'frag'], 'expt_name'
—= 'test'}
tpm_files, tpm_meta = tpm.run(files, metadata)

tb_parse_mapping_frag (**kwargs)
Function to map the aligned reads and return the matching pairs

Parameters

genome_seq (dict) — Object containing the sequence of each of the chromosomes
enzyme name (str)— Name of the enzyme used to digest the genome
windowl_full (str)— Location of the first window index file

windowl_frag (str)— Location of the second window index file
window2_full (str)— Location of the first window index file

window2_frag (str) - Location of the second window index file

reads (str) — Location of the reads thats that has a matching location at both ends of
the paired reads

Returns reads — Location of the intersection of mapped reads that have matching reads in both
pair end files

Return type str

tb_parse_mapping_iter (**kwargs)
Function to map the aligned reads and return the matching pairs

Parameters

genome_seq (dict) — Object containing the sequence of each of the chromosomes
enzyme_name (str)— Name of the enzyme used to digest the genome
windowl_1 (str)— Location of the first window index file

windowl_2 (str) - Location of the second window index file

windowl_3 (str) - Location of the third window index file

windowl_4 (str) - Location of the fourth window index file

window2_1 (str) - Location of the first window index file

window2_2 (str) - Location of the second window index file

window2_3 (str) — Location of the third window index file

4.6.

Hi-C Parsing

61

MuG - FASTQ Pipelines Documentation, Release 0.1

¢ window2_4 (str) - Location of the fourth window index file

* reads (str) — Location of the reads thats that has a matching location at both ends of
the paired reads

Returns reads — Location of the intersection of mapped reads that have matching reads in both
pair end files

Return type str

4.6.3 Filter Aligned Reads

class tool.tb_filter.tbFilterTool (configuration=None)
Tool for filtering out experimetnal artifacts from the aligned data

run (input_files, input_metadata, output_files)
The main function to filter the reads to remove experimental artifacts

Parameters
* input_files (list)—

reads [str] Location of the reads thats that has a matching location at both ends of the
paired reads

* metadata (dict) —
conservative [bool] Level of filtering to apply [DEFAULT : True]
Returns
« output_files (/ist) — List of locations for the output files.
* output_metadata (/ist) — List of matching metadata dict objects

tb_filter (**kwargs)
Function to filter out expoerimental artifacts

Parameters

* reads (str) — Location of the reads thats that has a matching location at both ends of
the paired reads

e filtered_reads_file (str)— Location of the filtered reads
* conservative (bool) - Level of filtering [DEFAULT : True]
Returns filtered_reads — Location of the filtered reads

Return type str

4.6.4 ldentify TADs and Compartments
class tool.tb_segment.tbSegmentTool
Tool for finding tads and compartments in an adjacency matrix

run (input_files, input_metadata, output_files)
The main function to the predict TAD sites and compartments for a given resolution from the Hi-C matrix

Parameters
e input_files (list)-—

bamin [str] Location of the tadbit bam paired reads

62 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

biases [str] Location of the pickle hic biases

e metadata (dict) —
resolution [int] Resolution of the Hi-C
workdir [str] Location of working directory
ncpus [int] Number of cpus to use

Returns
* output_files (/ist) — List of locations for the output files.
* output_metadata (/ist) — List of matching metadata dict objects

tb_segment (**kwargs)
Function to find tads and compartments in the Hi-C matrix

Parameters
* bamin (str)— Location of the tadbit bam paired reads
* biases (str)— Location of the pickle hic biases
e resolution (int)— Resolution of the Hi-C
* callers (str)— 1 for ta calling, 2 for compartment calling
* workdir (str) - Location of working directory
* ncpus (int)— Number of cpus to use
Returns
* compartments (str) — Location of tsv file with compartment definition
e tads (str) — Location of tsv file with tad definition

« filtered_bins (str) — Location of filtered_bins png

4.6.5 Normalize paired end reads file
class tool.tb_normalize.tbNormalizeTool
Tool for normalizing an adjacency matrix

run (input_files, input_metadata, output_files)
The main function for the normalization of the Hi-C matrix to a given resolution

Parameters

* input_files (list)—
bamin [str] Location of the tadbit bam paired reads

* metadata (dict) —
normalization: str normalization(s) to apply. Order matters. Choices: [Vanilla, oneD]
resolution [str] Resolution of the Hi-C
min_perc [str] lower percentile from which consider bins as good.
max_perc [str] upper percentile until which consider bins as good.
workdir [str] Location of working directory

ncpus [str] Number of cpus to use

4.6. Hi-C Parsing 63

MuG - FASTQ Pipelines Documentation, Release 0.1

min_count [str] minimum number of reads mapped to a bin (recommended value could
be 2500). If set this option overrides the perc_zero

fasta: str Location of the fasta file with genome sequence, to compute GC content and
number of restriction sites per bin. Required for oneD normalization

mappability: str Location of the file with mappability, required for oneD normalization

rest_enzyme: str For oneD normalization. Name of the restriction enzyme used to do
the Hi-C experiment

Returns
* output_files (/ist) — List of locations for the output files.
* output_metadata (/isr) — List of matching metadata dict objects

tb_normalize (**kwargs)
Function to normalize to a given resolution the Hi-C matrix

Parameters
* bamin (str)— Location of the tadbit bam paired reads

* normalization (str)— normalization(s) to apply. Order matters. Choices: [Vanilla,
oneD]

e resolution (str)— Resolution of the Hi-C

* min_perc (str) - lower percentile from which consider bins as good.
* max_perc (str) — upper percentile until which consider bins as good.
* workdir (str)— Location of working directory

* ncpus (str)— Number of cpus to use

* min_count (str)— minimum number of reads mapped to a bin (recommended value
could be 2500). If set this option overrides the perc_zero

* fasta (str)— Location of the fasta file with genome sequence, to compute GC content
and number of restriction sites per bin. Required for oneD normalization

* mappability (str) - Location of the file with mappability, required for oneD normal-
ization

* rest_enzyme (str) — For oneD normalization. Name of the restriction enzyme used
to do the Hi-C experiment

Returns
* hic_biases (str) — Location of HiC biases pickle file
* interactions (str) — Location of interaction decay vs genomic distance pdf

* filtered_bins (str) — Location of filtered_bins png

4.6.6 Extract binned matrix from paired end reads file
class tool.tb_bin.tbBinTool
Tool for binning an adjacency matrix

run (input_files, input_metadata, output_files)
The main function to the predict TAD sites for a given resolution from the Hi-C matrix

Parameters

64 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

input_files (list)—

bamin [str] Location of the tadbit bam paired reads
biases [str] Location of the pickle hic biases
input_metadata (dict) -

resolution [int] Resolution of the Hi-C

coordl [str] Coordinate of the region to retrieve. By default all genome, arguments can
be either one chromosome name, or the coordinate in the form: “-c chr3:110000000-
120000000

coord2 [str] Coordinate of a second region to retrieve the matrix in the intersection with
the first region.

norm [str] [[‘raw’]] normalization(s) to apply. Order matters. Choices: [norm, decay,
raw|

workdir [str] Location of working directory

ncpus [int] Number of cpus to use

Returns

output_files (/isr) — List of locations for the output files.

output_metadata (/ist) — List of matching metadata dict objects

tb_bin (**kwargs)
Function to bin to a given resolution the Hi-C matrix

Parameters

bamin (str)— Location of the tadbit bam paired reads
biases (str) - Location of the pickle hic biases
resolution (int)— Resolution of the Hi-C

coordl (str)— Coordinate of the region to retrieve. By default all genome, arguments
can be either one chromosome name, or the coordinate in the form: “-c¢ chr3:110000000-
120000000”

coord2 (str) — Coordinate of a second region to retrieve the matrix in the intersection
with the first region.

norm (1ist) — [[‘raw’]] normalization(s) to apply. Order matters. Choices: [norm,
decay, raw]

workdir (str)— Location of working directory

ncpus (1nt) — Number of cpus to use

Returns

hic_contacts_matrix_raw (str) — Location of HiC raw matrix in text format
hic_contacts_matrix_nrm (str) — Location of HiC normalized matrix in text format
hic_contacts_matrix_raw_fig (str) — Location of HiC raw matrix in png format

hic_contacts_matrix_norm_fig (str) — Location of HiC normalized matrix in png format

4.6. Hi-C Parsing

65

MuG - FASTQ Pipelines Documentation, Release 0.1

4.6.7 Save Matrix to HDF5 File

class tool.tb_save_hdf5_matrix.tbSaveAdjacencyHDF5Tool
Tool for filtering out experimetnal artifacts from the aligned data

run (input_files, output_files, metadata=None)
The main function save the adjacency list from Hi-C into an HDF5 index file at the defined resolutions.

Parameters
e input_files (list)-—
adj_list [str] Location of the adjacency list
hdf5_file [str] Location of the HDFS output matrix file
* metadata (dict) —
resolutions [list] Levels of resolution for the adjacency list to be daved at
assembly [str] Assembly of the aligned sequences
normalized [bool] Whether the dataset should be normalised before saving
Returns
* output_files (/ist) — List of locations for the output files.
* output_metadata (/isr) — List of matching metadata dict objects

tb_matrix_ hdf5 (**kwargs)
Function to the Hi-C matrix into an HDFS5 file

This has to be run sequentially as it is not possible for multiple streams to write to the same HDFS file.
This is a run once and leave operatation. There also needs to be a check that no other process is writing
to the HDFS file at the same time. This should be done at the stage and unstaging level to prevent to file
getting written to by multiple processes and generating conflicts.

This needs to include attributes for the chromosomes for each resolution - See the mg-rest-adjacency
hdf5_reader for further details about the requirement. This prevents the need for secondary storage details
outside of the HDFS5 file.

Parameters
* hic_data (hic_data)— Hi-C data object
* hdf5_file (str)— Location of the HDF5 output matrix file
* resolution (int)— Resolution to read teh Hi-C adjacency list at

¢ chromosomes (11ist) — List of listsd of the chromosome names and their size in the
order that they are presented for indexing

Returns hdf5_file — Location of the HDFS5 output matrix file
Return type str

4.6.8 Generate TAD Predictions

class tool.tb_generate_tads.tbGenerateTADsTool
Tool for taking the adjacency lists and predicting TADs

run (input_files, output_files, metadata=None)
The main function to the predict TAD sites for a given resolution from the Hi-C matrix

66 Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

Parameters
e input_files (list)-—
adj_list [str] Location of the adjacency list
* metadata (dict) —
resolutions [list] Levels of resolution for the adjacency list to be daved at
assembly [str] Assembly of the aligned sequences
Returns
* output_files (/ist) — List of locations for the output files.
* output_metadata (/ist) — List of matching metadata dict objects

tb_generate_tads (**kwargs)
Function to the predict TAD sites for a given resolution from the Hi-C matrix

Parameters
* expt_name (str)— Location of the adjacency list
* matrix_file (str) - Location of the HDF5 output matrix file
* resolution (int) — Resolution to read the Hi-C adjacency list at
* tad_file (str) - Location of the output TAD file
Returns tad_file — Location of the output TAD file
Return type str

tb_hic_chr (**kwargs)
Get the list of chromosomes in the adjacency list

tb_merge_tad_files (**kwargs)
Merge 2 TAD adjacnecny list files

4.6.9 Generate 3D models from binned interaction matrix
class tool.tb _model.tbModelTool
Tool for normalizing an adjacency matrix

run (input_files, input_metadata, output_files)
The main function for the normalization of the Hi-C matrix to a given resolution

Parameters

e input_files (list)-—
hic_contacts_matrix_norm [str] Location of the tab-separated normalized matrix

* metadata (dict) —
optimize_only: bool True if only optimize, False for computing the models and stats
gen_pos_chrom_name [str] Coordinates of the genomic region to model.
resolution [str] Resolution of the Hi-C
gen_pos_begin [int] Genomic coordinate from which to start modeling.
gen_pos_end [int] Genomic coordinate where to end modeling.

num_mod_comp [int] Number of models to compute for each optimization step.

4.6. Hi-C Parsing 67

MuG - FASTQ Pipelines Documentation, Release 0.1

num_mod_comp [int] Number of models to keep.

max_dist [str] Range of numbers for optimal maxdist parameter, i.e. 400:1000:100; or
just a single number e.g. 800; or a list of numbers e.g. 400 600 800 1000.

upper_bound [int] Range of numbers for optimal upfreq parameter, i.e. 0:1.2:0.3; or just
a single number e.g. 0.8; or a list of numbers e.g. 0.1 0.3 0.5 0.9.

lower_bound [int] Range of numbers for optimal low parameter, i.e. -1.2:0:0.3; or just a
single number e.g. -0.8; or a list of numbers e.g. -0.1 -0.3 -0.5 -0.9.

cutoff [str] Range of numbers for optimal cutoff distance. Cutoff is computed based on
the resolution. This cutoff distance is calculated taking as reference the diameter of a
modeled particle in the 3D model. i.e. 1.5:2.5:0.5; or just a single number e.g. 2; or a
list of numbers e.g. 2 2.5.

workdir [str] Location of working directory
ncpus [str] Number of cpus to use
Returns
* output_files (/ist) — List of locations for the output files.
* output_metadata (/ist) — List of matching metadata dict objects

tb_model (**kwargs)
Function to normalize to a given resolution the Hi-C matrix

Parameters

* optimize_only (bool)— True if only optimize, False for computing the models and
stats

* hic_contacts_matrix_norm (str) — Location of the tab-separated normalized
matrix

e resolution (str)— Resolution of the Hi-C

* gen_pos_chrom_name (str)— Coordinates of the genomic region to model.

* gen_pos_begin (int)— Genomic coordinate from which to start modeling.

* gen_pos_end (int)— Genomic coordinate where to end modeling.

e num_mod_comp (int)— Number of models to compute for each optimization step.
* num_mod_comp — Number of models to keep.

* max_dist (str)— Range of numbers for optimal maxdist parameter, i.e. 400:1000:100;
or just a single number e.g. 800; or a list of numbers e.g. 400 600 800 1000.

* upper_bound (int) — Range of numbers for optimal upfreq parameter, i.e. 0:1.2:0.3;
or just a single number e.g. 0.8; or a list of numbers e.g. 0.1 0.3 0.5 0.9.

* lower_bound (int) — Range of numbers for optimal low parameter, i.e. -1.2:0:0.3; or
just a single number e.g. -0.8; or a list of numbers e.g. -0.1 -0.3 -0.5 -0.9.

* cutoff (str)-Range of numbers for optimal cutoff distance. Cutoff is computed based
on the resolution. This cutoff distance is calculated taking as reference the diameter of a
modeled particle in the 3D model. i.e. 1.5:2.5:0.5; or just a single number e.g. 2; or a list
of numbers e.g. 2 2.5.

» workdir (str)— Location of working directory

* ncpus (str)— Number of cpus to use

68

Chapter 4. Tools for processing FastQ files

MuG - FASTQ Pipelines Documentation, Release 0.1

Returns
* tadkit_models (str) — Location of TADKit json file

* modeling_stats (str) — Location of the folder with the modeling files and stats

4.6. Hi-C Parsing 69

MuG - FASTQ Pipelines Documentation, Release 0.1

70

Chapter 4. Tools for processing FastQ files

CHAPTER B

Utility Functions

5.1 Common Functions

The following functions are ones that have been used across multiple tools for transformations of the data when
requried.

class tool.common.ecd (newpath)
Context manager for changing the current working directory

5.2 Alignment Utilities

class tool.aligner_utils.alignerUtils
Functions for downloading and processing N-seq FastQ files. Functions provided allow for the downloading
and indexing of the genome assemblies.

static bowtie2_align_reads (genome_file, bam_loc, params, reads_file_1,

reads_file_2=None)
Map the reads to the genome using BWA.

Parameters
* genome_file (str)— Location of the assembly file in the file system
* reads_file (str)— Location of the reads file in the file system
* bam_loc (str)— Location of the output file

bowtie2_untar_ index (genome_name, tar_file, bt2_I_file, bt2_2_file, bt2_3_file, bt2_4_file,

br2_revl_file, bt2_rev2_file)
Extracts the BWA index files from the genome index tar file.

Parameters
* genome_file_name (str)— Location string of the genome fasta file

e tar file (str)- Location of the Bowtie2 index file

71

MuG - FASTQ Pipelines Documentation, Release 0.1

e bt2_1 file (str)- Location of the amb index file

e bt2_ 2 file (str)- Location of the ann index file

e bt2_3_file (str)- Location of the bwt index file

e bt2_4_file (str)- Location of the pac index file

e bt2_revl_file (str)— Location of the sa index file

e bt2_rev2_file (str)— Location of the sa index file
Returns Boolean indicating if the task was successful
Return type bool

static bowtie_index_genome (genome_file)
Create an index of the genome FASTA file with Bowtie2. These are saved alongside the assembly file.

Parameters genome_file (str)— Location of the assembly file in the file system

bwa_aln_align_reads_paired (genome_file, reads_file_l1, reads_file_2, bam_loc, params)
Map the reads to the genome using BWA.

Parameters
* genome_file (str)— Location of the assembly file in the file system
* reads_file (str)— Location of the reads file in the file system
* bam_loc (str)— Location of the output file

bwa_aln align_reads_single (genome_file, reads_file, bam_loc, params)
Map the reads to the genome using BWA. :param genome_file: Location of the assembly file in the file sys-
tem :type genome_file: str :param reads_file: Location of the reads file in the file system :type reads_file:
str :param bam_loc: Location of the output file :type bam_loc: str

static bwa_index_genome (genome_file)
Create an index of the genome FASTA file with BWA. These are saved alongside the assembly file. If the
index has already been generated then the locations of the files are returned

Parameters genome_file (str)— Location of the assembly file in the file system
Returns

¢ amb_file (str) — Location of the amb file

e ann_file (str) — Location of the ann file

e bwt_file (str) — Location of the bwt file

* pac_file (str) — Location of the pac file

« sa_file (str) — Location of the sa file

Example

from tool.aligner utils import alignerUtils
au_handle = alignerUtils()

indexes = au_handle.bwa_index_genome ('/<data_dir>/human_GRCh38.fa.gz")
print (indexes)

L S

72

Chapter 5. Utility Functions

MuG - FASTQ Pipelines Documentation, Release 0.1

static bwa_mem_align_reads (genome_file, bam_loc, params, reads_file_1,

reads_file_2=None)
Map the reads to the genome using BWA.

Parameters
* genome_file (str)— Location of the assembly file in the file system
* reads_file (str)— Location of the reads file in the file system
* bam_loc (str)— Location of the output file

bwa_untar_index (genome_name, tar_file, amb_file, ann_file, bwt_file, pac_file, sa_file)
Extracts the BWA index files from the genome index tar file.

Parameters
* genome_file name (str) - Location string of the genome fasta file
¢ genome_idx (str)— Location of the BWA index file
e amb_file (str)— Location of the amb index file
e ann_file (str)— Location of the ann index file
e bwt_file (str)— Location of the bwt index file
* pac_file (str)— Location of the pac index file
e sa_file (str)— Location of the sa index file
Returns Boolean indicating if the task was successful
Return type bool

static gem_index_genome (genome_file, index_name=None)
Create an index of the genome FASTA file with GEM. These are saved alongside the assembly file.

Parameters genome_file (str)— Location of the assembly file in the file system

static replaceENAHeader (file_path, file_out)
The ENA header has pipes in the header as part of the stable_id. This function removes the ENA stable_id
and replaces it with the final section after splitting the stable ID on the pipe.

5.3 Bam Utilities

class tool.bam utils.bamUtils
Tool for handling bam files

static bam_copy (bam_in, bam_out)
Wrapper function to copy from one bam file to another

Parameters
* bam_in (str) - Location of the input bam file
* bam_out (str)— Location of the output bam file

static bam_count_reads (bam_file, aligned=False)
Wrapper to count the number of (aligned) reads in a bam file

static bam_filter (bam_file, bam_file_out, filter_name)
Wrapper for filtering out reads from a bam file

Parameters

5.3. Bam Utilities 73

MuG - FASTQ Pipelines Documentation, Release 0.1

e bam_file (str)-
e bam_ file out (str)-
e filter (str)—

One of: duplicate - Read is PCR or optical duplicate (1024) supplementary - Reads that
are chimeric, fusion or non linearly aligned (2048) unmapped - Read is unmapped or
not the primary alignment (260)

static bam_index (bam_file, bam_idx_file)
Wrapper for the pysam SAMtools index function

Parameters
e bam_file (str)—- Location of the bam file that is to be indexed
e bam idx_ file (str)— Location of the bam index file (.bai)

static bam list_chromosomes (bam_file)
Wrapper to list the chromosome names that are present within the bam file

Parameters bam file (str) - Location of the bam file
Returns List of the names of the chromosomes that are present in the bam file
Return type list

static bam_merge (*args)
Wrapper for the pysam SAMtools merge function

Parameters
* bam_file_1 (str)- Location of the bam file to merge into
* bam_file_2 (str)— Location of the bam file that is to get merged into bam_file_1

static bam_paired_reads (bam_file)
Wrapper to test if a bam file contains paired end reads

static bam_sort (bam_file)
Wrapper for the pysam SAMtools sort function

Parameters bam_file (str) - Location of the bam file to sort

static bam_split (bam_file_in, bai_file, chromosome, bam_file_out)
Wrapper to extract a single chromosomes worth of reading into a new bam file

Parameters
* bam_file_in (str) - Location of the input bam file

* bai_file (str)-Location of the bam index file. This needs to be in the same directory
as the bam_file_in

* chromosome (str)— Name of the chromosome whose alignments are to be extracted
* bam_file_out (str) - Location of the output bam file

static bam_stats (bam_file)
Wrapper for the pysam SAMtools flagstat function

Parameters bam_ file (str) - Location of the bam file
Returns list — qc_passed : int gc_failed : int description : str

Return type dict

74

Chapter 5. Utility Functions

MuG - FASTQ Pipelines Documentation, Release 0.1

static bam_to_bed (bam_file, bed_file)
Function for converting bam files to bed files

static check_header (bam_file)
Wrapper for the pysam SAMtools for checking if a bam file is sorted

Parameters bool — True if the file has been sorted

static sam_to_bam (sam_file, bam_file)
Function for converting sam files to bam files

class tool.bam utils.bamUtilsTask
Wrappers so that the function above can be used as part of a @task within COMPSs avoiding the files being
copied around the infrastructure too many times

bam_copy (**kwargs)
Wrapper function to copy from one bam file to another

Parameters
* bam_in (str) - Location of the input bam file
* bam_out (str)— Location of the output bam file

bam filter (**kwargs)
Wrapper for filtering out reads from a bam file

Parameters
e bam file (str)-
e bam_file_ out (str)-—
e filter (str)—

One of: duplicate - Read is PCR or optical duplicate (1024) unmapped - Read is un-
mapped or not the primary alignment (260)

bam_index (**kwargs)
Wrapper for the pysam SAMtools merge function

Parameters
e bam_file (str)— Location of the bam file that is to be indexed
e bam_idx file (str) - Location of the bam index file (.bai)

bam_list_chromosomes (**kwargs)
Wrapper to get the list of chromosomes in a given bam file

Parameters bam_file (str) - Location of the bam file
Returns chromosome_list — List of the chromosomes in the bam file
Return type list

bam_merge (in_bam_job_files)
Wrapper task taking any number of bam files and merging them into a single bam file.

Parameters bam_job_files (1ist)— List of the locations of the separate bam files that are
to be merged The first file in the list will be taken as the output file name

bam_merge_10 (**kwargs)
Wrapper for the pysam SAMtools merge function

Parameters

5.3. Bam Utilities 75

MuG - FASTQ Pipelines Documentation, Release 0.1

bam_file_1 (str)— Location of the bam file to merge into

bam_file_2 (str) - Location of the bam file that is to get merged into bam_file_1
bam_file_3 (str)— Location of the bam file that is to get merged into bam_file_1
bam_file_4 (str)— Location of the bam file that is to get merged into bam_file_1
bam_file_5 (str) - Location of the bam file that is to get merged into bam_file_1
bam_file_6 (str)— Location of the bam file that is to get merged into bam_file_1
bam_file_7 (str) - Location of the bam file that is to get merged into bam_file_1
bam_file_8 (str)— Location of the bam file that is to get merged into bam_file_1
bam_file_9 (str) - Location of the bam file that is to get merged into bam_file_1

bam_file_10 (str)— Location of the bam file that is to get merged into bam_file_1

bam_merge_2 (**kwargs)
Wrapper for the pysam SAMtools merge function

Parameters

bam_file_1 (str)— Location of the bam file to merge into

bam_file_2 (str)— Location of the bam file that is to get merged into bam_file_1

bam_merge_3 (**kwargs)
Wrapper for the pysam SAMtools merge function

Parameters

bam_file_1 (str)— Location of the bam file to merge into
bam_file_2 (str) - Location of the bam file that is to get merged into bam_file_1

bam_file_3 (str)— Location of the bam file that is to get merged into bam_file_1

bam_merge_4 (**kwargs)
Wrapper for the pysam SAMtools merge function

Parameters

bam_file_1 (str)— Location of the bam file to merge into
bam_file_2 (str)- Location of the bam file that is to get merged into bam_file_1
bam_file_3 (str)— Location of the bam file that is to get merged into bam_file_1

bam_file_4 (str) - Location of the bam file that is to get merged into bam_file_1

bam_merge_5 (**kwargs)
Wrapper for the pysam SAMtools merge function

Parameters

bam_file_1 (str) - Location of the bam file to merge into

bam_file_2 (str)— Location of the bam file that is to get merged into bam_file_1
bam_file_3 (str)— Location of the bam file that is to get merged into bam_file_1
bam_file_4 (str) - Location of the bam file that is to get merged into bam_file_1

bam file_ 5 (str)— Location of the bam file that is to get merged into bam_file_1

bam paired_reads (**kwargs)
Wrapper for the pysam SAMtools view function to identify if a bam file contains paired end reads

76

Chapter 5. Utility Functions

MuG - FASTQ Pipelines Documentation, Release 0.1

Parameters bam_file (str)— Location of the bam file that is to be indexed
Returns True if the bam file contains paired end reads
Return type bool

bam_sort (**kwargs)
Wrapper for the pysam SAMtools sort function

Parameters bam_file (str) - Location of the bam file to sort

bam_stats (**kwargs)
Wrapper for the pysam SAMtools flagstat function

Parameters
e bam_file (str)— Location of the bam file that is to be indexed
e bam idx_ file (str)— Location of the bam index file (.bai)

check_header (**kwargs)
Wrapper for the pysam SAMtools merge function

Parameters
e bam_file_ 1 (str)- Location of the bam file to merge into

* bam_file_ 2 (str)- Location of the bam file that is to get merged into bam_file_1

5.4 FASTQ Functions

The following functions are ones that are used for the manipulation of FASTQ files.

5.4.1 Reading

The following functions are to provide easy access for iterating through entries within a FASTQ file(s) both single and
paired.

class tool.fastgreader.fastqreader

Module for reading single end and paired end FASTQ files

closeFastQ ()
Close file handles for the FastQ files.

closeOutputFiles ()
Close the output file handles

createOutputFiles (tag=")
Create and open the file handles for the output files

Parameters tag (str)— Tag to identify the output files (DEFAULT:)

eof (side=1)
Indicate if the end of the file has been reached

Parameters side (int)—1or2

incrementOutputFiles ()
Increment the counter and create new files for splitting the original FastQ paired end files.

next (side=1)
Get the next read element for the specific FastQ file pair

5.4.

FASTQ Functions 77

MuG - FASTQ Pipelines Documentation, Release 0.1

Parameters side (int)—1 or 2 to get the element from the relevant end (DEFAULT: 1)
Returns

id [str] Sequence ID

seq [str] Called sequence

add [str] Plus sign

score [str] Base call score
Return type dict

openFastQ (filel, file2=None)
Create file handles for reading the FastQ files

Parameters
e filel (str) - Location of the first FASTQ file
* file2 (str)— Location of a paired end FASTQ file.

writeOutput (read, side=1)
Writer to print the extracted lines

Parameters
* read (dict)—Read is the dictionary object returned from self.next()
e side (int) - The side that the read has coe from (DEFAULT: 1)
Returns False if a value other than 1 or 2 is entered for the side.

Return type bool

5.4.2 Splitting

This tool has been created to aid in splitting FASTQ files into manageable chunks for parallel processing. It is able to
work on single and paired end files.

class tool.fastqg _splitter.fastq splitter (configuration=None)
Script for splitting up FASTQ files into manageable chunks

paired_splitter (**kwargs)
Function to divide the paired-end FastQ files into separte sub files of 1000000 sequences so that the aligner
can run in parallel.

Parameters
e in_filel (str)— Location of first paired end FASTQ file
e in_file2 (str) - Location of second paired end FASTQ file

* tag (str)— DEFAULT = tmp Tag used to identify the files. Useful if this is getting run
manually on a single machine multiple times to prevent collisions of file names

Returns

* Returns (Returns a list of lists of the files that have been generated.) — Each sub list
containing the two paired end files for that subset.

* paired_files (lisr) — List of lists of pair end files. Each sub list containing the two paired
end files for that subset.

78 Chapter 5. Utility Functions

MuG - FASTQ Pipelines Documentation, Release 0.1

run (input_files, input_metadata, output_files)
The main function to run the splitting of FASTQ files (single or paired) so that they can aligned in a
distributed manner

Parameters
e input_files (dict) — List of input fastq file locations
e metadata (dict) —
* output_files (dict)—
Returns
* output_file (str) — Location of compressed (.tar.gz) of the split FASTQ files
* output_names (/ist) — List of file names in the compressed file

single_splitter (**kwargs)
Function to divide the FastQ files into separate sub files of 1000000 sequences so that the aligner can run
in parallel.

Parameters
e in filel (str)— Location of first FASTQ file

* tag (str)— DEFAULT = tmp Tag used to identify the files. Useful if this is getting run
manually on a single machine multiple times to prevent collisions of file names

Returns

* Returns (Returns a list of the files that have been generated.) — Each sub list containing
the two paired end files for that subset.

* paired_files (/isr) — List of lists of pair end files. Each sub list containing the two paired
end files for that subset.

5.4.3 Entry Functions

The following functions allow for manipulating FASTQ files.

class tool.fastg utils.fastqUtils
Set of methods to help with the management of FastQ files.

static fastq match_paired_ends (fastq_I, fastq_2)
Take 2 fastq files and remove ends that don’t have a matching pair. Requires that the FastQ files are ordered
correctly.

Mismatches can occur if there is a filtering step that removes one of the paired ends
Parameters
» fastqg 1 (str)- Location of FastQ file
e fastqg 2 (str)- Location of FastQ file

static fastq randomise (fastq, output=None)
Randomising the order of reads withim a FastQ file

Parameters
e fastqg (str)— Location of the FastQ file to randomise

* output (str) - [OPTIONAL] Location of the output FastQ file. If left blank then the
randomised output is saved to the same location as fastqg

5.4. FASTQ Functions 79

MuG - FASTQ Pipelines Documentation, Release 0.1

static fastq sort_file (fastq, output=None)
Sorting of a FastQ file

Parameters
e fastqg (str) - Location of the FastQ file to sort

* output (str)— [OPTIONAL] Location of the output FastQ file. If left blank then the
sorted output is saved to the same location as fastq

80 Chapter 5. Utility Functions

CHAPTER O

Continuous Integration with Travis

This document summarizes the steps involved in setting up a continuous integration suite with Travis for our pipelines.

6.1 Getting Started

Login with your gitHub account details on travis.ci. Add the “Multiscale Genomics” to your organization to gain
access to its repositories. (you would have to send a request to be added to this organization).

Follow the onscreen instructions on travis.ci.

Flick the repository switch to "on"

Add .travis.yml to your repository.

Sync your travis account to your GitHub account.

Pushing to Git will trigger the first Travis build after adding the above file.

6.2 Making .travis.yml File

To your added .travis.yml file in your GitHub repository include:
e “python” in “language”. With version/s specified in “python: “

3

» All packages required for running the pipelines in “addons: apt: packages: “. (For more informa-
tion on the packages please see Full Installation from : http://multiscale-genomics.readthedocs.io/
projects/mg-process-fastg/en/latest/full_installation.html#setup-the-system-environment)

¢ Docker in “services” to tell Travis it needs to have docker installed.
¢ services:

— docker

81

http://multiscale-genomics.readthedocs.io/projects/mg-process-fastq/en/latest/full_installation.html#setup-the-system-environment
http://multiscale-genomics.readthedocs.io/projects/mg-process-fastq/en/latest/full_installation.html#setup-the-system-environment

1

MuG - FASTQ Pipelines Documentation, Release 0.1

* All tools to be installed within “install:” section (For more information on the packages please
see Full Installation from : http://multiscale-genomics.readthedocs.io/projects/mg-process-fastq/en/
latest/full_installation.html#setup-the-system-environment)

Note: libtbb did not seem to be installing correctly when put in “apt: packages: . It has therefore been
done with sudo in “install:”

 Setup all symlinks in “before_script: “
* Change execution permissions on shims folder and harness.sh

Add the shims folder path to your $PATH

¢ Include harness.sh to your “script” to be executed

6.3 Making harness.sh File

Include all test scripts to be tested with pytest to your harness.sh file. As iNPS does not work with Python < 3, a
conditional check is present to ensure that it does not run unless Travis is running Python 3

6.4 Running Docker container

To run docker within Travis, it has been included within the “services” in the .yml file. Every time travis runs docker
it will pull the latest publicly available image from DockerHub and run it. This gets done from within the shims files.
The pre-built container can also be pulled from : https://hub.docker.com/r/multiscalegenomics/mgprocessfastq/

using command :

docker pull multiscalegenomics/mgprocessfastqg:testdocker

For more details on the docker container, please refer to : https://github.com/Multiscale- Genomics/mg-process-fastq/
blob/master/docs/docker.rst

6.5 Setting up Shims

Libmaus2 and Biobambam?2 have had to be installed within a docker container, as they were causing Travis to time
out. As the container is non-interactable while on Travis and is not hosting live server. An intermediate layer to access
the contents within docker from travis has been introduced in the form of shims. To make these files, take the list of
all biobambam?2 modules and construct bash script files with the following command for each of the modules :

exec docker run -it multiscalegenomics/mgprocessfastg:biobambamimage ~/1ib/
—biobambam2/bin/biobambam_module_name S$@

The .travis.yml file used for testing the mg-process-fastq pipelines can be found at : https:/github.com/
Multiscale-Genomics/mg-process-fastg/blob/master/.travis.yml

82 Chapter 6. Continuous Integration with Travis

http://multiscale-genomics.readthedocs.io/projects/mg-process-fastq/en/latest/full_installation.html#setup-the-system-environment
http://multiscale-genomics.readthedocs.io/projects/mg-process-fastq/en/latest/full_installation.html#setup-the-system-environment
https://hub.docker.com/r/multiscalegenomics/mgprocessfastq/
https://github.com/Multiscale-Genomics/mg-process-fastq/blob/master/docs/docker.rst
https://github.com/Multiscale-Genomics/mg-process-fastq/blob/master/docs/docker.rst
https://github.com/Multiscale-Genomics/mg-process-fastq/blob/master/.travis.yml
https://github.com/Multiscale-Genomics/mg-process-fastq/blob/master/.travis.yml

CHAPTER /

Setting up and using a Docker Container

7.1 Our reason for using a container

While working with Travis, the installation of libmaus2 and biobambam?2 took up more than 45 minutes (accumulative
with the rest of the installations), which caused Travis to time out. We therefore resorted to putting both tools in a
container and accessing the commands from there. This document summarizes the steps involved in making a docker
image for the above two tools and running a container from that image. As well as uploading your image to docker
hub to make it publicly accessible.

This document has been prepared keeping macOS Sierra in mind, although many of the commands are cross platform
(*nix) compliant.

7.2 Getting Started

To be able to build a docker container you must have :
a) Docker installed on your machine

b) An account on one of the docker repositories (Docker Hub or Quay). We have used Docker Hub as this was free
access.

7.2.1 a) Installing docker to your machine

For this work I had installed a command line based docker, along with the Virtual machine boot2docker. There is
however a GUI distribution available for MAC as well. You may install boot2docker using :

1 ’brew install boot2docker

83

1

MuG - FASTQ Pipelines Documentation, Release 0.1

7.2.2 b) Setting up account on Docker Hub

Go to https://hub.docker.com and setup an account with Docker Hub. Add Multiscale Genomics to your organizations
and create a repository : mgprocessfastq. You will be uploading your docker images to this repository later.

7.3 Constructing a docker container

Run the following preliminary commands to get your boot2docker running:

boot2docker up
eval "$ (boot2docker shellinit)"

You would also need to have :
¢ docker-machine
¢ Virtual Box

installed on your Mac. After these, execute the following commands:

docker-machine create -d virtualbox dev
eval $(docker-machine env dev)

To ensure your docker is running:

docker

7.3.1 Making the Dockerfile for libmaus2 and biobambam2

You may want to create a new folder for this purpose, as the docker command compiles the Dockerfile with the given
path to the folder. Create a new file with the name of “Dockerfile”. Include the following lines within this file:

FROM ubuntu:14.04

RUN apt-get update && \
apt—-get -y install sudo

RUN sudo apt-get install -y make build-essential libssl-dev zliblg-dev \

libbz2-dev libreadline-dev libsglite3-dev wget curl llvm libncurses5-dev \
libncurseswb-dev xz-utils tk-dev unzip mcl libgtk2.0-dev r-base-core \
libcurl4-gnutls—-dev python-rpy2 git

RUN mkdir Mug \
&& cd Mug \
&& apt-get -y install git \

&& git config -—-global user.name "your_username" \
&& git config --global user.email "your_emailId" \
&& pwd \

&& mkdir bin lib code \

&& cd lib \

&& git clone https://github.com/gtl/libmaus2.git
&& cd libmaus2 \

&& sudo apt-get -y install libtool m4 automake \
&& libtoolize \

&& aclocal \

(continues on next page)

84 Chapter 7. Setting up and using a Docker Container

https://hub.docker.com

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

&& autoheader \

&& automake —--force-missing --add-missing \
&& autoconf \

&& ./configure --prefix=/Mug/lib/libmaus?2 \

&& make \
&& make install \

&& cd /Mug/lib \

&& git clone https://github.com/gtl/biobambam2.git && cd biobambam2 \

&& autoreconf -i —-f \

&& ./configure --with-libmaus2=/Mug/lib/libmaus2 --prefix=/Mug/lib/biobambam?2 \

&& make install

7.3.2 Making the docker image

Build a docker image from this file using:

1 | cd /path/to/your/dockerfile
> |docker build -t multiscalegenomics/mgprocessfastq/biobambamimage.

Login with your docker hub account details :

1 ’docker login

Push the above image to your docker hub repository

1 ’docker push multiscalegenomics/mgprocessfastg:biobambamimage

7.3.3 Running a docker container

You should be able to run the above image locally on your machine as well as pulling it elsewhere (on a system which
has docker):

1 ’docker pull multiscalegenomics/mgprocessfastg:biobambamimage

and then running a container via :

1 ’docker run —-—-name name_you_want multiscalegenomics/mgprocessfastq:biobambamimage

Our Travis build pulls the image from our mgprocessfastq repository from within the shims files, and runs the contain-
ers using the commands within.

7.3. Constructing a docker container 85

MuG - FASTQ Pipelines Documentation, Release 0.1

86

Chapter 7. Setting up and using a Docker Container

CHAPTER 8

Architectural Design Record

8.1 2017-08-15 - Implementation of pigz

It was highlighted that the archival step using the python module tarfile was taking a long time when archiving and
compressing large volumes of data. This is an issue in the WGBS pipeline where the FASTQ files are broken down
into small sections and are then aligned individually.

The issue was in relation to the compression step. tar, and therefore tarfile, runs as a single process. In linear time to
compress a 14GB file takes 18 minutes, which is a long time for the user that have to wait. The archival step is less
than 1 min. As a result the compression has moved to using pigz after the archival step to perform the compression
in a parallel fashion across all available cores on a machine. On a 4 core machine this allowed the compression of the
same file to take only 7 min.

The resultant compressed file remains accessible via gzip. After decompression files have the same structure, so this
should be an invisible change.

8.2 2018-01-26 - Disable no-self-use for @tasks

The disabling of pylint test for determining if a function should be a static method was made as this affected the
behaviour of pycompss preventing it from functioning correctly. As a result all @task functions do not require the
no-self-use test to be run.

8.3 2018-02-28 - BAM Merge Strategy

Based on benchmarking of the pipeline the procedure for merging of bam files has been modified to get an optimal
balance between running as much as possible in parallel vs the cost of spinning up new jobs to perform the merging.
It was found that running each job merging 10 files provided the break even point between the cost of creating a new
job and getting the maximum throughput through the system. It also reduces the number of iterative merge procedures
which is beneficial when there are alignments that are difficult to merge.

87

https://zlib.net/pigz/

MuG - FASTQ Pipelines Documentation, Release 0.1

8.4 2018-04-26 - BAM Splitting

Added the required functions for tools to be able to split a bam by the number of chromosomes so that the analysis can
be done in parallel. As an initial run this has been implemented in the MACS?2 tool, where the indexing of the bam file
is performed by the tool. The bam and bai files are passed to the jobs so that they can then extract the chromosome
that they are required to analyse.

In the future the creation of the bai file could be done at alignment time, but in the case of MACS?2 there is a filtering
step on the aligned bam file, so a new index would be required.

8.5 2018-05-01 - Compression of FASTQ

Added compression of the split FASTQ files to reduce the amount of space required when processing the data. There
is also the removal of the tmp directory after the completion of the splitter to save on space.

8.6 2018-05-09 - Handling aligner index decompression

The code has been modified so that there is a single decompression of the BWA and Bowtie2 common indexes. The
index files are then explicitly handed to the alignment task rather than handing over the compressed index. The
decompression is performed as a @task so that the index files are already in the COMPSs system. This means that
handing the index files to the alignment tasks creates a single symlink in the sandbox temporary file directory rather
than duplicating the whole of the index structure for each job.

8.7 2018-05-22 - GEM Naming

Update so that the gem files are name <genome-file>.gem.gz inline with requests from WP7 partners so that the name
of the index is picked up correctly

8.8 2018-05-22 - TrimGalore

To try and improve the quality of the reads that are used for numerous pipelines, TrimGalore has been included as a
pipeline to aid in the clipping and removal of low quality regions of reads. The pipeline can be run on single or paired
end FASTQ files. A report of the trimmed data is also returned for the user to identify what changes were made.

8.9 2018-05-31 - Public genomes and indexes

The VRE is making it possible to use centrally stored genomic sequences and the pre-built indexes. This relies on a
second key-value pair for the genome and indexes. Pipelines that interact with the public files need to be able to test
for the present of “genome_public” and “index_public”, if they are not present then they should be able to safely fall
back on “genome” and “index” keys-value pairs. With the separation of the tools and the pipelines this means that the
changes should only need to happen in the pipelines as this can perform the translation between the “genome_public”
to “genome” ready for the tool.

88 Chapter 8. Architectural Design Record

MuG - FASTQ Pipelines Documentation, Release 0.1

8.10 2018-06-01 - Separated WGBS Code Testing

To bring down the run time for the TravisCI, the WGBS has been moved to a separate track. This has the benefit of
getting the testing started earlier and allowing the other tests to finish sooner.

8.11 2018-06-01 - Travis Caching

Travis CI is now able to cache the lib directory so that the build phase is reduced to improve test speeds. If there are
changes to the 1ib then these need to be refreshed in the TravisCI settings to ensure that the new libraries are included,
or flushed if there are changes to the versions of packages in the lib.

There is also caching of the pip directory to reduce the load time.

8.12 2018-06-04 - Split the WGBS test scripts

Split the testing of the WGBS pipeline and tool chains so that they 2 sets can run in parallel. Both take too long when
run in series.

8.13 2018-06-05 - Use of the logger PROGRESS

Added in the use of the logger.progress to indicate the progression of a process.

8.14 2018-06-14 - Paired end alignment

The aligner pipelines has been modified the pass through all the input and metadata to the aligner tools, this simplifies
the the passing of a second fastq file and also make using these pipelines for alignment of paired end data possible.

8.15 2018-06-18 - Branch tidying during alignment

Modified the way that the alignment pipelines manage the temporary files. These are now deleted once the pipeline
has finished using them. The purpose of this is to save space on the file system and prevent large jobs taking up too
much space.

There have also been changes to the handling of paired end files for the alignment pipelines improving the clarity
of what is happening and simplifying the passing of parameters. There are also changes to the tests to allow for the
removal of temporary files and there are tests to make sure that the output bam files are single or paired end.

Other changes include: - Simplification of the untarring functions - Modifications to the Bowtie2 index file for con-
sistency with the BWA index file - Refactored the BWA ALN sai file generation to reduce redundancy to allow for
multi-processing when there is paired-end data - Improved the handling of the suffixes for FASTQ and FASTA files so
that it can handle variants

8.10. 2018-06-01 - Separated WGBS Code Testing 89

MuG - FASTQ Pipelines Documentation, Release 0.1

8.16 2018-06-27 - Remove reads marked as duplicate by BioBamBam

BioBamBam only marks reads as duplicate, but does not remove the after. The Tool has been updated to remove the
flagged duplicates using samtools with the parameter -F' /024. This matches the pipeline used within the Blueprints
project.

Also performed some tidying of the code to annotate issues that had been highlighted by pylint.

8.17 2018-07-11 - Changes FASTQ splitter file management

The previous splitter would split the FASTQ files into separate changes, then create the tar file and then the Gzip
file. This results in a large amount of wasted tmp space, which is a limited resource. The changes implemented
incrementally add the sub-FASTQ files to the archive file, deleting them once they have been added. The whole
archive file is then compressed. This has a large advantage when handling larger human datasets.

There has also been some refactoring of the handling of the archiving and compression steps to reduce the duplication
of code within the repository.

8.18 2018-07-16 - Modified handling of file locations

Updated the handling of file locations to use os.path.join and os.path.split to allow for compatibility between different
operating systems for the pipelines and tools.

8.19 2018-08-02 - Added in Paired End BAM file handling for MACS2

MACS?2 is able to automatically handle the files that are handed to it except for paired-end BAM and BED files
(BAMPE and BEDPE respectively). The MACS?2 tool only accepts BAM files so a check was implemented to deter-
mine if the BAM file contained paired-end reads.

There has also been a major rewrite of the MACS?2 tool to remove code duplication.

8.20 2018-07-16 - Modified handling of file locations

Updated the handling of file locations to use os.path.join and os.path.split to allow for compatibility between different
operating systems for the pipelines and tools.

8.21 2018-08-07 - Storing tool parameters as part of the metadata

To improve the amount of information that is stored about the run of a tool, the parameters that were used are now
being included as part of the metadata.

8.22 2018-08-07 - Extra output files from MACS2

MACS?2 is able to generate a plot of the results as well as a bedGraph. These have now been integrated as part of the
output files from teh tool.

90 Chapter 8. Architectural Design Record

http://dcc.blueprint-epigenome.eu/#/md/chip_seq_grch37
http://dcc.blueprint-epigenome.eu/#/md/chip_seq_grch37

MuG - FASTQ Pipelines Documentation, Release 0.1

8.23 2018-08-13 - Normalised the use of OSError

IOError was depricated in favour of OSError when moving to py3, but to maintian backwards compatibility IOError
also needs to be supported. There were places in the code where this was not true and other places that relied on just
OSError. Instances of just IOError have been converted to testing for both IOError and OSError and visa versa.

8.24 2018-08-15 - Use the config.json execution path

Using the directory of the input file for building the location of the working directory with outside of a task is not a
viable option as it can write data to the wrong directory. The execution path provided in the config.json arguments
is the right place. This location is also the location for output files. This issue occurred as the FASTQ splitter was
generating a tar file that the aligners were downloading to the wrong location. Even though this was tidied up this was
still not the right place to put this file.

8.25 2018-08-16 - Prevent further duplicate filtering by MACS2

In the process_chipseq.py pipeline the duplicates have already been filtered by BioBamBam?2 and samtools so there is
no need for further filtering to be done by MACS2.

8.26 2018-09-04 - Adding functionality to bam_utils and MACS2

MACS?2 was previously set to work with the BAMPE option for the -f/~format parameter. Additional functionality
has been added to bam_utils and macs2 mode to incorporate the BEDPE option. This has been done for the Atac Seq
pipeline to incorporate the processing of bed file rather than bam files if the user would need changes to the result files
generated.

8.27 2018-09-17 - Updates to tool and pipline run()

Changes to the pipelines so that the run() function matches the definitions within the Tool API. There have also been
a number of changes so that the pipeline and tool code is python 3 compatible

8.28 2018-08-22 - Improvement of tadbit tools wrappers

A json with the matrix was included in the outputs of tadbit bin New normalization method OneD in tadbit normalize
Code update to use last features of the development branch of tadbit tools api The wrapper of tadbit model was rebuilt
to allow the modelling of full genomes, mainly for yeast General reshape of all the code according to pylint Inclusion
of tests for the wrappers and tools of the tadbit pipelines

8.29 2018-09-25 - Converting the Kallisto TSV file to BED

To display the scores on the genome browser the abundance tsv is used to generate a bed file where the score matches
the transcripts per million column from the abundance.tsv output from Kallisto. This module requires the presence of
the ensembl gff3 file for the matching assembly. This should be passed by the VRE when passing the FASTA file for
the transcripts.

8.23. 2018-08-13 - Normalised the use of OSError 91

MuG - FASTQ Pipelines Documentation, Release 0.1

8.30 2018-10-18 - Multi File handling for the DamiID-seq Pipeline

Ability to handle multiple input single/paired end data and background data files and process them in an orderly
fashion. Ability to handle the resultant multiples of generated bam files in the idear tool and its matching individual
pipeline.

8.31 2018-10-25 - WGBS Pipeline Create BigWig files as standard

The output wig files from BS Seeker2 are now converted to BigWig files by default rather than returning wig files.
This is so that they are easier to visualise on the JBrowse interface.

8.32 2018-10-31 - Modify the file names for docker script

There were inconsistencies in the names, these have been updated to be more consistent with the consortium naming
instead.

8.33 2018-11-08 - Modifications for the movement of files

To keep the memory usage low the files are now moved in N byte chunks rather than as a whole file.

8.34 2018-11-16 - Reading of Gzipped FASTAQ files

Due to the limitations of space it is necessary for the users to be able to load only the gzipped versions of the FASTQ
files. Added the ability to read the gzipped FASTQ files to the FASTQ reader. This is behind the aligners and the
splitting procedure so has a wide ranging benefit for pipelines.

92 Chapter 8. Architectural Design Record

CHAPTER 9

License

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/
1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work™ shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

93

http://www.apache.org/licenses/

MuG - FASTQ Pipelines Documentation, Release 0.1

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor

hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor

hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in

any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

94

Chapter 9. License

MuG - FASTQ Pipelines Documentation, Release 0.1

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “{}” replaced with your own identifying information. (Don’t in-
clude the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

95

http://www.apache.org/licenses/LICENSE-2.0

MuG - FASTQ Pipelines Documentation, Release 0.1

96

Chapter 9. License

cHAaPTER 10

Testing

To ensure that the code written to process the data within the MuG VRE works it is essential to have a testing frame-
work to ensure that as the code evolves it does not break the funcitonality of the pipelines and tools. There are 2 key
parts to this:

1. Sample data
2. Runnable scripts

For each tool within the mg-process-fastq repository there is an initial set of sample data and matching tests for each
tool and pipeline.

10.1 Sample Data

10.1.1 Test Data for ChIP-seq pipeline
The following document is for the preparation of data set required for testing the ChIP-seq pipeline. The document
has been written with macOS Sierra in mind, although many of the commands are cross platform (*nix) compliant.

You would need to have the tools listed in “Prerequisites” installed on your system. For more details on installing the
tools for this pipeline please refer to

http://multiscale- genomics.readthedocs.io/projects/mg-process-fastg/en/latest/full _installation.html

If you already have certain packages installed feel free to skip over certain steps. Likewise the bin, lib and code
directories are relative to the home dir; if this is not the case for your system then make the required changes when
running these commands.

Prerequisites

* BWA
* MACS 2

¢ Biobambam

97

http://multiscale-genomics.readthedocs.io/projects/mg-process-fastq/en/latest/full_installation.html

MuG - FASTQ Pipelines Documentation, Release 0.1

e Samtools

Data set for genome file

Filtering for required coverage

Download the genome file from

wget "http://www.ebi.ac.uk/ena/data/view/CM000663.2,CM000664.2,CM000665.2,CM000666.2,
—CM000667.2,CM000668.2,CM000669.2,CM000670.2,CM000671.2,CM000672.2,CM000673.2,
—CM000674.2,CM000675.2,CM000676.2,CM000677.2,CM000678.2,CM000679.2,CM000680.2,
—CM000681.2,CM000682.2,CM000683.2,CM000684.2,CM000685.2,CM000686.2,J01415.2¢
—display=fasta&download=fasta&filename=entry.fasta" -0 GCA_000001405.22.fasta

Checkout https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/ChIPSeq_Scripts/extract_
chromosomeForChIP.py and extract chromosome 22 from the above file using the following command.

’python extract_chromosomeForChIP.py path/to/your/input/file path/to/output/file

Download the fastq file from

’wget ftp://ftp.sra.ebi.ac.uk/voll/fastq/DRRO00/DRR0O00150/DRR0O00150.fastg.gz

Unzip this file.

’gunzip DRR0O00150.fastqg.gz

Index the fasta file

’bwa index GCA_000001405.22.chr22.fa.fasta

Align the fastq file

bwa aln GCA_000001405.22.chr22.fa.fasta DRR000150.chr22.fastq >GCA_000001405.22.chr22.
—sai

And make the sam file

bwa samse GCA_000001405.22.chr22.fa.fasta GCA_000001405.22.chr22.sai DRR000150.chr22.
—fastg >GCA_000001405.22.chr22.sam

Sort the sam file

samtools sort GCA_000001405.22.chr22.sam >GCA_000001405.22.chr22.sorted.sam

Find the depths of coverage from the sorted file

samtools depth GCA_000001405.22.chr22.sorted.sam >GCA_000001405.22.chr22.dp

From the depth file, find regions with >= 70 depth, spanning over >=55 base pairs. You may get
the script for this from https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/ChIPSeq_Scripts/
traverseForCoverageRegion_ChIP.py. Run it using:

python traverseForCoverageRegion_ChIP.py path/to/GCA_000001405.22.chr22.dp

98 Chapter 10. Testing

https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/ChIPSeq_Scripts/extract_chromosomeForChIP.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/ChIPSeq_Scripts/extract_chromosomeForChIP.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/ChIPSeq_Scripts/traverseForCoverageRegion_ChIP.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/ChIPSeq_Scripts/traverseForCoverageRegion_ChIP.py

MuG - FASTQ Pipelines Documentation, Release 0.1

Running this script would print the spanning regions. If it is a continuous region, you may only take the first starting
base pair and the last ending base pair, as inputs for the next step. (Take out 1000 and add in 1000 to these respectively
to get upstream and downstream spanning bases)

Extract the corresponding fasta sequence from the chromosome file for the positions retrieved from the above
step. Checkout file from https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/ChIPSeq_Scripts/
extractChromosomalRegion.py and run using command:

python extractChromosomalRegion.py path/to/original/fasta/file path/to/output/file/
—for/region/macs2.Human.GCA_000001405.22.fasta starting_base_position ending_base_
—position

Making the Fastq file

Index the fasta file for the selected region

bwa index macs2.Human.GCA_000001405.22.fasta

Align the fastq file

bwa aln macs2.Human.GCA_000001405.22.fasta DRR0O00150.chr22.fastg >macs2.Human.GCA_
—000001405.22.sai

And make the sam file

bwa samse macs2.Human.GCA_000001405.22.fasta macs2.Human.GCA_000001405.22.sai_,
—DRR000150.chr22.fastg >macs2.Human.GCA_000001405.22.sam

Filter this sam file for the reads which aligned with chromosome 22 using the following command:

awk 'S$3 == chr22' macs2.Human.GCA_000001405.22.sam >macs2.Human.GCA_000001405.22.22.
—Sam

From the filtered reads from the above output file, extract the corresponding entries in fastq file. You may do this using
the file at :

https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/ChIPSeq Scripts/
—makeFastQFiles.py

and running it via command line:

python makeFastQFiles.py --samfile macs2.Human.GCA_000001405.22.22.sam —--fastQfile /
—path/to/DRR000150.chr22.fastq ——pathToOutput /path/to/save/output/fastqg/file/to/ —--
—fastgOut macs2.Human.DRR000150.22.fastqg

The fastq file in the above step and fasta file macs2.Human.GCA_000001405.22.fasta together make up the data set
for ChIP-seq pipeline

10.1. Sample Data 99

https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/ChIPSeq_Scripts/extractChromosomalRegion.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/ChIPSeq_Scripts/extractChromosomalRegion.py

MuG - FASTQ Pipelines Documentation, Release 0.1

10.1.2 iDamID-Seq Test Data

Test Data
Dataset
Stable ID | SRR3714775
Citation Franks et al 2016
Genome
Assembly GRCh38
Chromosome | 22
Start 15000000
End 19999999
Method

The full dataset was downloaded from ENA aligned to the genome using GEM.

ac.uk/voll/fastq/SRR371/005/SRR3714775/SRR3714775.
.uk/voll/fastq/SRR371/005/SRR3714775/SRR3714776.
.uk/voll/fastq/SRR371/005/SRR3714775/SRR3714777.
.uk/voll/fastq/SRR371/005/SRR3714775/SRR3714778.

fastqg.gz
fastg.gz
fastg.gz
fastqg.gz

ebi.
ebi.
ebi.
ebi.

ftp://ftp.sra.
ftp://ftp.sra.
ftp://ftp.sra.
ftp://ftp.sra.

wget
wget
wget
wget

ac
ac
ac

"http://www.ebi.ac.uk/ena/data/view/CM000684.2&display=fastasdownload=fastas
-0 GCA_000001405.22.chr22.fasta

wget
—filename=entry.fasta"

bwa index GCA_000001405.22.chr22.fasta

20

21

22

23

24

25

bwa aln -g 5 —-f SRR3714775.fastqg.sai

bwa aln -g 5 —-f SRR3714776.fastqg.sai

bwa aln —-g 5 —-f SRR3714777.fastqg.sai

bwa aln -g 5 —-f SRR3714778.fastqg.sai

bwa samse —-f SRR3714775.fastg.sam GCA_000001405.22.chr22.fasta SRR3714775.fastqg.sai
—~SRR3714775.fastqg

bwa samse —-f SRR3714776.fastg.sam GCA_000001405.22.chr22.fasta SRR3714776.fastqg.sai
—SRR3714776.fastqg

bwa samse -f SRR3714777.fastg.sam GCA_000001405.22.chr22.fasta SRR3714777.fastqg.sai
—SRR3714777.fastqg

bwa samse —-f SRR3714778.fastg.sam GCA_000001405.22.chr22.fasta SRR3714778.fastqg.sai
—SRR3714778.fastqg

samtools view -h —-o SRR3714775.sam SRR3714775.bam

samtools view -h -o SRR3714776.sam SRR3714776.bam

samtools view -h -o SRR3714777.sam SRR3714777.bam

samtools view -h -o SRR3714778.sam SRR3714778.bam

awk 'BEGIN { FS = "[[:space:]]+" } ; $3 ~ /CM000684/ {print $1}' SRR3714775.sam >
«—SRR3714775.chr22.sam

awk 'BEGIN { FS = "[[:space:]]+" } $3 ~ /CM000684/ {print $1}' SRR3714776.sam > _

—SRR3714776.chr22.sam (continues on next page)

100 Chapter 10. Testing

http://europepmc.org/abstract/MED/27198230

27

28

29

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

awk 'BEGIN { FS = "[[:space:]]+" } ; $3 ~ /CM000684/ {print $1}' SRR3714777.sam >
—SRR3714777.chr22.sam
awk 'BEGIN { FS = "[[:space:]]+" } ; $3 ~ /CM000684/ {print $1}' SRR3714778.sam >

—SRR3714778.chr22.sam

python scripts/ExtractRowsFromFASTQs.py —-—-input_1 tests/data/SRR3714775.fastg —--rows,
—tests/data/SRR3714775.chr22.sam —--output_tag profile
python scripts/ExtractRowsFromFASTQs.py ——input_1 tests/data/SRR3714776.fastg —-rows,_
—tests/data/SRR3714776.chr22.sam —--output_tag profile
python scripts/ExtractRowsFromFASTQs.py —-—input_1 tests/data/SRR3714777.fastq —-rows,_
—tests/data/SRR3714777.chr22.sam —-output_tag profile
python scripts/ExtractRowsFromFASTQs.py ——input_1 tests/data/SRR3714778.fastg —-rows,
—tests/data/SRR3714778.chr22.sam —--output_tag profile

The alignments were then filtered with BioBamBam and peak calling was performed with iDEAR and a suitable region
with a number of peaks was identified. The chromosomal region was extract and the matching reads to this region
were identified. To reduce the number of reads that matched so that it could be used as a test set for the code base
every other read was selected so that a reasonable number of reads we present. This mean that there are results when
running the test, but generating the alignments does not take too long to compute.

sed -n 539916,556583p GCA_000001405.chr22.fasta > GCA_000001405.chr22ss.fasta
sed —-n 5002,11669p idear.Human.GCA_000001405.22.fasta >> idear.Human.GCA_000001405.22.
—subset.fasta

Test Scripts

The following are the tests for checking that the tools in the Hi-C pipeline are functioning correctly.

The tests should be run in this order so that the required input files are generated at the correct stage.

pytest -m idamidseq tests/test_bwa_indexer.py
pytest -m idamidseq tests/test_bwa_aligner.py
pytest -m idamidseq tests/test_biobambam.py
pytest —m idamidseq tests/test_bsgenome.py
pytest -m idamidseq tests/test_idear.py

These can be called as part of a single tool chain with:

python tests/test_toolchains.py --pipeline idamidseq

10.1.3 Test Data for MNase-seq pipeline
The following document is for the preparation of data set required for testing the MNase-seq pipeline. The document
has been written with macOS Sierra in mind, although many of the commands are cross platform (*nix) compliant.

You would need to have the tools listed in “Prerequisites” installed on your system. For more details on installing the
tools for this pipeline please refer to

http://multiscale- genomics.readthedocs.io/projects/mg-process-fastq/en/latest/full _installation.html

If you already have certain packages installed feel free to skip over certain steps. Likewise the bin, lib and code
directories are relative to the home dir; if this is not the case for your system then make the required changes when
running these commands.

10.1. Sample Data 101

http://multiscale-genomics.readthedocs.io/projects/mg-process-fastq/en/latest/full_installation.html

MuG - FASTQ Pipelines Documentation, Release 0.1

Prerequisites

« BWA
e Samtools

* iNPS

Note: iNPS will only run within a Python 3 or above environment

Data set for genome file

Filtering for required coverage

Download the fasta file for Mouse chromosome 19 from

wget "http://www.ebi.ac.uk/ena/data/view/CM001012&display=fasta&download=fastas
—filename=CM001012.fasta" -O Mouse.CM001012.2.fasta

Download the fastq file from

’wget ftp://ftp.sra.ebi.ac.uk/voll/fastq/DRRO00/DRR0O00386/DRR000386.fastg.gz

Unzip this file.

’qunzip DRR000386.fastg.gz

Index the fasta file

’bwa index Mouse.CM001012.2.fasta

Align the fastq file

’bwa aln Mouse.CM001012.2.fasta DRR000386.fastg >Mouse.CM001012.2.sai

And make the sam file

bwa samse Mouse.CM001012.2.fasta Mouse.CM001012.2.sai DRR000386.fastg >Mouse.CM001012.
—2.sam

Filter out the aligned reads from the above sam file.

’awk '$3 = "x"' Mouse.CM001012.2.sam >Mouse.CM001012.2.filtered.sam

Sort the sam file

’samtools sort Mouse.CM001012.2.filtered.sam >Mouse.CM001012.2.sorted.sam

Find the depths of coverage from the sorted file

’samtools depth Mouse.CM001012.2.sorted.sam >Mouse.CM001012.2.dp

From the depth file, find regions with >= 70 depth, spanning over >=55 base pairs. = You may get
the script for this from: https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/MNaseSeq_Scripts/
traverseForCoverageRegion_MNase.py

102 Chapter 10. Testing

https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/MNaseSeq_Scripts/traverseForCoverageRegion_MNase.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/MNaseSeq_Scripts/traverseForCoverageRegion_MNase.py

MuG - FASTQ Pipelines Documentation, Release 0.1

Run it using:

python traverseForCoverageRegion_MNase.py path/to/Mouse.CM001012.2.dp

Running this script would print the spanning regions. Running this script for this data set gives multiple regions. The
output is in the format : start - end - depth. The one at the end has a maximal coverage from this data set. Since it is
a continuous region, you may take the first starting base pair and the last ending base pair, as inputs for the next step.
(Take out 1000 and add in 1000 to these respectively to get upstream and downstream spanning bases)

Extract the corresponding fasta sequence from the chromosome file for the positions retrieved from the above
step. Checkout file from https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/MNaseSeq_Scripts/
extractChromosomalRegion.py and run using command:

python extractChromosomalRegion.py path/to/original/fasta/file path/to/output/file/
—for/region/inps.Mouse.GRCm38.fasta starting_base_position ending_base_position

Making the Fastq file

Index the fasta file for the selected region

’bwa index inps.Mouse.GRCm38.fasta

Align the fastq file

’bwa aln inps.Mouse.GRCm38.fasta DRR000386.fastg >inps.Mouse.GRCm38.sai

And make the sam file

bwa samse inps.Mouse.GRCm38.fasta inps.Mouse.GRCm38.sai DRR000386.fastg >inps.Mouse.
—GRCm38.sam

Filter this sam file for the reads which aligned with chromosome 19 using the following command:

awk '$3 != "«"' inps.Mouse.GRCm38.sam >inps.Mouse.GRCm38.sam.19.sam

From the filtered reads from the above output file, extract the corresponding entries in fastq file. You may do this using
the file at https://github.com/Multiscale- Genomics/mg-misc-scripts/blob/master/MNaseSeq_Scripts/makeFastQFiles.

Py

and running it via command line:

python makeFastQFiles.py —--samfile path/to/inps.Mouse.GRCm38.sam.19.sam --fastQfile /
—path/to/DRR000386.fastq ——pathToOutput /path/to/save/output/fastqg/file/to/ —-—
—fastgOut DRR0O00386.MNaseseq.fastqg

Shorten this file by running the script at https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/
MNASeq_Scripts/randomSeqSelector.py

using

python randomSegSelector.py DRR0O00386.MNaseseq.fastg inps.Mouse.DRR000386.fastqg

The fastq file in the above step and fasta file inps.Mouse.GRCm38.fasta together make up the data set for MNase-seq
pipeline

10.1. Sample Data 103

https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/MNaseSeq_Scripts/extractChromosomalRegion.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/MNaseSeq_Scripts/extractChromosomalRegion.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/MNaseSeq_Scripts/makeFastQFiles.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/MNaseSeq_Scripts/makeFastQFiles.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/MNASeq_Scripts/randomSeqSelector.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/MNASeq_Scripts/randomSeqSelector.py

MuG - FASTQ Pipelines Documentation, Release 0.1

10.1.4 Test Data for RNA-seq pipeline
The following document is for the preparation of data set required for testing the RNA-seq pipeline. The document
has been written with macOS Sierra in mind, although many of the commands are cross platform (*nix) compliant.

You would need to have the tools listed in “Prerequisites” installed on your system. For more details on installing the
tools for this pipeline please refer to

http://multiscale- genomics.readthedocs.io/projects/mg-process-fastg/en/latest/full_installation.html

If you already have certain packages installed feel free to skip over certain steps. Likewise the bin, lib and code
directories are relative to the home dir; if this is not the case for your system then make the required changes when
running these commands.

Prerequisites
¢ Kallisto
» Samtools
Data set for genome file

Go to Ensemble website >> Human >> Example gene

http://www.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000139618;r=13:32315474-
32400266

Copy the chromosome number and coordinates given in the “location” field. Go to BioMart (top panel), and select
Filters from the left panel. Expand Regions and enter the information retrieved above.

Click on “Attributes” in the left panel. Select Gene stable ID, Transcript stable ID from Features. Select cDNA
sequences from Sequences radio button.

Click on the Results button above the left panel. Export results to fasta file.

Index this file using Kallisto indexer:

kallisto index -1 kallisto.Human.GRCh38.fasta.idx /path/to/file/exportSequences.fasta

Download the fastq files

wget ftp://ftp.sra.ebi.ac.uk/voll/fastq/ERRO030/ERR030872/ERR030872_1.fastqg.qgz
wget ftp://ftp.sra.ebi.ac.uk/voll/fastq/ERRO30/ERR030872/ERR030872_2.fastqg.qgz

Run the Kallisto quantifier using command:

kallisto quant —-i kallisto.Human.GRCh38.fasta.idx —-o out —--pseudobam /path/to/
—ERR030872_1.fastqg.gz /path/to/ERR030872_2.fastg.gz >kallisto.ERR030872.sam

Filter the aligned sequence entries from the above sam file:

awk '$3 != "«"' kallisto.ERR030872.sam >kallisto.ERR030872.filtered.sam

Unzip the fastq files.

unzip ERR030872_1.fastqg.gz
unzip ERR030872_2.fastqg.gz

104 Chapter 10. Testing

http://multiscale-genomics.readthedocs.io/projects/mg-process-fastq/en/latest/full_installation.html

MuG - FASTQ Pipelines Documentation, Release 0.1

Checkout https://github.com/Multiscale- Genomics/mg-misc-scripts/blob/master/RNASeq_Scripts/makeFastQFiles.
py and use the following command to generate the fastq files:

python /path/to/makeFastQFiles.py —-samfile kallisto.ERR030872.filtered.sam ——
—fastQfile ERR030872_1.fastg ——-pathToOutput /path/to/make/fastgFile/ —--fastqgOut,,
—~ERR030872_1.RNAseq.fastqg

python /path/to/makeFastQFiles.py —-samfile kallisto.ERR030872.filtered.sam ——
—fastQfile ERR030872_2.fastg —-—-pathToOutput /path/to/make/fastgFile/ —--fastqgOut,,
—~ERR030872_2.RNAseq.fastqg

Shorten these files by running the script at https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/
RNASeq_Scripts/randomSeqgSelector.py using

python PythonScripts/randomSeqgSelector.py ERR030872_1.RNAseq.fastqg kallisto.Human.
—~ERR030872_1.fastqg
python PythonScripts/randomSeqgSelector.py ERR030872_2.RNAseq.fastqg kallisto.Human.
—~ERR030872_2.fastqg

Then zip them:

gzip kallisto.Human.ERR030872_1.fastqg
gzip kallisto.Human.ERR030872_2.fastqg

10.1.5 WGBS Test Data

Test Data
Dataset
Stable ID | SRR892982
Citation Sun et al 2014
Genome
Assembly GRChmS, chr19
Chromosome | 19
Start 3000000
End 4020000
Method

The full dataset was downloaded from ENA aligned to the genome using GEM.

wget ftp://ftp.sra.ebi.ac.uk/voll/fastq/SRR892/SRR892982/SRR892982_1.fastg.gz
wget ftp://ftp.sra.ebi.ac.uk/voll/fastq/SRR892/SRR892982/SRR892982_2.fastqg.qgz
gunzip SRR892982_1.fastg.gz
gunzip SRR892982_2.fastqg.gz

wget "http://www.ebi.ac.uk/ena/data/view/CM001012&display=fasta&download=fastas
—filename=entry.fasta" -0 mouse.GRCm38.19.fasta

(continues on next page)

10.1. Sample Data 105

https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/RNASeq_Scripts/makeFastQFiles.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/RNASeq_Scripts/makeFastQFiles.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/RNASeq_Scripts/randomSeqSelector.py
https://github.com/Multiscale-Genomics/mg-misc-scripts/blob/master/RNASeq_Scripts/randomSeqSelector.py
http://europepmc.org/abstract/MED/24792119

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

sed -n 40022200,41046060p GCA_000001635.6.fasta > mouse.GRCm38.19.fasta

bowtie2-build mouse.GRCm38.19.fasta mouse.GRCm38.19.idx
bowtie2 —-x genome/mouse.GRCm38.19.idx -U data/SRR892982_1.fastg > SRR892982_1.sam
samtools view —-h —-o SRR892982_1.sam SRR892982_1.bam

awk 'BEGIN { FS = "[[:space:]]+" } ; $3 ~ /CM001012/ {print $1}' SRR892982_1.sam > _
<—+SRR892982_1.chrl9.rows

python scripts/ExtractRowsFromFASTQs.py ——input_1 tests/data/SRR892982_1.fastg ——
—input_2 tests/data/SRR892982_2.fastq —--rows SRR892982_1.chrl9.rows —--output_tag,
—profile

mv data/tmp/SRR892982_1.profile_0.fastq data/SRR892982_1.chrl9.fastqg
mv data/tmp/SRR892982_2.profile_0.fastg data/SRR892982_2.chrl9.fastqg

bowtie2 —-x genome/mouse.GRCm38.19.idx -1 data/SRR892982_1.chrl9.fastg -2 data/
—SRR892982_2.chrl9.fastg > SRR892982_1.chrl9.sam

There are a range of positive and negative peaks between 3000000 and 4020000. Subselect the genome and matching
FASTQ reads for the required subsection:

head -n 1 mouse.GRCm38.19.fasta > 3M/mouse.GRCm38.19.3M.fasta
sed -n 50001,67001lp mouse.GRCm38.19.fasta >> 3M/mouse.GRCm38.19.3M.fasta

bowtie2-build 3M/mouse.GRCm38.19.3M.fasta 3M/mouse.GRCm38.19.3M.1idx

bowtie2 -p 4 -x 3M/mouse.GRCm38.19.3M.idx -1 SRR892982_1.chrl9.fastq -2 SRR892982_2.
—chrl9.fastq > 3M/SRR892982.chrl19.3M.sam

samtools view —-h —-o 3M/SRR892982.chrl19.3M.sam 3M/SRR892982.chrl19.3M.bam

python scripts/ExtractRowsFromFASTQs.py ——input_1 SRR892982_1.chrl9.fastg —-input_2
<+SRR892982_2.chrl9.fastg —-rows 3M/SRR892982.chrl19.3M.rows —-—-output_tag subset

mv tmp/SRR892982_1.chrl9.subset_0.fastg 3M/SRR892982_1.chrl9.3M.fastqg
mv tmp/SRR892982_2.chrl9.subset_0.fastg 3M/SRR892982_2.chrl9.3M.fastqg

This has enough load to test the system, while also generating results in the output files.

These files are then saved in the tests/data directory as:

bsSeeker.Mouse.GRCm38.fasta
bsSeeker.Mouse.SRR892982_1.fastqg.gz
bsSeeker.Mouse.SRR892982_2.fastqg.gz

These files were too large for use within the Travis tst environment, so the number of entries was reduced by taking
every other read:

sed -n —-e '0~9{N;N;N;N;p}' tests/data/bsSeeker.Mouse.SRR892982_1.fastqg > tests/data/
—test_bsSeeker.Mouse.SRR892982_1.fastqg
sed -n —e '0~9{N;N;N;N;p}' tests/data/bsSeeker.Mouse.SRR892982_2.fastq > tests/data/
—test_bsSeeker.Mouse.SRR892982_2.fastqg

mv tests/data/test_bsSeeker.Mouse.SRR892982_1.fastq tests/data/bsSeeker.Mouse.
—SRR892982_1.fastqg
mv tests/data/test_bsSeeker.Mouse.SRR892982_2.fastg tests/data/bsSeeker.Mouse.
—SRR892982_2.fastqg

(continues on next page)

106 Chapter 10. Testing

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

gzip tests/data/bsSeeker.Mouse.SRR892982_1.fastqg
gzip tests/data/bsSeeker.Mouse.SRR892982_2.fastqg

Test Scripts

The following are the tests for checking that the tools in the WGBS pipeline are functioning correctly.

The tests should be run in this order so that the required input files are generated at the correct stage.

pytest —m
pytest —-m
pytest -m
pytest —m
pytest —-m

wgbs
wgbs
wgbs
wgbs
wgbs

tests/test_fastgc_validation.py
tests/test_bs_seeker_filter.py

tests/test_bs_seeker_indexer.py
tests/test_bs_seeker_aligner.py

tests/test_bs_seeker_methylation_caller.py

These can be called as part of a single tool chain with:

python tests/test_toolchains.py --pipeline wgbs

10.1.6 Hi-C Test Data

Test Data

Dataset

Genome

Method

The full dataset was downloaded from ENA aligned to the genome using GEM.

Stable ID | SRR1658573
Citation Rao et al 2014
Assembly GRCh38
Chromosome | 21

Start 15000000
End 19999999

wget ftp://ftp.sra.ebi.ac.uk/voll/fastq/SRR165/003/SRR1658573/SRR1658573_1.fastqg.gz
wget ftp://ftp.sra.ebi.ac.uk/voll/fastq/SRR165/003/SRR1658573/SRR1658573_2.fastqg.gz

wget "http
—~CM000667
—~CM000674
—CM000681

://www.ebi.ac.uk/ena/data/view/CM000663.2,CM000664.2,CM000665.2,CM000666.2,

.2,CM000668.2,CM000669.2,CM000670.2,CM000671.2,CM000672.2,CM000673.2,
.2,CM000675.2,CM000676.2,CM000677.2,CM000678.2,CM000679.2,CM000680.2,
.2,CM000682.2,CM000683.2,CM000684.2,CM000685.2,CM000686.2,J01415.2&

—~display=fasta&download=fasta&filename=entry.fasta" -0 GCA_000001405.22.fasta

10.1. Sample Data

107

20

21

22

23

24

25

26

27

28

1

MuG - FASTQ Pipelines Documentation, Release 0.1

from tool.common import common

genome_file = "GCA_000001405.22.fasta"
new_genome_file = "GCA_000001405.22_gem.fasta"
common_handle = common ()

common_handle.replaceENAHeader (genome_file, new_genome_file)
idx_loc = common_handle.gem_index_genome (new_genome_file, new_genome_file)

from pytadbit.mapping.mapper import full_mapping

fastg file_1 = "SRR1658573_1.fastqg"
fastg_file_2 = "SRR1658573_2.fastg"
output_dir = "mapped_reads"

windows = None

enzyme_name = "MboIl"

map_files_1 = full_mapping(
idx_loc, fastg_file, output_dir,
r_enz=enzyme_name, windows=windows, frag_map=True, nthreads=32,
clean=True, temp_dir='/tmp/"'

)

map_files_2 = full_mapping(
idx_loc, fastqg _file, output_dir,
r_enz=enzyme_name, windows=windows, frag_map=True, nthreads=32,
clean=True, temp_dir='/tmp/'

A list of FASTQ ids that had aligned to the genome were then extracted:

grep chr2l mapped_reads/SRR1658573_1_full_1-100.map | tr "\t" "~" | cut -d"~" -fl1 -£f5
| tr "™ "\t" | awk '(NR==1) || (($4>15000000) && ($4<20000000))"' | tr "\t" "~" |
—cut -d "~" —-fl > SRR1658573_1_chr21_1-100.row

grep chr2l mapped_reads/SRR1658573_2_full_1-100.map | tr "\t" "~" | cut -d"~" -fl1 -£f5
| tr "™ "\t" | awk '(NR==1) || (($4>15000000) && ($4<20000000))"' | tr "\t" "~" |,
—cut -d "~" —-fl > SRR1658573_2_chr21_1-100.row

The IDs were filtered to ensure matching pairs in both files:

grep -Fx —-f SRR1658573_1_chr21_1-100.row SRR1658573_2_chr21_1-100.row > SRR1658573_
—chr2l.row

The split_paired_fastq.py was used to divide the original FASTQ files into chunks of 1000000 reads. The Extrac-
tRowsFromFASTQ.py script was then used to extract the matching FASTQ pairs from each of the FASTQ files in
parallel. All of the individual FASTQ files were then concatenated together to form the final 2 FASTQ test files. The
commands for this were:

python split_paired_fastg.py —-—input_1 SRR1658573_1.fastg ——input_2 SRR1658573_1.fastg

Test Scripts

The following are the tests for checking that the tools in the Hi-C pipeline are functioning correctly.

The tests should be run in this order so that the required input files are generated at the correct stage.

108 Chapter 10. Testing

MuG - FASTQ Pipelines Documentation, Release 0.1

pytest tests/test_gem_indexer.py

pytest tests/test_tb_full_mapping.py
pytest tests/test_tb_parse_mapping.py
pytest tests/test_tb_filter.py

pytest tests/test_tb_generate_tads.py
pytest tests/test_tb_save_hdf5_matrix.py

These can be called as part of a single tool chain with:

’python tests/test_toolchains.py —--pipeline hic

10.2 Pipelines

There is a test for each of the tools. This uses the “process” scripts to run each of the tools. This is to ensure that the
pipeline scripts are able to call out to each of the tools and the correct parameters are handed to each one.

10.2.1 ChlIP-Seq

To run the pipeline test:

pytest tests/test_pipeline_chipseq.py

Methods

tests.test_pipeline_chipseq.test_chipseq pipeline_00 ()
Test case to ensure that the ChIP-seq pipeline code works.

Running the pipeline with the test data from the command line:

runcompss \
—--lang=python \
——library_path=${HOME}/bin \
—-—-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/ \
—--log_level=debug \
process_chipseq.py \
——taxon_id 9606 \
——genome /<dataset_dir>/Human.GCA_000001405.22.fasta \
-—assembly GRCh38 \
--file /<dataset_dir>/DRR000150.22.fastqg
tests.test_pipeline_chipseq.test_chipseq pipeline_01 ()
Test case to ensure that the ChIP-seq pipeline code works.
Running the pipeline with the test data from the command line:
runcompss \
—--lang=python \
——library_path=${HOME} /bin \
—-—pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/ \
--log_level=debug \
process_chipseq.py \
——taxon_id 9606 \

(continues on next page)

10.2. Pipelines 109

MuG - FASTQ Pipelines Documentation, Release 0.1

(continued from previous page)

—-—-genome /<dataset_dir>/Human.GCA_000001405.22.fasta \
——assembly GRCh38 \
--file /<dataset_dir>/DRR000150.22.fastqg

Sample Data

Test Data for ChIP-seq pipeline

10.2.2 iDamID-Seq

To run the pipeline test:

pytest tests/test_pipeline_idamidseq.py

Methods

tests.test_pipeline_idamidseq.test_idamidseq pipeline_00 ()
Test case to ensure that the ChIP-seq pipeline code works.

Running the pipeline with the test data from the command line:

runcompss

—-—lang=python

—-library_path=${HOME}/bin

——pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/

—-—log_level=debug

process_damidseq.py \
——taxon_id 9606
—-—-genome /<dataset_dir>/Human.GCA_000001405.22.fasta
—-—assembly GRCh38 \
—--file /<dataset_dir>/DRR000150.22.fastqg

~ s~

~

tests.test_pipeline_idamidseq.test_idamidseq pipeline_01 ()
Test case to ensure that the ChIP-seq pipeline code works.

Running the pipeline with the test data from the command line:

runcompss

—-—lang=python

—--library_path=${HOME} /bin

——-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/

—-—-log_level=debug

process_damidseq.py \
——taxon_id 9606
—-—genome /<dataset_dir>/Human.GCA_000001405.22.fasta
——assembly GRCh38 \
—-—file /<dataset_dir>/DRR000150.22.fastqg

P

~

Sample Data

Test Data for ChlP-seq pipeline

110 Chapter 10. Testing

MuG - FASTQ Pipelines Documentation, Release 0.1

10.2.3 Genome Indexing

To run the pipeline test:

pytest tests/test_pipeline_genome.py

Methods

tests.test_pipeline_genome.test_genome_pipeline_00 ()
Test case to ensure that the Genome indexing pipeline code works.

Running the pipeline with the test data from the command line:

runcompss \
--lang=python \
——library_path=${HOME} /bin \
——-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/ \
--log_level=debug \
process_genome.py \
——taxon_id 9606 \
—-—genome /<dataset_dir>/Human.GCA_000001405.22.fasta \
——assembly GRCh38 \
—-—file /<dataset_dir>/DRR000150.22.fastqg
tests.test_pipeline_genome.test_genome_pipeline_ 01 ()
Test case to ensure that the Genome indexing pipeline code works.
Running the pipeline with the test data from the command line:
runcompss \
—--lang=python \
—-library_path=${HOME} /bin \
—-—-pythonpath=/<pyenv_virtenv_dir>/1lib/python2.7/site-packages/ \
—--log_level=debug \
process_genome.py \
——taxon_id 9606 \
——-genome /<dataset_dir>/Human.GCA_000001405.22.fasta \
——assembly GRCh38 \
—--file /<dataset_dir>/DRR000150.22.fastqg

Sample Data

Uses the genome sequences required by all the tools and pipelines

10.2.4 Hi-C

To run the pipeline test:

pytest tests/test_pipeline_tb.py

10.2. Pipelines 111

MuG - FASTQ Pipelines Documentation, Release 0.1

Methods

tests.test_pipeline_tb.test_tb_pipeline ()
Test case to ensure that the Hi-C pipeline code works.

Running the pipeline with the test data from the command line:

runcompss
——lang=python
-—library_path=/home/compss/bin
——pythonpath=/<pyenv_virtenv_dir>//lib/python2.7/site-packages/
—--log_level=debug
process_hic.py
——taxon_id 9606
—-—-genome /<dataset_dir>/tb.Human.GCA_000001405.22_gem. fasta
——assembly GRCh38
—-filel /<dataset_dir>/tb.Human.SRR1658573_1.fastqg
--file2 /<dataset_dir>/tb.Human.SRR1658573_2.fastqg
—-—genome_gem /<dataset_dir>/tb.Human.GCA_000001405.22_gem.fasta.gem
——taxon_id 9606
——enzyme_name Mbol
—-—-resolutions 10000,100000
--windowsl 1,100
——windows2 1,100
—--normalized 1
--tag tb.Human.SRR1658573
--window_type frag

P S O S A S

Sample Data

Hi-C Test Data

10.2.5 MNase-Seq

To run the pipeline test:

pytest tests/test_pipeline_mnaseseq.py

Methods

tests.test_pipeline_mnaseseq.test_mnaseseq pipeline ()
Test case to ensure that the MNase-seq pipeline code works.

Running the pipeline with the test data from the command line:

runcompss

—-lang=python
——library_path=${HOME} /bin
—-—-pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/
—--log_level=debug
process_mnaseseq.py

——taxon_id 10090

—-—-genome /<dataset_dir>/Mouse.GRCm38.fasta

——assembly GRCm38

—--file /<dataset_dir>/DRR000386.fastqg

PP g A

112 Chapter 10. Testing

MuG - FASTQ Pipelines Documentation, Release 0.1

Sample Data

Test Data for MNase-seq pipeline

10.2.6 RNA-Seq

To run the pipeline test:

pytest tests/test_pipeline_rnaseq.py

Methods

tests.test_pipeline_rnaseq.test_rnaseq pipeline ()
Test case to ensure that the RNA-seq pipeline code works.

Running the pipeline with the test data from the command line:

runcompss

—-—lang=python
——library_path=${HOME} /bin
——pythonpath=/<pyenv_virtenv_dir>/lib/python2.7/site-packages/
—--log_level=debug
process_rnaseq.py

——taxon_id 9606

—-—-genome /<dataset_dir>/Human.GRCh38.fasta

—-—assembly GRCh38

—--file /<dataset_dir>/ERR030872_1.fastqg

--file2 /<dataset_dir>/ERR030872_2.fastqg

P A

Sample Data

Test Data for RNA-seq pipeline

10.2.7 Whole Genome Bisulfate Sequencing (WGBS)

To run the pipeline test:

pytest tests/test_pipeline_wgbs.py

Methods
Sample Data

WGBS Test Data

10.3 Tools

As the data stored is only the raw data, each of the sets of tools has been packaged up into a tool chain to run each of
the tools without failing. This has been done with the tests.test_toolchains.py script.

10.3. Tools 113

MuG - FASTQ Pipelines Documentation, Release 0.1

python tests/test_toolchains.py —--pipeline [genome | chipseqg | hic | mnaseseq |

—rnaseq | wgbs]

This script automates the running of each of the tools that are required for a given pipeline.

10.3.1 Methods

tests.test_toolchains.all toolchain (verbose=False)
Runs the tests for all of the tools

This set is only required for determining code coverage.

tests.test_toolchains.biobambam toolchain (verbose=Fualse)
Runs the tests for all of the tools from the BWA pipeline

Runs the following tests:

pytest -m chipseq tests/test_fastgc_validation.py
pytest -m chipseq tests/test_bwa_indexer.py
pytest -m chipseq tests/test_bwa_aligner.py
pytest -m chipseq tests/test_biobambam.py

tests.test_toolchains.bowtie2_toolchain (verbose=False)
Runs the tests for all of the tools from the BWA pipeline

Runs the following tests:

pytest -m bowtie2 tests/test_fastgc_validation.py
pytest -m bowtie2 tests/test_bowtie_indexer.py
pytest -m bowtie2 tests/test_bowtie2_aligner.py

tests.test_toolchains.bwa_toolchain (verbose=False)
Runs the tests for all of the tools from the BWA pipeline

Runs the following tests:

pytest -m bwa tests/test_fastqgc_validation.py
pytest -m bwa tests/test_bwa_indexer.py
pytest -m bwa tests/test_bwa_aligner.py

tests.test_toolchains.chipseq toolchain (verbose=False)
Runs the tests for all of the tools from the ChIP-seq pipeline

Runs the following tests:

pytest -m chipseq tests/test_fastgc_validation.py
pytest -m chipseq tests/test_bwa_indexer.py
pytest -m chipseq tests/test_bwa_aligner.py
pytest -m chipseq tests/test_biobambam.py

pytest -m chipseq tests/test_macs2.py

tests.test_toolchains.genome_toolchain (verbose=False)
Runs the tests for all of the tools from the Genome indexing pipeline

Runs the following tests:

114 Chapter 10

. Testing

MuG - FASTQ Pipelines Documentation, Release 0.1

pytest -m genome tests/test_bowtie_indexer.py
pytest -m genome tests/test_bwa_indexer.py
pytest -m genome tests/test_gem_indexer.py

tests.test_toolchains.hiec_toolchain (verbose=False)
Runs the tests for all of the tools from the Hi-C pipeline

Runs the following tests:

pytest -m hic tests/test_fastgc_validation.py
pytest —m hic tests/test_gem_indexer.py

pytest -m hic tests/test_tb_full_mapping.py
pytest -m hic tests/test_tb_parse_mapping.py
pytest —-m hic tests/test_tb_filter.py

pytest -m hic tests/test_tb_normalize.py

pytest -m hic tests/test_tb_segment.py

pytest —-m hic tests/test_tb_generate_tads.py
pytest -m hic tests/test_tb_bin.py

pytest -m hic tests/test_tb_save_hdf5_matrix.py

tests.test_toolchains.idamidseq toolchain (verbose=False)
Runs the tests for all of the tools from the iDamID-seq pipeline

Runs the following tests:

pytest -m idamidseq tests/test_bwa_indexer.py
pytest -m idamidseq tests/test_bwa_aligner.py
pytest -m idamidseq tests/test_biobambam.py
pytest -m idamidseqg tests/test_bsgenome.py
pytest -m idamidseq tests/test_idear.py

tests.test_toolchains.mnaseseq toolchain (verbose=False)
Runs the tests for all of the tools from the MNase-seq pipeline

Runs the following tests:

pytest -m mnaseseq tests/test_fastgc_validation.py
pytest -m mnaseseq tests/test_bwa_indexer.py
pytest -m mnaseseq tests/test_bwa_aligner.py
pytest -m mnaseseq tests/test_inps.py

tests.test_toolchains.rnaseq toolchain (verbose=False)
Runs the tests for all of the tools from the RNA-seq pipeline

Runs the following tests:

pytest -m rnaseq tests/test_fastqgc_validation.py
pytest -m rnaseq tests/test_kallisto_indexer.py
pytest -m rnaseq tests/test_kallisto_quant.py

tests.test_toolchains.tidy_data()
Runs the tidy_data.sh script

tests.test_toolchains.wgbs_toolchain (verbose=0)
Runs the tests for all of the tools from the WGBS pipeline

Runs the following tests:

10.3. Tools 115

MuG - FASTQ Pipelines Documentation, Release 0.1

pytest
pytest
pytest
pytest
pytest

wgbs
wgbs
wgbs
wgbs
wgbs

tests/test_fastgc_validation.py
tests/test_bs_seeker_filter.py
tests/test_bs_seeker_indexer.py
tests/test_bs_seeker_aligner.py
tests/test_bs_seeker_methylation_caller.py

116

Chapter 10. Testing

cHAPTER 11

Indices and tables

* genindex
* modindex

e search

117

MuG - FASTQ Pipelines Documentation, Release 0.1

118 Chapter 11. Indices and tables

Python Module Index

P

process_align_bowtie, 16
process_align_bwa, 23
process_align_bwa_mem, 24
process_biobambam, 14
process_bs_seeker_aligner, 20
process_bs_seeker_filter, 21
process_bs_seeker_index, 18
process_bsgenome, 17
process_chipseq, 26
process_damidseq, 28
process_genomne, 13
process_hic, 36
process_1iNPS§S, 29
process_macs2, 30
process_mnasesedq, 32
process_rnaseq, 33
process_trim_galore, 35

t

tests, 109

tests.test_pipeline_chipseq, 109
tests.test_pipeline_genome, 111
tests.test_pipeline_idamidseq, 110
tests.test_pipeline_mnaseseq, 112
tests.test_pipeline_rnaseq, 113

tests.test_pipeline_tb, 112
tests.test_toolchains, 114
tool, 39

119

MuG - FASTQ Pipelines Documentation, Release 0.1

120 Python Module Index

Index

A

alignerUtils (class in tool.aligner_utils), 71
all_toolchain () (in module tests.test_toolchains),
114

B

bam_copy () (tool.bam_utils.bamUtils static method),
73

bam_copy () (tool.bam_utils.bamUtilsTask method), 75

bam_count_reads () (tool.bam_utils.bamUtils static

method), 73

bam_filter () (tool.bam_utils.bamUtils static
method), 73

bam_filter () (tool.bam_utils.bamUtilsTask method),
75

bam_index () (tool.bam_utils.bamUtils static method),
74

bam_index () (tool.bam_utils.bamUtilsTask method),
75

bam_list_chromosomes ()
(tool.bam_utils.bamUtils static ~ method),

74
bam_list_chromosomes ()
(tool.bam_utils.bamUtilsTask method), 75
bam_merge () (tool.bam_utils.bamUtils static method),

74

bam_merge () (tool.bam_utils.bamUtilsTask method),
75

bam_merge_10 () (tool.bam_utils.bamUtilsTask
method), 75

bam_merge_2 () (tool.bam_utils.bamUtilsTask
method), 76

bam_merge_3 () (tool.bam_utils.bamUtilsTask
method), 76

bam_merge_4 () (tool.bam_utils.bamUtilsTask
method), 76

bam_merge_5 () (tool.bam_utils.bamUtilsTask
method), 76

bam_paired_reads () (tool.bam_utils.bamUtils

static method), 74
bam_paired_reads () (tool.bam_utils.bamUtilsTask

method), 76
bam_sort () (tool.bam_utils.bamUtils static method),
74

bam_sort () (tool.bam_utils.bamUtilsTask method), 77

bam_split () (tool.bam_utils.bamUtils static method),
74

bam_stats () (tool.bam_utils.bamUtils static method),
74

bam_stats () (tool.bam_utils.bamUtilsTask method),
77

bam_to_bed ()
method), 74

bamUt ils (class in tool.bam_utils), 73

bamUtilsTask (class in tool.bam_utils), 75

biobambam (class in tool.biobambam_filter), 51

biobambam_filter_alignments ()
(tool.biobambam_filter.biobambam method),
51

biobambam_toolchain ()
tests.test_toolchains), 114

bowtie2_align_reads ()
(tool.aligner_utils.alignerUtils static method),
71

bowtie2_aligner_paired()
(tool.bowtie_aligner.bowtie2AlignerTool
method), 45

bowtie2_aligner_single ()
(tool.bowtie_aligner.bowtie2AlignerTool
method), 45

bowtie2_ indexer ()
(tool.bowtie_indexer.bowtielndexerTool
method), 41

(tool.bam_utils.bamUtils static

(in module

bowtie2_toolchain () (in module
tests.test_toolchains), 114

bowtie2_ untar_index ()
(tool.aligner_utils.alignerUtils method),

71
bowtie2AlignerTool (class in tool.bowtie_aligner),

121

MuG - FASTQ Pipelines Documentation, Release 0.1

45

bowtie_index_genome ()
(tool.aligner_utils.alignerUtils static method),
72

bowtieIndexerTool (class in tool.bowtie_indexer),
41

bs_seeker_aligner ()
(tool.bs_seeker_aligner.bssAlignerTool
method), 50

bs_seeker_aligner_single ()
(tool.bs_seeker_aligner.bssAlignerTool
method), 50

bsgenome_creater ()
(tool.forge_bsgenome.bsgenomeTool method),
41

bsgenomeTool (class in tool.forge_bsgenome), 41

bss_build_index ()
(tool.bs_seeker_indexer.bssIndexerTool
method), 42

bss_seeker_filter()
(tool.bs_seeker_filter.filterReadsTool method),
52

bssAlignerTool (class in tool.bs_seeker_aligner),
50

bssIndexerTool (class in tool.bs_seeker_indexer),
42

bwa_aligner_paired()
(tool.bwa_aligner.bwaAlignerTool method), 47

bwa_aligner_paired()
(tool.bwa_mem_aligner.bwaAlignerMEMTool
method), 48

bwa_aligner_single ()
(tool.bwa_aligner.bwaAlignerTool method), 47

bwa_aligner_single ()
(tool.bwa_mem_aligner.bwaAlignerMEMTool
method), 49

bwa_aln_align_reads_paired()

(tool.aligner_utils.alignerUtils method),
72

bwa_aln_align_reads_single ()
(tool.aligner_utils.alignerUtils method),

72
bwa_index_genome ()
(tool.aligner_utils.alignerUtils static method),
72
bwa_indexer ()
method), 43
bwa_mem_align_reads ()
(tool.aligner_utils.alignerUtils static method),

(tool.bwa_indexer.bwalndexerTool

72

bwa_toolchain () (in module tests.test_toolchains),
114

bwa_untar_index () (tool.aligner_utils.alignerUtils
method), 73

bwaAlignerMEMTool
tool.bwa_mem_aligner), 48

bwaAlignerTool (class in tool.bwa_aligner), 47

bwaIndexerTool (class in tool.bwa_indexer), 43

C

cd (class in tool.common), 71
check_header () (tool.bam_utils.bamUtils
method), 75
check_header ()
method), 77
chipseqg_toolchain () (in
tests.test_toolchains), 114
closeFastQ () (toolfastqreader.fastqreader method),
77
closeOutputFiles ()
method), 77
createOutputFiles ()
(tool.fastqreader.fastqreader method), 77

(class in

static
(tool.bam_utils.bamUtilsTask

module

(tool.fastqreader.fastqreader

E

eof () (tool.fastqreader.fastqreader method), 77

F

fastg match_paired_ends()
(tool.fastq_utils.fastqUtils
79
fastg_randomise ()
static method), 79
fastg _sort_file()
static method), 79
fastq_splitter (class in tool.fastq_splitter), 78
fastqgcTool (class in tool.validate_fastqc), 39
fastqreader (class in tool.fastqreader), 77
fastqUtils (class in tool.fastq_utils), 79
filterReadsTool (class in tool.bs_seeker_filter), 52

G

gem_index_genome ()
(tool.aligner_utils.alignerUtils static method),
73
gem_indexer ()
method), 44
gemIndexerTool (class in tool.gem_indexer), 44
genome_to_2bit () (tool.forge_bsgenome.bsgenomeTool
static method), 42
genome_toolchain ()
tests.test_toolchains), 114

static method),

(tool.fastq_utils.fastqUtils

(tool fastq_utils.fastqUltils

(tool.gem_indexer.gemIndexerTool

(in module

get_aln_paramns () (tool.bowtie_aligner.bowtie2AlignerTool

static method), 46

get_aln_params () (tool.bs_seeker_aligner.bssAlignerTool

static method), 51
get_aln_params () (tool.bwa_aligner.bwaAlignerTool
static method), 47

122

Index

MuG - FASTQ Pipelines Documentation, Release 0.1

get_bss_index_params ()
(tool.bs_seeker_indexer.bssIndexerTool
method), 43

static

load_gff_ucsc () (tool.kallisto_quant.kallistoQuantificationTool

static method), 56

get_chrom_size () (tool.forge_bsgenome. bsgenomeToJM

static method), 42
get_macs2_params ()
method), 56

(tool.macs2.macs2 static

macs?2 (class in tool.macs2), 56
macs2_peak_calling()
method), 56

(tool.macs2.macs2

get_mem_params () (tool.bwa_mem_aligner.bwaAlignespbleMIo@le ak_calling_nobgd ()

static method), 49

get_trimgalore_params ()
(tool.trimgalore.trimgalore
40, 53

static method),

Fi

hic_toolchain () (in module tests.test_toolchains),
115

idamidseqg_toolchain ()
tests.test_toolchains), 115

idear_peak_calling()
method), 54

idearTool (class in tool.idear), 54

incrementOutputFiles ()
(tool.fastqreader.fastqreader method), 77

inps (class in tool.inps), 55

inps_peak_calling () (foolinps.inps method), 55

K

kallisto_indexer ()
(tool.kallisto_indexer.kallistoIndexerTool
method), 44

kallisto_quant_paired()
(tool.kallisto_quant.kallistoQuantificationTool
method), 55

kallisto_qgquant_single ()
(tool.kallisto_quant.kallistoQuantificationTool
method), 55

kallisto_tsv2bed()
(tool.kallisto_quant.kallistoQuantificationTool
method), 56

kallisto_tsv2gff ()
(tool.kallisto_quant.kallistoQuantificationTool
method), 56

kallistoIndexerTool
tool.kallisto_indexer), 44

kallistoQuantificationTool
tool.kallisto_quant), 55

(in module

(tool.idear.idearTool

(class in

(class in

L

load_gff_ensembl ()
(tool.kallisto_quant.kallistoQuantificationTool
static method), 56

(tool.macs2.macs2 method), 57
mnaseseq_toolchain () (in
tests.test_toolchains), 115

module

N

next () (tool.fastqreader.fastqgreader method), 77

O

openFastQ ()
78

(tool.fastqreader.fastqreader method),

P

paired_splitter ()
(tool.fastq_splitter.fastq_splitter
78
process_align_bowtie (module), 16
process_align_bwa (module), 23
process_align_bwa_mem (module), 24
process_biobambam (class in process_biobambam),
15
process_biobambam (module), 14
process_bowtie (class in process_align_bowtie), 17
process_bs_seeker_aligner (class in pro-
cess_bs_seeker_aligner), 21
process_bs_seeker_aligner (module), 20
process_bs_seeker_filter (module), 21

method),

process_bs_seeker_index (class in pro-
cess_bs_seeker_index), 19

process_bs_seeker_index (module), 18

process_bsFilter (class in pro-

cess_bs_seeker_filter), 22
process_bsgenome (class in process_bsgenome), 18
process_bsgenome (module), 17
process_bwa (class in process_align_bwa), 24
process_bwa_mem (class in

cess_align_bwa_mem), 25
process_chipseq (class in process_chipseq), 27
process_chipseq (module), 26
process_damidseq (class in process_damidseq), 28
process_damidseq (module), 28
process_genome (class in process_genome), 14
process_genome (module), 13
process_hic (class in process_hic), 38
process_hic (module), 36
process_1iNPS (class in process_iNPS), 30
process_1iNPS (module), 29

pro-

Index

123

MuG - FASTQ Pipelines Documentation, Release 0.1

process_macs? (class in process_macs2), 31
process_macs?2 (module), 30
process_mnaseseq (class in process_mnaseseq), 33
process_mnaseseq (module), 32
process_rnaseq (class in process_rnaseq), 34
process_rnaseq (module), 33

process_trim_galore (class in pro-
cess_trim_galore), 36

process_trim_galore (module), 35

R

replaceENAHeader ()
(tool.aligner_utils.alignerUtils static method),
73

rnaseq_toolchain () (in module

tests.test_toolchains), 115
run () (process_align_bowtie.process_bowtie method),
17
run () (process_align_bwa.process_bwa method), 24
run () (process_align_bwa_mem.process_bwa_mem
method), 25
(process_biobambam.process_biobambam
method), 15

run ()

run () (tool.bwa_indexer.bwalndexerTool method), 43

run () (tool.bwa_mem_aligner.bwaAlignerMEMTool
method), 49

run () (tool.fastq_splitter.fastq_splitter method), 78

run () (toolforge_bsgenome.bsgenomeTool method), 42

run () (tool.gem_indexer.gemIndexerTool method), 44

run () (tool.idear.idearTool method), 54

run () (tool.inps.inps method), 55

run () (tool.kallisto_indexer.kallistoIndexerTool
method), 44

run () (tool.kallisto_quant.kallistoQuantificationTool
method), 56

run () (tool.macs2.macs2 method), 58

run () (tool.tb_bin.tbBinTool method), 64

run () (tool.th_filter.tbFilterTool method), 62

run () (tool.th_full_mapping.tbFullMappingTool
method), 58

run () (tool.tb_generate_tads.tbGenerateTADsTool

method), 66
run () (tool.tb_model.tbModelTool method), 67
run () (tool.th_normalize.tbNormalizeTool method), 63
run () (tool.th_parse_mapping.tbParseMappingTool
method), 59

run () (process_bs_seeker_aligner.process_bs_seeker_aligi&y () (tool.tb_save_hdf5_matrix.tbSaveAdjacencyHDF5Tool

method), 21
run ()
method), 22

(process_bs_seeker_filter.process_bsFilter

method), 66
run () (tool.tb_segment.tbSegmentTool method), 62
run () (tooltrimgalore.trimgalore method), 40, 53

run () (process_bs_seeker_index.process_bs_seeker_indexrun () (tool.validate_fastqc.fastgcTool method), 39

method), 19

run () (process_bsgenome.process_bsgenome method),
18

run () (process_chipseq.process_chipseq method), 27

run () (process_damidseq.process_damidseq method),
28

run () (process_genome.process_genome method), 14
run () (process_hic.process_hic method), 38

run () (process_iNPS.process_iNPS method), 30

run () (process_macs2.process_macs2 method), 31

run () (process_mnaseseq.process_mnaseseq method),

33

run () (process_rnaseq.process_rnaseq method), 34

run () (process_trim_galore.process_trim_galore
method), 36

run () (tool.biobambam_filter.biobambam method), 52

run () (tool.bowtie_aligner.bowtie2AlignerTool
method), 46

run () (tool.bowtie_indexer.bowtielndexerTool method),
41

run () (tool.bs_seeker_aligner.bssAlignerTool method),
51

run () (tool.bs_seeker_filter.filterReadsTool method), 52

run () (tool.bs_seeker_indexer.bssIndexerTool method),
43

run () (tool.bwa_aligner.bwaAlignerTool method), 48

run_aligner () (tool.bs_seeker_aligner.bssAlignerTool
method), 51

S

sam_to_lbam()

method), 75

(tool.bam_utils.bamUltils static

seq_read_stats () (tool.kallisto_quant.kallistoQuantificationTool

static method), 56

single_splitter ()
(tool.fastq_splitter.fastq_splitter
79

method),

T

tb_bin () (tool.tb_bin.tbBinTool method), 65

tb_filter () (tooltb_filter.tbFilterTool method), 62

tb_full_mapping_frag()
(tool.tb_full_mapping.tbFullMappingTool
method), 58

tbh_full_mapping_iter ()
(tool.tb_full_mapping.tbFullMappingTool
method), 59

tb_generate_tads ()
(tool.tb_generate_tads.tbGenerateTADsTool
method), 67

tb_hic_chr () (tool.tb_generate_tads.tbGenerateTADsTool
method), 67

124

Index

MuG - FASTQ Pipelines Documentation, Release 0.1

tb_matrix_hdf5 () (tool.tb_save_hdf5_matrix.tbSaveAdjaccneyHBES Tpnlpeline_tb (module), 112

method), 66

tb_merge_tad_files()
(tool.tb_generate_tads.tbGenerateTADsTool
method), 67

tb_model () (tool.tb_model.tbModelTool method), 68

tb_normalize () (tool.tb_normalize.tbNormalizeTool
method), 64

tb_parse_mapping_frag()
(tool.th_parse_mapping.tbParseMappingTool
method), 61

tb_parse_mapping_iter ()
(tool.tb_parse_mapping.tbParseMappingTool
method), 61

tb_segment ()
method), 63

tbBinTool (class in tool.th_bin), 64

tbFilterTool (class in tool.tb_filter), 62

tbFullMappingTool (class in tool.th_full_mapping),
58

tbGenerateTADsTool
tool.tb_generate_tads), 66

tbModelTool (class in tool.tb_model), 67

tbNormalizeTool (class in tool.tb_normalize), 63

tbParseMappingTool (class in
tool.tb_parse_mapping), 59

tbSaveAdjacencyHDF5Tool
tool.tb_save_hdf5_matrix), 66

tbSegmentTool (class in tool.tb_segment), 62

(tool.tb_segment.tbSegmentTool

(class in

(class in

test_chipseq_pipeline_00 () (in module
tests.test_pipeline_chipseq), 109
test_chipseq pipeline_01 () (in module
tests.test_pipeline_chipseq), 109
test_genome_pipeline_00 () (in module
tests.test_pipeline_genome), 111
test_genome_pipeline_01 () (in module
tests.test_pipeline_genome), 111
test_idamidseq pipeline_00() (in module
tests.test_pipeline_idamidseq), 110
test_idamidseq pipeline_01() (in module
tests.test_pipeline_idamidseq), 110
test_mnaseseq_pipeline () (in module
tests.test_pipeline_mnaseseq), 112
test_rnaseq_pipeline () (in module
tests.test_pipeline_rnaseq), 113
test_tb_pipeline () (in module

tests.test_pipeline_tb), 112
tests (module), 109
tests.test_pipeline_chipseq (module), 109
tests.test_pipeline_genome (module), 111
tests.test_pipeline_idamidseq (module),
110
tests.test_pipeline_mnaseseq (module), 112
tests.test_pipeline_rnaseq (module), 113

tests.test_toolchains (module), 114
tidy_data () (in module tests.test_toolchains), 115
tool (module), 39, 71
trimgalore (class in tool.trimgalore), 40, 53
trimgalore_paired () (tool.trimgalore.trimgalore
method), 40, 53
trimgalore_single ()
method), 40, 53
trimgalore_version ()
(tool.trimgalore.trimgalore
53

(tool.trimgalore.trimgalore

method), 41,

U

untar_index () (tool.bowtie_aligner.bowtie2AlignerTool
method), 46

untar_index ()
method), 48

untar_index () (tool.bwa_mem_aligner.bwaAlignerMEMTool
method), 49

(tool.bwa_aligner.bwaAlignerTool

Vv

validate () (tool.validate_fastqc.fastqcTool method),
39

W

wgbs_toolchain () (in module tests.test_toolchains),
115

writeOutput ()
method), 78

(tool.fastqreader.fastqreader

Index

125

	Requirements and Installation
	Requirements
	Installation
	Documentation

	Full Installation
	Setup the System Environment
	Setup pyenv and pyenv-virtualenv
	Installation Process
	Setup the symlinks
	Prepare the Python Environment
	Post Installation Tidyup

	Pipelines
	Download and index genome files
	BioBamBam Alignment Filtering
	Bowtie2 Alignment
	BSgenome Builder
	BS Seeker2 Indexer
	BS Seeker2 Aligner
	BiSulphate Sequencing Filter
	BS Seeker2 Methylation Peak Caller
	BWA Alignment - bwa aln
	BWA Alignment - bwa mem
	ChIP-Seq Analysis
	iDamID-Seq Analysis
	iNPS
	MACS2 Analysis
	Mnase-Seq Analysis
	RNA-Seq Analysis
	TrimGalore
	Whole Genome BiSulphate Sequencing Analysis
	Hi-C Analysis

	Tools for processing FastQ files
	File Validation
	Indexers
	Aligners
	Filters
	Peak Calling
	Hi-C Parsing

	Utility Functions
	Common Functions
	Alignment Utilities
	Bam Utilities
	FASTQ Functions

	Continuous Integration with Travis
	Getting Started
	Making .travis.yml File
	Making harness.sh File
	Running Docker container
	Setting up Shims

	Setting up and using a Docker Container
	Our reason for using a container
	Getting Started
	Constructing a docker container

	Architectural Design Record
	2017-08-15 - Implementation of pigz
	2018-01-26 - Disable no-self-use for @tasks
	2018-02-28 - BAM Merge Strategy
	2018-04-26 - BAM Splitting
	2018-05-01 - Compression of FASTQ
	2018-05-09 - Handling aligner index decompression
	2018-05-22 - GEM Naming
	2018-05-22 - TrimGalore
	2018-05-31 - Public genomes and indexes
	2018-06-01 - Separated WGBS Code Testing
	2018-06-01 - Travis Caching
	2018-06-04 - Split the WGBS test scripts
	2018-06-05 - Use of the logger PROGRESS
	2018-06-14 - Paired end alignment
	2018-06-18 - Branch tidying during alignment
	2018-06-27 - Remove reads marked as duplicate by BioBamBam
	2018-07-11 - Changes FASTQ splitter file management
	2018-07-16 - Modified handling of file locations
	2018-08-02 - Added in Paired End BAM file handling for MACS2
	2018-07-16 - Modified handling of file locations
	2018-08-07 - Storing tool parameters as part of the metadata
	2018-08-07 - Extra output files from MACS2
	2018-08-13 - Normalised the use of OSError
	2018-08-15 - Use the config.json execution path
	2018-08-16 - Prevent further duplicate filtering by MACS2
	2018-09-04 - Adding functionality to bam_utils and MACS2
	2018-09-17 - Updates to tool and pipline run()
	2018-08-22 - Improvement of tadbit tools wrappers
	2018-09-25 - Converting the Kallisto TSV file to BED
	2018-10-18 - Multi File handling for the DamID-seq Pipeline
	2018-10-25 - WGBS Pipeline Create BigWig files as standard
	2018-10-31 - Modify the file names for docker script
	2018-11-08 - Modifications for the movement of files
	2018-11-16 - Reading of Gzipped FASTQ files

	License
	Testing
	Sample Data
	Pipelines
	Tools

	Indices and tables
	Python Module Index

