
MuG DMP API Documentation
Release 0

Mark McDowall

Aug 15, 2018

Table of Contents

1 Requirements and Installation 1
1.1 Requirements . 1
1.2 Installation . 1
1.3 Documentation . 2

2 Data Management Plan API 3
2.1 Methods . 3

3 Data Management RESTful API 11
3.1 Methods . 11

4 Custom Reader APIs 13
4.1 HDF5 Files . 13
4.2 BigBed Files . 19
4.3 BigWig Files . 20
4.4 Tabix Files . 20

5 License 23

6 Indices and tables 27

Python Module Index 29

i

ii

CHAPTER 1

Requirements and Installation

1.1 Requirements

1.1.1 Software

• Mongo DB 3.2

• Python 2.7.10+

1.1.2 Python Modules

• pymongo

• mongomock

• h5py

• numpy

• pyBigWig

• pysam

1.2 Installation

Directly from GitHub:

1 git clone https://github.com/Multiscale-Genomics/mg-dm-api.git

Using pip:

1 pip install git+https://github.com/Multiscale-Genomics/mg-dm-api.git

1

MuG DMP API Documentation, Release 0

1.3 Documentation

To build the documentation:

1 pip install Sphinx
2 pip install sphinx-autobuild
3 cd docs
4 make html

2 Chapter 1. Requirements and Installation

CHAPTER 2

Data Management Plan API

2.1 Methods

class dmp.dmp.dmp(cnf_loc=u”, test=False)
API for management of files within the VRE

add_file_metadata(user_id, file_id, key, value)
Add a key value pair to the meta data for a file

This way a user is able to add extra information to the meta data to better describe the file.

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• file_id (str) – ID of the file. This is the value returned when a file is loaded into the
DMP or is the _id for a given file when the files have been retrieved.

• key (str) – Unique key for the identification of the extra meta data. If the key matches
a value already in the meta data then it over-writes the current value.

• value – Value to be stored for the given key. This can be a str, int, list or dict.

Returns This is an id for that file within the system and can be used for tracing this file and
where it is used and where it has come from.

Return type str

get_file_by_file_path(user_id, file_path, rest=False)
Get a list of the file dictionary objects given a user_id and file_path

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• file_path (str) – File path (see validate_file)

3

MuG DMP API Documentation, Release 0

Returns

file_path [str] Location of the file in the file system

file_type [str] File format (see validate_file)

data_type [str] The type of information in the file (RNA-seq, ChIP-seq, etc)

taxon_id [int] Taxon ID that the species that the file has been derived from

compressed [str] Type of compression (None, gzip, zip)

source_id [list] List of IDs of files that were processed to generate this file

meta_data [dict] Dictionary object containing the extra data related to the generation of the
file or describing the way it was processed

creation_time [list] Time at which the file was loaded into the system

Return type dict

Example

1 from dmp import dmp
2 da = dmp()
3 da.get_files_by_file_path(<user_id>, <file_type>)

get_file_by_id(user_id, file_id, rest=False)
Returns files data based on the unique_id for a given file

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• file_id (str) – Location of the file in the file system

Returns

file_path [str] Location of the file in the file system

path_type [str] File or Folder

file_type [str] File format (see validate_file)

size [int] Size of the file

parent_dir [str] Location of the parent dir

data_type [str] The type of information in the file (RNA-seq, ChIP-seq, etc)

taxon_id [int] Taxon ID that the species that the file has been derived from

compressed [str] Type of compression (None, gzip, zip)

source_id [list] List of IDs of files that were processed to generate this file

meta_data [dict] Dictionary object containing the extra data related to the generation of the
file or describing the way it was processed

creation_time [list] Time at which the file was loaded into the system

Return type dict

4 Chapter 2. Data Management Plan API

MuG DMP API Documentation, Release 0

Example

1 from dmp import dmp
2 da = dmp()
3 da.get_file_by_id(<unique_file_id>)

get_file_history(user_id, file_id)
Returns the full path of file_ids from the current file to the original file(s)

Needs work to define the format for how declaring the history is best

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• file_id (str) – ID of the file. This is the value returned when a file is loaded into the
DMP or is the _id for a given file when the files have been retrieved.

Returns List of lists representing the adjancency of child and parent files.

Return type list

Example

1 from dmp import dmp
2 da = dmp()
3 history = da.get_file_history("aLongString")
4 print history

Output: [['aLongString', 'parentOfaLongString'], ['parentOfaLongString',
'parentOfParent']]

These IDs can then be requested to ruturn the meta data and locations with the get_file_by_id method.

get_files_by_assembly(user_id, assembly, rest=False)
Get a list of the file dictionary objects given a user_id and assembly

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• assembly (str) – Assembly that the species that the file has been derived from

Returns

file_path [str] Location of the file in the file system

file_type [str] File format (see validate_file)

data_type [str] The type of information in the file (RNA-seq, ChIP-seq, etc)

taxon_id [int] Taxon ID that the species that the file has been derived from

compressed [str] Type of compression (None, gzip, zip)

source_id [list] List of IDs of files that were processed to generate this file

meta_data [dict] Dictionary object containing the extra data related to the generation of the
file or describing the way it was processed

creation_time [list] Time at which the file was loaded into the system

2.1. Methods 5

MuG DMP API Documentation, Release 0

Return type dict

Example

1 from dmp import dmp
2 da = dmp()
3 da.get_files_by_taxon_id(<user_id>, <taxon_id>)

get_files_by_data_type(user_id, data_type, rest=False)
Get a list of the file dictionary objects given a user_id and data_type

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• data_type (str) – The type of information in the file (RNA-seq, ChIP-seq, etc)

Returns

file_path [str] Location of the file in the file system

file_type [str] File format (see validate_file)

data_type [str] The type of information in the file (RNA-seq, ChIP-seq, etc)

taxon_id [int] Taxon ID that the species that the file has been derived from

compressed [str] Type of compression (None, gzip, zip)

source_id [list] List of IDs of files that were processed to generate this file

meta_data [dict] Dictionary object containing the extra data related to the generation of the
file or describing the way it was processed

creation_time [list] Time at which the file was loaded into the system

Return type dict

Example

1 from dmp import dmp
2 da = dmp()
3 da.get_files_by_data_type(<user_id>, <data_type>)

get_files_by_file_type(user_id, file_type, rest=False)
Get a list of the file dictionary objects given a user_id and file_type

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• file_type (str) – File format (see validate_file)

Returns

file_path [str] Location of the file in the file system

file_type [str] File format (see validate_file)

data_type [str] The type of information in the file (RNA-seq, ChIP-seq, etc)

6 Chapter 2. Data Management Plan API

MuG DMP API Documentation, Release 0

taxon_id [int] Taxon ID that the species that the file has been derived from

compressed [str] Type of compression (None, gzip, zip)

source_id [list] List of IDs of files that were processed to generate this file

meta_data [dict] Dictionary object containing the extra data related to the generation of the
file or describing the way it was processed

creation_time [list] Time at which the file was loaded into the system

Return type dict

Example

1 from dmp import dmp
2 da = dmp()
3 da.get_files_by_file_type(<user_id>, <file_type>)

get_files_by_taxon_id(user_id, taxon_id, rest=False)
Get a list of the file dictionary objects given a user_id and taxon_id

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• taxon_id (int) – Taxon ID that the species that the file has been derived from

Returns

file_path [str] Location of the file in the file system

file_type [str] File format (see validate_file)

data_type [str] The type of information in the file (RNA-seq, ChIP-seq, etc)

taxon_id [int] Taxon ID that the species that the file has been derived from

compressed [str] Type of compression (None, gzip, zip)

source_id [list] List of IDs of files that were processed to generate this file

meta_data [dict] Dictionary object containing the extra data related to the generation of the
file or describing the way it was processed

creation_time [list] Time at which the file was loaded into the system

Return type dict

Example

1 from dmp import dmp
2 da = dmp()
3 da.get_files_by_taxon_id(<user_id>, <taxon_id>)

get_files_by_user(user_id, rest=False)
Get a list of the file dictionary objects given a user_id

Parameters user_id (str) – Identifier to uniquely locate the users files. Can be set to “com-
mon” if the files can be shared between users

2.1. Methods 7

MuG DMP API Documentation, Release 0

Returns List of dict objects for each file that has been loaded by a user.

Return type list

Example

1 from dmp import dmp
2 da = dmp()
3 da.get_files_by_user(<user_id>)

modify_column(user_id, file_id, key, value)
Update a key value pair for the record

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• file_id (str) – ID of the file. This is the value returned when a file is loaded into the
DMP or is the _id for a given file when the files have been retrieved.

• key (str) – Unique key for the identification of the extra meta data. If the key matches
a value already in the meta data then it over-writes the current value.

• value – Value to be stored for the given key. This can be a str, int, list or dict.

Returns This is an id for that file within the system and can be used for tracing this file and
where it is used and where it has come from.

Return type str

remove_file(user_id, file_id)
Removes a single file from the directory. Returns the ID of the file that was removed

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• file_id (str) – ID of the file. This is the value returned when a file is loaded into the
DMP or is the _id for a given file when the files have been retrieved.

Returns The file_id of the removed file.

Return type str

Example

1 from dmp import dmp
2 da = dmp()
3 da.remove_file(<file_id>)

remove_file_metadata(user_id, file_id, key)
Remove a key value pair from the meta data for a given file

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

8 Chapter 2. Data Management Plan API

MuG DMP API Documentation, Release 0

• file_id (str) – ID of the file. This is the value returned when a file is loaded into the
DMP or is the _id for a given file when the files have been retrieved.

• key (str) – Unique key for the identification of the extra meta data to be removed

Returns This is an id for that file within the system and can be used for tracing this file and
where it is used and where it has come from.

Return type str

set_file(user_id, file_path, path_type, file_type=u”, size=0, parent_dir=u”, data_type=u”,
taxon_id=u”, compressed=None, source_id=None, meta_data=None, **kwargs)

Adds a file to the data management API.

Parameters

• user_id (str) – Identifier to uniquely locate the users files. Can be set to “common” if
the files can be shared between users

• file_path (str) – Location of the file in the file system

• path_type (str) –

• parent_dir (str) – _id of the parent directory

• file_type (str) – File format (see validate_file)

• size (int) – File size in bytes

• data_type (str) – The type of information in the file (RNA-seq, ChIP-seq, etc)

• taxon_id (int) – Taxon ID that the species that the file has been derived from

• compressed (str) – Type of compression (None, gzip, zip)

• source_id (list) – List of IDs of files that were processed to generate this file

• meta_data (dict) – Dictionary object containing the extra data related to the genera-
tion of the file or describing the way it was processed

assembly [string] Dependent paramenter. If the sequence has been aligned at some point
during the production of this file then the assembly must be recorded.

Returns This is an id for that file within the system and can be used for tracing this file and
where it is used and where it has come from.

Return type str

Example

1 from dmp import dmp
2 da = dmp()
3 unique_file_id = da.set_file(
4 'user1', '/tmp/example_file.fastq', 'fastq', 'RNA-seq', 9606, None)

If there is a processed result of 1 or more files then these can be specified using the file_id:

>>> da.set_file(
'user1', '/tmp/example_file.fastq', 'fastq', 'RNA-seq', 9606, None,
source_id=[1, 2])

Meta data about the file can also be included to provide extra information about the file, origins or how it
was generated:

2.1. Methods 9

MuG DMP API Documentation, Release 0

>>> da.set_file('user1', '/tmp/example_file.fastq', 'fastq', 'RNA-seq',
9606, None, meta_data={'assembly' : 'GCA_0000nnnn',
'downloaded_from' : 'http://www.', })

static validate_file(entry)
Validate that the required meta data for a given entry is present. If there is missing data then a ValueEr-
ror excepetion is raised. This function checks that all required paths are defined and that when various
selections are made then the correct matching data is also present

Parameters entry (dict) –

user_id [str] Identifier to uniquely locate the users files. Can be set to “common” if the files
can be shared between users

file_path [str] Location of the file in the file system

path_type [str] File or folder

file_type [str] File format (“amb”, “ann”, “bam”, “bb”, “bed”, “bt2”, “bw”, “bwt”, “cpt”,
“csv”, “dcd”, “fa”, “fasta”, “fastq”, “gem”, “gff3”, “gz”, “hdf5”, “json”, ‘lif’, “pac”,
“pdb”, “pdf”, “png”, “prmtop”, “sa”, “tbi”, “tif”, “tpr”, “trj”, “tsv”, “txt”, “wig”)

size [int] Size of the file in bytes

data_type [str] The type of information in the file (RNA-seq, ChIP-seq, etc)

taxon_id [int] Taxon ID that the species that the file has been derived from

compressed [str] Type of compression (None, gzip, zip)

source_id [list] List of IDs of files that were processed to generate this file

meta_data [dict] Dictionary object containing the extra data related to the generation of the
file or describing the way it was processed assembly : string

Returns

• bool – Returns True if there are no errors with the entry

• If there are issues with the entry then a ValueError is raised.

10 Chapter 2. Data Management Plan API

CHAPTER 3

Data Management RESTful API

3.1 Methods

class dmp.rest.rest(cnf_loc=”, test=False)
API for management of files within the VRE

add_service(name, url, description, status=None)
Add a service to the registry

Parameters

• name (str) – Unique name for the service

• description (str) – Description defined by the service

• url (str) – Base URL for the REST service.

• status (str) – Service HTTP status code - up or down

Returns Entry ID

Return type str

get_available_services()
List all services

Returns List of dict objects for each service

Return type list

get_down_services()
List services that are NOT returning HTTP code 200

Returns List of dict objects for each service

Return type list

get_service(name)
Retreive the full details about a service

11

MuG DMP API Documentation, Release 0

Parameters name (str) – Unique name for the service

Returns

name: str Unique name for the service

description: str Description defined by the service

url: str Base URL for the RESET service.

status: str Service HTTP status code - up or down

Return type dict

get_up_services()
List services that are returning HTTP code 200

Returns List of dict objects for each service

Return type list

is_service(name)
Identify if a service is already present in the registry

Parameters name (str) – Unique name for the service

set_service_status(name, status)
Update the status of the service if it is already present in the db.

Parameters

• name (str) – Unique name for the service

• status (str) – Service HTTP status code - up or down

Returns True when done

Return type bool

update_service_url(name, url)
Update the url of the service if it is already present in the db.

Parameters

• name (str) – Unique name for the service

• url (str) – Base URL for the REST service.

Returns True when done

Return type bool

12 Chapter 3. Data Management RESTful API

CHAPTER 4

Custom Reader APIs

4.1 HDF5 Files

4.1.1 Hi-C Adjacency Files

class reader.hdf5_adjacency.adjacency(user_id, file_id, resolution=None, cnf_loc=”)
Class related to handling the functions for interacting directly with the HDF5 files. All required information
should be passed to this class.

close()
Close the HDF5 data file handle

get_chromosome_from_array_index(index)
Identify the chromosome based on either the x or y coordinate in the array.

Parameters index (int) – Location within the array

Returns chr_id – Identity of the chromosome

Return type str

Example

1 from reader import adjacency
2 r = adjacency('test', '', 10000)
3 cid = r.get_chromosome_from_array_index(1234567890)

get_chromosome_parameters()
Return a list of the available resolutions in a given HDF5 file

Returns chromosomes : list chr_param : dict resolitions

Return type dict

13

MuG DMP API Documentation, Release 0

Example

1 from reader import adjacency
2 r = adjacency('test', '', 10000)
3 value = r.get_chromosome_parameters()

get_chromosomes()
List of chromosomes that have models at a given resolution

Returns chromosomes – List of chromosomes at the set resolution

Return type list

get_details()
Return a list of the available resolutions in a given HDF5 file

get_range(chr_id, start, end, limit_chr=None, limit_start=None, limit_end=None,
value_url=’/api/getValue’, no_links=None)

Get the interactions that happen within a defined region on a specific chromosome. Returns inter and intra
interactions with the defined region.

Parameters

• chr_id (str) – Chromosomal name

• start (int) – Start position within the chromosome

• end (int) – End position within the chromosome

• limit_chr (str (Optional)) – Limit the results to a particular chromosome

• limit_start (int (Optional)) – Limit the range start position on the limit_chr
paramter

• limit_end (int (Optional)) – Limit the range end position on the limit_chr pa-
rameter

• value_url (str (Optional)) – Define a custom URL snippet for the location of
the file if different from the defaul

• no_links (bool (Optional)) – Will return the URL links to the individual points
within the adjacency matrix. In cases where this generates a large number of points it is
possible to turn off generating these links. Set this value to 1.

Returns

log [list] List of messages about the state for debugging

results [list] List of values for given positions within the adjacency matrix

Return type dict

Example

1 from reader import adjacency
2 r = adjacency('test', '', 10000)
3 value = r.get_range(2000000, 1000000)

get_resolution()
List the current level of rseolution

Returns resolution – Current level of resolution

14 Chapter 4. Custom Reader APIs

MuG DMP API Documentation, Release 0

Return type int

get_resolutions()
List resolutions that models have been generated for

Returns list – Available levels of resolution that can be set

Return type str

get_value(bin_i, bin_j)
Get a specific value for a given dataset, resolution

Parameters

• bin_i (int) – Array position in the first dimension

• bin_j (int) – Array position in the second dimension

Returns value – Value for a given cell in the adjacency array

Return type int

Example

1 from reader import adjacency
2 r = adjacency('test', '', 10000)
3 value = r.get_value(2000000, 1000000)

set_resolution(resolution)
Set, or change, the resolution level

Parameters resolution (int) – Level of resolution

4.1.2 Hi-C Coordinate Files

class reader.hdf5_coord.coord(user_id, file_id, resolution=None, cnf_loc=”)
Class related to handling the functions for interacting directly with the HDF5 files. All required information
should be passed to this class.

close()
Tidy function to close file handles

get_centroids(region_id)
List the centroid models for each cluster

Returns centroids – List of the centroid models for each cluster

Return type list

get_chromosomes()
List of chromosomes that have models at a given resolution

Returns chromosomes – List of chromosomes at the set resolution

Return type list

get_clusters(region_id)
List all clusters of models

Returns clusters – List of models in each cluster

Return type list

4.1. HDF5 Files 15

MuG DMP API Documentation, Release 0

get_model(region_id, model_ids=None, page=0, mpp=10)
Get the coordinates within a defined region on a specific chromosome. If the model_id is not returned the
the consensus models for that region are returned

Parameters

• region_id (str) – Region ID

• model_ids (list) – List of model IDs for the models that are required

• page (int) – Page number

• mpp (int) – Number of models per page (default: 10; max: 100)

Returns

array –

model [dict]

metadata [dict] Relevant extra meta data added by TADbit

object [dict] Key value pair of information about the region

models [list] List of dictionaries for each model

clusters [list] List of models for each cluster

centroids [list] List of all centroid models

restraints [list] List of retraints for each position

hic_data [dict] Hi-C model data

metadata [dict]

model_count [int] Count of the number of models for the defined region ID

page_count [int] Number of pages

Return type list

get_models(region_id)
List all models for a given region

Returns model_id : int cluster_id : int

Return type List

get_object_data(region_id)
Prepare the object header data structure ready for printing

Parameters region_id (int) – Region that is getting downloaded

Returns objectdata – All headers and values required for the JSON output

Return type dict

get_region_order(chr_id=None, region=None)
List the regions on a given chromosome ID or region ID in the order that they are located on the chromo-
some

Parameters

• chr_id (str) – Chromosome ID

• region (str) – Region ID

Returns

16 Chapter 4. Custom Reader APIs

MuG DMP API Documentation, Release 0

region_id [str] List of the region IDs

Return type list

get_regions(chr_id, start, end)
List regions that are within a given range on a chromosome

Parameters

• chr_id (str) – Chromosome ID

• start (int) – Start position

• end (int) – Stop position

Returns regions – List of region IDs whose parameters match those provided

Return type list

get_resolution()
List the current level of rseolution

Returns resolution – Current level of resolution

Return type int

get_resolutions()
List resolutions that models have been generated for

Returns list – Available levels of resolution that can be set

Return type str

set_resolution(resolution)
Set, or change, the resolution level

Parameters resolution (int) – Level of resolution

4.1.3 Text File Index

Lists all files that are available for a user in bed and wig formats and lists the files than have data in a given region so
that only the required files are requested by the client

class reader.hdf5_reader.hdf5_reader(user_id, file_id, cnf_loc=”)
Class related to handling the functions for interacting directly with the HDF5 files. All required information
should be passed to this class.

close()
Tidy function to close file handles

Example

1 from hdf5_reader import hdf5_reader
2 h5r = hdf5_reader('test')
3 h5r.close()

get_assemblies()
List all assemblies for which there are files that have been indexed

Returns assembly – List of assemblies in the index

Return type list

4.1. HDF5 Files 17

MuG DMP API Documentation, Release 0

Example

1 from hdf5_reader import hdf5_reader
2 h5r = hdf5_reader('test')
3 h5r.assemblies()

get_chromosomes(assembly)
List all chromosomes that are covered by the index

Parameters assembly (str) – Genome assembly ID

Returns chromosomes – List of the chromosomes for a given assembly in the index

Return type list

Example

1 from hdf5_reader import hdf5_reader
2 h5r = hdf5_reader('test')
3 asm = h5r.assemblies()
4 chr_list = h5r.get_chromosomes(asm[0])

get_files(assembly)
List all files for an assembly. If files are missing they can either get loaded or the search can be performed
directly on the bigBed files

Parameters assembly (str) – Genome assembly ID

Returns file_ids – List of file ids for a given assembly in the index

Return type list

Example

1 from hdf5_reader import hdf5_reader
2 h5r = hdf5_reader('test')
3 asm = h5r.assemblies()
4 file_list = h5r.get_files(asm[0])

get_regions(assembly, chromosome_id, start, end)
List files that have data in a given region.

Parameters

• assembly (str) – Genome assembly ID

• chromosome_id (str) – Chromosome names as listed by the get_files function

• start (int) – Start position for the region of interest

• end (int) – End position for the region of interest

Returns file_ids – List of the file_ids that have sequence features within the region of interest

Return type list

18 Chapter 4. Custom Reader APIs

MuG DMP API Documentation, Release 0

Example

1 from hdf5_reader import hdf5_reader
2 h5r = hdf5_reader('test')
3 asm = h5r.assemblies()
4 file_list = h5r.get_chromosomes(asm[0], 1, 1000000, 1100000)

4.2 BigBed Files

class reader.bigbed.bigbed_reader(user_id, file_id, cnf_loc=”)
Class related to handling the functions for interacting directly with the BigBed files. All required information
should be passed to this class.

close()
Tidy function to close file handles

Example

1 from reader.bigbed import bigbed_reader
2 bbr = bigbed_reader('test')
3 bbr.close()

get_chromosomes()
List the chromosome names and lengths

Returns chromosomes – Key value pair of chromosome name and the value is the length of the
chromosome.

Return type dict

get_header()
Get the bigBed header

Returns header

Return type dict

get_range(chr_id, start, end, file_type=’bed’)
Get entries in a given range

Parameters

• chr_id (str) – Chromosome name

• start (int) – Start of the region to query

• end (int) – End of the region to query

• file_type (string (OPTIONAL)) – bed format returning the whole file as a string
is the default option. list will return the bed rows but as a list of lists.

Returns

• bed (str (DEFAULT)) – List of strings for the rows in a bed file

• bed_array (list) – List of lists of each row for the bed file format

4.2. BigBed Files 19

MuG DMP API Documentation, Release 0

4.3 BigWig Files

class reader.bigwig.bigwig_reader(user_id, file_id, cnf_loc=”)
Class related to handling the functions for interacting directly with the BigBed files. All required information
should be passed to this class.

get_chromosomes()
List the chromosome names and lengths

Returns chromosomes – Key value pair of chromosome name and the value is the length of the
chromosome.

Return type dict

get_header()
Get the bigWig header

Returns header

Return type dict

get_range(chr_id, start, end, file_type=’wig’)
Get entries in a given range

Parameters

• chr_id (str) – Chromosome name

• start (int) – Start of the region to query

• end (int) – End of the region to query

• format (string (OPTIONAL)) – wig format returning the whole file as a string is
the default option. list will return the wig rows but as a list of lists.

Returns

• wig (str (DEFAULT)) – List of strings for the rows in a wig file

• wig_array (list) – List of lists of each row for the wig file format

4.4 Tabix Files

class reader.tabix.tabix(user_id, file_id, cnf_loc=”)
Class related to handling the functions for interacting directly with the BigBed files. All required information
should be passed to this class.

get_range(chr_id, start, end, file_type=’gff3’)
Get entries in a given range

Parameters

• chr_id (str) – Chromosome name

• start (int) – Start of the region to query

• end (int) – End of the region to query

• format (string (OPTIONAL)) – gff3 format returning the whole file as a string is
the default option. list will return the gff3 rows but as a list of lists.

Returns

20 Chapter 4. Custom Reader APIs

MuG DMP API Documentation, Release 0

• gff3 (str (DEFAULT)) – List of strings for the rows in a gff3 file

• wig_array (list) – List of each row for the gff3 file format

4.4. Tabix Files 21

MuG DMP API Documentation, Release 0

22 Chapter 4. Custom Reader APIs

CHAPTER 5

License

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

23

http://www.apache.org/licenses/

MuG DMP API Documentation, Release 0

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

24 Chapter 5. License

MuG DMP API Documentation, Release 0

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “{}” replaced with your own identifying information. (Don’t in-
clude the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright 2016 EMBL-European Bioinformatics Institute

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

25

http://www.apache.org/licenses/LICENSE-2.0

MuG DMP API Documentation, Release 0

26 Chapter 5. License

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

27

MuG DMP API Documentation, Release 0

28 Chapter 6. Indices and tables

Python Module Index

d
dmp.dmp, 3
dmp.rest, 11

r
reader, 13

29

MuG DMP API Documentation, Release 0

30 Python Module Index

Index

A
add_file_metadata() (dmp.dmp.dmp method), 3
add_service() (dmp.rest.rest method), 11
adjacency (class in reader.hdf5_adjacency), 13

B
bigbed_reader (class in reader.bigbed), 19
bigwig_reader (class in reader.bigwig), 20

C
close() (reader.bigbed.bigbed_reader method), 19
close() (reader.hdf5_adjacency.adjacency method), 13
close() (reader.hdf5_coord.coord method), 15
close() (reader.hdf5_reader.hdf5_reader method), 17
coord (class in reader.hdf5_coord), 15

D
dmp (class in dmp.dmp), 3
dmp.dmp (module), 3
dmp.rest (module), 11

G
get_assemblies() (reader.hdf5_reader.hdf5_reader

method), 17
get_available_services() (dmp.rest.rest method), 11
get_centroids() (reader.hdf5_coord.coord method), 15
get_chromosome_from_array_index()

(reader.hdf5_adjacency.adjacency method),
13

get_chromosome_parameters()
(reader.hdf5_adjacency.adjacency method),
13

get_chromosomes() (reader.bigbed.bigbed_reader
method), 19

get_chromosomes() (reader.bigwig.bigwig_reader
method), 20

get_chromosomes() (reader.hdf5_adjacency.adjacency
method), 14

get_chromosomes() (reader.hdf5_coord.coord method),
15

get_chromosomes() (reader.hdf5_reader.hdf5_reader
method), 18

get_clusters() (reader.hdf5_coord.coord method), 15
get_details() (reader.hdf5_adjacency.adjacency method),

14
get_down_services() (dmp.rest.rest method), 11
get_file_by_file_path() (dmp.dmp.dmp method), 3
get_file_by_id() (dmp.dmp.dmp method), 4
get_file_history() (dmp.dmp.dmp method), 5
get_files() (reader.hdf5_reader.hdf5_reader method), 18
get_files_by_assembly() (dmp.dmp.dmp method), 5
get_files_by_data_type() (dmp.dmp.dmp method), 6
get_files_by_file_type() (dmp.dmp.dmp method), 6
get_files_by_taxon_id() (dmp.dmp.dmp method), 7
get_files_by_user() (dmp.dmp.dmp method), 7
get_header() (reader.bigbed.bigbed_reader method), 19
get_header() (reader.bigwig.bigwig_reader method), 20
get_model() (reader.hdf5_coord.coord method), 15
get_models() (reader.hdf5_coord.coord method), 16
get_object_data() (reader.hdf5_coord.coord method), 16
get_range() (reader.bigbed.bigbed_reader method), 19
get_range() (reader.bigwig.bigwig_reader method), 20
get_range() (reader.hdf5_adjacency.adjacency method),

14
get_range() (reader.tabix.tabix method), 20
get_region_order() (reader.hdf5_coord.coord method), 16
get_regions() (reader.hdf5_coord.coord method), 17
get_regions() (reader.hdf5_reader.hdf5_reader method),

18
get_resolution() (reader.hdf5_adjacency.adjacency

method), 14
get_resolution() (reader.hdf5_coord.coord method), 17
get_resolutions() (reader.hdf5_adjacency.adjacency

method), 15
get_resolutions() (reader.hdf5_coord.coord method), 17
get_service() (dmp.rest.rest method), 11
get_up_services() (dmp.rest.rest method), 12

31

MuG DMP API Documentation, Release 0

get_value() (reader.hdf5_adjacency.adjacency method),
15

H
hdf5_reader (class in reader.hdf5_reader), 17

I
is_service() (dmp.rest.rest method), 12

M
modify_column() (dmp.dmp.dmp method), 8

R
reader (module), 13
remove_file() (dmp.dmp.dmp method), 8
remove_file_metadata() (dmp.dmp.dmp method), 8
rest (class in dmp.rest), 11

S
set_file() (dmp.dmp.dmp method), 9
set_resolution() (reader.hdf5_adjacency.adjacency

method), 15
set_resolution() (reader.hdf5_coord.coord method), 17
set_service_status() (dmp.rest.rest method), 12

T
tabix (class in reader.tabix), 20

U
update_service_url() (dmp.rest.rest method), 12

V
validate_file() (dmp.dmp.dmp static method), 10

32 Index

	Requirements and Installation
	Requirements
	Installation
	Documentation

	Data Management Plan API
	Methods

	Data Management RESTful API
	Methods

	Custom Reader APIs
	HDF5 Files
	BigBed Files
	BigWig Files
	Tabix Files

	License
	Indices and tables
	Python Module Index

