
Master Facility List Kenya
Documentation

Release 0.0.1a3

developers@savannahinformatics.com

Aug 05, 2017

Contents

1 Developers guide 3
1.1 Installing for evaluation . 3
1.2 Installing for development . 4
1.3 Installing for production . 5
1.4 The big picture . 7
1.5 Authentication and authorization . 8
1.6 Using the API - basic principles . 16
1.7 The API sandbox . 23
1.8 Metadata resources . 23
1.9 The service catalog . 30
1.10 Facilities . 34
1.11 Facility types . 50
1.12 Facility Upgrades and Downgrades . 52
1.13 Community Health Units . 55
1.14 Regulation . 58
1.15 GIS Support . 68
1.16 Workflow . 72
1.17 Contributors’ code of conduct . 73
1.18 Regulator Synchronization . 73

i

ii

Master Facility List Kenya Documentation, Release 0.0.1a3

This is documentation for the API server for the second generation Kenyan Ministry of Health Master Facility List (
MFL). The MFL system’s “home” is at http://ehealth.or.ke/facilities/ . This documentation is aimed at developers (
both MFL developers and those developing third party systems that use the MFL API) and system administrators.

There is a downloadable PDF version of this documentation, a mobile friendly EPUB version and a downloadable
HTML version.

Contents 1

http://ehealth.or.ke/facilities/
https://media.readthedocs.org/pdf/mfl-api/latest/mfl-api.pdf
http://readthedocs.org/projects/mfl-api/downloads/epub/latest/
http://readthedocs.org/projects/mfl-api/downloads/htmlzip/latest/
http://readthedocs.org/projects/mfl-api/downloads/htmlzip/latest/

Master Facility List Kenya Documentation, Release 0.0.1a3

2 Contents

CHAPTER 1

Developers guide

Installing for evaluation

In this scenario, you do not plan to make any changes to the MFL API server but you need to have a local copy against
which you can test a new API client or a new third party integration.

We recommend that you use Vagrant and Virtualbox to create a test server for yourself.

If you are an expert Vagrant user, you can substitute Virtualbox with VMWare Desktop / Player, HyperV etc. You’ll
have an easier time if you are on a _nix e.g Ubuntu or OS X.

Deployment Assumptions

The deployment scripts will fail unless the following are true:

• you are on a vagrant supported OS (so far Ubuntu 14.04LTS has been tested)

• you have run ssh-keygen and have a public key at $HOME/.ssh/id_rsa.pub

Vagrant

Before installation, you will need to have the vagrant-env plugin. The installation is as simple as running

vagrant plugin install vagrant-env

Ansible is used to provision the vagrant box. An understanding of ansible is recommended though not required.

Installation

1. Ensure vagrant is installed

2. Create a python virtual environment and activate the created virtual environment.

3

https://www.vagrantup.com/
https://www.virtualbox.org/
https://github.com/gosuri/vagrant-env
https://docs.ansible.org

Master Facility List Kenya Documentation, Release 0.0.1a3

3. Install ansible in the virtual environment.

4. Set the following environment variables:

• DATABASE_NAME the name of the database to user

• DATABASE_USER the database user to use

• DATABASE_PASSWORD the database password to use

5. Run vagrant up. It shall download and setup everything in the virtual machine.

6. The system is ready to use

Installing for development

You’ll have an easier time if you are on a current Ubuntu. On Ubuntu, the key dependencies can be installed with:

sudo apt-get install postgresql binutils postgis gdal-bin libproj-dev
libgeoip1 graphviz libgraphviz-dev

To build lxml on Debian 8 you have to install:

sudo apt-get install libxml2-dev libxslt-dev

You may need to install distribution specific packages e.g on Ubuntu 14.04 with the default PosgreSQL 9.3:

sudo apt-get install postgresql-9.3-postgis-2.1

In order to build some of the Python dependencies in the virtualenv, some libraries will need to be in place. Again, if
you are on a recent Ubuntu, you can get them at once with:

Note: This project has been tested with Python2. It may work with Python3 but it has not been tested

sudo apt-get build-dep python-shapely python-numpy cython python-psycopg2
libxml2-dev libxslt1-dev libffi-dev

Note: You must ensure that ElasticSearch is running. In a typical Ubuntu install (from the .deb supplied by Elastic-
Search), the search server is not started by default.

Getting started

A: Running the system from source code

1. Create a virtualenv

2. Activate the created vitualenv and run pip install -r requirements.txt

3. Run the following commands sequentially:

• fab setup_db This drops the database if it exists, creates the database and runs migrations.

• fab load_demo_data This will load sample test data for the API if the project DEBUG attribute in
settings is set to True.

4 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

• fab recreate_search_index Creates an Elasticsearch index. Before running this command ensure
that Elasticsearch is up and running. This command causes the data that has been loaded in the
database to be indexed in ElasticSearch.

Note: At times during development one may want to retain the database. To do so, call fab load_demo_data
and fab recreate_search_index.

Also one may want to recreate the database. Calling fab setup_db drops the database, creates it again and runs
migrations. After this one may proceed to load the data

and create the search index as desired.

B: Installing the system Activate the virtualenv and run python setup.py install while in the project
folder.

Installing for production

This server has been developed and tested on Ubuntu Linux (any Ubuntu that is currently “in support” will do). It
should be trivial to get it working on any *NIX (including OS X).

Kindly note that this restriction applies to the servers only, and not to any of the API clients e.g browsers and third
party systems. Clients can run on any modern operating system.

We supply an Ansible playbook that automates this entire process.

Setting up the environment

This server is built as a Twelve-Factor App. For that reason, the key configuration parameters are stored in the
environment - set up directly in the operating system as environment variables or as a .env file in the application’s root
folder.

The .env file holds confidential configuration information. For that reason, it is not tracked in version control (
version control has an example .env whose values should not be used in production).

A proper .env file should set the following values up:

SECRET_KEY=pleasechangetoanewlygeneratedsecretkey
DEBUG=off # NEVER run with Debug=True in production

Use real email settings here e.g from Amazon SES
EMAIL_HOST=''
EMAIL_HOST_USER=''
EMAIL_HOST_PASSWORD=''

Here because the original user was too lazy to write ruby code for the VagrantFile
DATABASE_USER=mfl # Change this
DATABASE_PASSWORD=mfl # **CHANGE** this, no matter how lazy you feel
DATABASE_NAME=mfl # Change this

Make sure you change this in lockstep with the three DATABASE_* vars above
DATABASE_URL='postgres://mfl:mfl@localhost:5432/mfl'

Location where the administration frontend is running

1.3. Installing for production 5

http://www.ubuntu.com/
http://www.ansible.com/home
http://12factor.net/

Master Facility List Kenya Documentation, Release 0.0.1a3

FRONTEND_URL='http://localhost:8062'
DEBUG=False
REALTIME_INDEX=True # ** set to true to update the search index in realtime**
HTTPS_ENABLED=True # ** Set to true if HTTPS will be used
AWS_ACCESS_KEY_ID=<AWS access key>
AWS_SECRET_ACCESS_KEY=<AWS secret key>
AWS_STORAGE_BUCKET_NAME=<AWS bucket name>
STORAGE_BACKEND=<storage backend e.g storages.backends.s3boto.S3BotoStorage>

Warning: Please make sure that you have set up secure values.

You will need to save a copy of the .env at a secure location (not in the code repository). If you loose the .env
/ forget the values, you could lose the ability to maintain the deployed production system.

The pre-deploy checklist

You MUST work your way through the Django deployment checklist.

Configuring the ansible inventory

There is an inventory file in the playbooks folder. This file should be edited to have a line for each server that
is managed by Ansible.

The following is an example:

azure_test_server ansible_ssh_host=mfl.slade360.co.ke ansible_ssh_
→˓port=22 ansible_ssh_user=azureuser ansible_ssh_private_key_file=/home/
→˓ngurenyaga/.ssh/id_rsa

The template breaks down roughly to this:

<a descriptive name we choose for the server>
ansible_ssh_host=<an IP address or host name>
ansible_ssh_port=<the port over which the SSL daemon is listening on the remote
→˓machine>
ansible_ssh_user=<the username to log in with on the remote machine>
ansible_ssh_private_key_file=<a path to a local SSH private key>

Warning: The SSH private key must be kept private.

In the site.yml file ensure that the relevant variables are updated e.g

mfl_public_web_version: "0.0.1a13" //set to the version of public website that should
→˓be deployed
mfl_admin_web_version: "0.0.1a21" //set version of the administration site to be
→˓deployed
has_ssl: true // set this to true if the site should run on HTTPs
cert_file: "" // Give the location of the HTTPS certificate file
key_file: "" // Give the location of the HTTPS key file
public_web_server_name: "public.test_domain.com" //The public website URL
admin_web_server_name: "public.test_domain.com" //The administration website URL

6 Chapter 1. Developers guide

https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/

Master Facility List Kenya Documentation, Release 0.0.1a3

load_demo_data: false , //set to true if demonstration data needs to be loaded
warm_cache: false, // set this to true if the cache needs to be refreshed
server_url: "https://testdomain.com, //THe API-server URL
username: <Public user username>
password: <public password>,
client_id: <OAUTH client id for the public user >,
client_secret:<OAUTH client secret for the public user>

Once all the deployment attributes have been set, cd into the playbooks folder and run the command below:

ansible-playbook site.yml

It deploys the API server, the public website and the administration website and they should be available from the
URLs provided in the site.yml file once the command has finished executing.

Warning: If you are working off a recent Ubuntu Linux on your laptop, you should comment out SendEnv
LANG LC_* in /etc/ssh/ssh_config.

The forwarding of language environment variables from the local computer is known to cause mischief on the
remote server.

Warning: This server should only be run on a non-threaded server e.g gunicorn in the standard multi-process
configuration.

This is because the geographic features rely on GDAL, which is not thread safe.

The big picture

The Master Facilities List is one of the building blocks of the Kenyan National Health Information System. The second
edition of the MFL is focused on interoperability, standardization and unification.

Interoperability

This system adopts an API First approach, as explained in the Using the API - basic principles chapter.

The authors have gone to great lengths to make it easy for other systems - with the correct authorization - to read and
write MFL data.

Standardization

The MFL’s core mission includes the standardization of facility codes. In this edition, the core mission has been
expanded to include the standardization of service codes. You can read more about that in the The service catalog
chapter.

Unification

The first generation of the Master Facilities List (and its “satellites”) had five semi-independent systems: public
and administration systems for the “core” MFL, a mirror of those two for the Master Community Units List and a

1.4. The big picture 7

Master Facility List Kenya Documentation, Release 0.0.1a3

regulators interface.

This release unifies them all under a single API. That API is client agnostic - the client could be a web or mobile
application, another system or even a reporting tool.

Note: A future release of this system could standardize more things e.g practitioner codes.

Authentication and authorization

Authentication is the process of associating an API request with a specific user, while authorization determines if the
user has permission to perform the requested operation.

Authentication

A system like this has to consider the needs of programmatic clients (like integrations into other systems) and the
needs of “actual users” (in this case people logged in to the web interfaces).

The MFL API server supports both session (cookie based) and OAuth 2 (token based) authentication. For both
approaches, the production API server must be run over HTTPS.

Session Authentication

Logging in

POST the credentials to /api/rest-auth/login/. The payload should be similar to the example below:

{
"username": "hakunaruhusa@mfltest.slade360.co.ke",
"password": "hakunaruhusa"

}

A successful login will have a HTTP 200 OK response. The response payload will have a single key parameter: a
Django Rest Framework TokenAuthentication key. For example:

{
"key": "f9a978cd00e9dc0ebfe97d633d98bde4b35f9279"

}

Note: Please note that the username is actually an email address.

Note: We discourage the use of token authentication. Kindly see the section on OAuth2 below.

Logging out

Send an empty (no payload) POST to /api/rest-auth/logout/.

A successful logout will get back a HTTP 200 OK response, and a success message similar to the one below:

8 Chapter 1. Developers guide

http://www.django-rest-framework.org/api-guide/authentication/
http://www.django-rest-framework.org/api-guide/permissions/
http://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication

Master Facility List Kenya Documentation, Release 0.0.1a3

{
"success": "Successfully logged out."

}

Getting user details after login

After a user is logged in, a typical client (such as a web application) will need to get additional information about the
user. This additional information includes permissions.

If the user is logged in, a GET to /api/rest-auth/user/ will get back a HTTP 200 OK response and a user
details payload similar to this example:

{
"id": 3,
"short_name": "Serikali",
"full_name": "Serikali Kuu ",
"all_permissions": [

"common.add_town",
"oauth2_provider.change_accesstoken",
"mfl_gis.delete_wardboundary",
"auth.add_permission",
"chul.change_approvalstatus",
"facilities.delete_facilitytype",
// a long list of permissions; truncated for brevity

],
"user_permissions": [],
"groups": [],
"last_login": "2015-05-04T16:33:36.085065Z",
"is_superuser": true,
"email": "serikalikuu@mfltest.slade360.co.ke",
"first_name": "Serikali",
"last_name": "Kuu",
"other_names": "",
"username": "serikalikuu",
"is_staff": true,
"is_active": true,
"date_joined": "2015-05-03T02:39:03.440962Z",
"is_national": true,
"requires_password_change": false

}

If the user is not logged in, the return message will be a HTTP 403 FORBIDDEN with the following message:

{
"detail": "Authentication credentials were not provided."

}

Note: If a user needs to change their password e.g because it was created by an admin and must be changed on first
login, the requires_password_change boolean property will be set to true.

Every well behaved web client should observe this property and implement the appropriate “roadblock”.

1.5. Authentication and authorization 9

Master Facility List Kenya Documentation, Release 0.0.1a3

OAuth2 Authentication

You can learn all that you need to know about OAuth2 by reading rfc6749.

A simple OAuth2 workflow

If you are in too much of a hurry to read all that, here is what you should do:

Registering a new “application”

You should know the user ID of the user that you’d like to register an application for. You can obtain that ID from the
user details API described above or from /api/users/.

You need to know the authorization_grant_type that you’d like for the new application. For the example
below, we will use password. If you do not know what to choose, read rfc6749 .

The next decision is the choice of client_type. For the example below, we will use confidential. As always
- consult rfc6749 for more context.

POST to /api/users/applications/ a payload similar to this example:

{
"client_type": "confidential",
"authorization_grant_type": "password",
"name": "Demo / Docs Application",
"user": 3

}

A successful POST will get back a HTTP 201 CREATED response, and a representation of the new application. This
example request got back this representation:

{
"id": 1,
"client_id": "<redacted>",
"redirect_uris": "",
"client_type": "confidential",
"authorization_grant_type": "password",
"client_secret": "<redacted>",
"name": "Demo / Docs Application",
"skip_authorization": false,
"user": 3

}

Note:

• The client_id and client_secret fields were automatically assigned.

• The skip_authorization and redirect_urls fields have default values.

• A single user can be associated with multiple applications.

Authenticating using OAuth2 tokens

First, obtain an access token by POST ing the user’s credentials to /o/token/. For example:

10 Chapter 1. Developers guide

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

Master Facility List Kenya Documentation, Release 0.0.1a3

curl -X POST -d "grant_type=password&username=serikalikuu@mfltest.slade360.co.ke&
→˓password=serikalikuu" http://
→˓sfzgvKKVpLxyHn3EbZrepehJnLn1r0OOFnuqBNy7:7SMXKum5CJVWABxIitwszES3Kls5RTBzYzJDI5jdvgPcw0vSjP5pnlYHfANSkPyn8pzSfyi5ETesPGXbbiKih0D3YRjE49IlsMShJy0p6pxLOLp72UKsNKxnj08H0fXP@localhost:8000/
→˓o/token/

Which breaks down as:

curl -X POST -d grant_type=<grant_type>&username=<email>&password=<password>" http://
→˓<client_id>:<client_secret>@<host>:<por>/o/token/

If you authenticate successfully, the reply from the server will be a JSON payload that has the issued access token, the
refresh token, the access token type, expiry and scope. For example:

{
"access_token": "fKDvh2fFLR1iFPuB26RUEalbjYO4rx",
"token_type": "Bearer",
"expires_in": 36000,
"refresh_token": "jLwpCh3WbOXBeb01XMeZR5AQYedkj1",
"scope": "read write"

}

Pick the access_token and send it in an Authorization: Bearer header e.g

curl -H "Authorization: Bearer ziBLqoXwVEA8lW9yEmE260AZ4lCJHq" http://localhost:8000/
→˓api/common/counties/

Authorization

This server’s Role Based Access Control setup is based on the Django framework permissions and authorization
system.

Understanding the role based access control setup

The user details API endpoint (explained above) returns the logged in user’s permissions.

A user’s permissions come from three “sources”:

• the permissions assigned to the group (role) that the user belongs to

• the permissions assigned directly to the user

• the is_superuser boolean flag; a user who is a “superuser” automatically gets all permissions

The MFL API server has an additional “layer” of authorization: whether a user is a “national user” or a “county user”.
In certain list endpoints (chiefly those that deal directly with facilities), a “county” user will have their results limited
to facilities that are located in their county.

Note: This API server does not support “true” unauthenticated read-only access For the public site, OAuth2 creden-
tials (that correspond to a role with limited access) will be used.

Note: From the point of view of the MFL API, regulator systems are just one more set of API clients.

1.5. Authentication and authorization 11

http://en.wikipedia.org/wiki/Role-based_access_control
https://docs.djangoproject.com/en/1.8/topics/auth/default/#topic-authorization

Master Facility List Kenya Documentation, Release 0.0.1a3

Users and counties

In 2010, Kenya got a new constitution. One of the major changes was the establishment of a devolved system of
government.

The second generation MFL API (this server) is designed for the era of devolution. In this system, facility record
management should occur at the county level.

The separation of privileges between data entry staff (“makers”) and those responsible for approval (“checkers”)
can be modelled easily using the role based access control setup described above.

The only additional need is the need to link county level users to counties, and use that information to limit their
access. This has been achieved by adding an is_national boolean flag to the custom user model and adding a
resource that links users to counties. The example user resource below represents a non-national (county) user (note
the is_national field):

{
"id": 4,
"short_name": "Serikali",
"full_name": "Serikali Ndogo ",
"all_permissions": [

"common.add_town",
// many more permissions

],
"user_permissions": [],
"groups": [],
"last_login": null,
"is_superuser": true,
"email": "serikalindogo@mfltest.slade360.co.ke",
"first_name": "Serikali",
"last_name": "Ndogo",
"other_names": "",
"username": "serikalindogo",
"is_staff": true,
"is_active": true,
"date_joined": "2015-05-03T02:39:03.443301Z",
"is_national": false

}

In order to link a user to a county, you need to have two pieces of information:

• the user’s id

• the county’s id - easily obtained from /api/common/counties/

With these two pieces of information in place, POST to /api/common/user_counties/ a payload similar to
this example:

{
"user": 4,
"county": "d5f54838-8743-4774-a866-75d7744a9814"

}

A successful operation will get back a HTTP 201 CREATED response and a representation of the newly created
resource. For example:

{
"id": "073d8bfa-2a86-4f9a-9cbe-0b8ac6780c3a",
"created": "2015-05-04T17:44:56.441006Z",
"updated": "2015-05-04T17:44:56.441027Z",

12 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

"deleted": false,
"active": true,
"created_by": 3,
"updated_by": 3,
"user": 4,
"county": "d5f54838-8743-4774-a866-75d7744a9814"

}

The filtering of results by county is transparent (the API client does not need to do anything).

Note: A user can only have one active link to a county at any particular time. Any attempt to link a user to more than
one county at a time will get a validation error.

If you’d like to change the county that a user is linked to, you will need to first inactivate the existing record (PATCH
it and set active to false).

In order to determine the role that a user is currently linked to, issue a GET similar to /api/common/
user_counties/?user=4&active=true. In this example, 4 is the user’s id.

Setting up users, permissions and groups

Permissions

API clients should treat permissions as “fixed” builtins. The server does not implement any endpoint that can be used
to add, edit or remove a permission.

The available permissions can be listed by issuing a GET to /api/users/permissions/. The results will look
like this:

{
"count": 216,
"next": "http://localhost:8000/api/users/permissions/?page=2",
"previous": null,
"results": [

{
"id": 61,
"name": "Can add email address",
"codename": "add_emailaddress",
"content_type": 21

},
{

"id": 62,
"name": "Can change email address",
"codename": "change_emailaddress",
"content_type": 21

},
{

"id": 63,
"name": "Can delete email address",
"codename": "delete_emailaddress",
"content_type": 21

},
// truncated for brevity

]
}

1.5. Authentication and authorization 13

Master Facility List Kenya Documentation, Release 0.0.1a3

Note: The content_type keys in the example above originate from Django’s contenttypes framework. For an API
consumer, they are an implementation detail / curiosity; API clients will nto need to know more about them.

Groups

The API server provides APIs that can be used to create roles, alter existing roles and retire roles.

Existing roles (groups) can be listed by issuing a GET to /api/users/groups/.

Creating a new role

POST to /api/users/groups/ a payload that similar to the one below:

{
"name": "Documentation Example Group",
"permissions": [

{
"id": 61,
"name": "Can add email address",
"codename": "add_emailaddress"

},
{

"id": 62,
"name": "Can change email address",
"codename": "change_emailaddress"

}
]

}

A successful operation will get back a HTTP 201 CREATED status.

Note: You must supply both a name and permissions.

Updating an existing role

PUT or PATCH to a group detail URL e.g /api/users/groups/1/.

For example, to take away from the example role the “Can change email address” permission, the following PATCH
request should be sent:

{
"permissions": [

{
"id": 61,
"name": "Can add email address",
"codename": "add_emailaddress"

}
]

}

14 Chapter 1. Developers guide

https://docs.djangoproject.com/en/1.8/ref/contrib/contenttypes/

Master Facility List Kenya Documentation, Release 0.0.1a3

A similar approach will be followed to add permissions.

A successful operation will get back a HTTP 200 OK status.

Note: Permissions will always be overwritten when you perform an update.

User management

User registration (sign up)

POST to /api/rest-auth/registration/ a payload similar to this example:

{
"username": "likeforreal",
"email": "likeforreal@yodawg.dawg",
"password1": "most_secure_password_in_the_world_like_for_real",
"password2": "most_secure_password_in_the_world_like_for_real"

}

A successful operation will get back a HTTP 201 CREATED response and a representation of the new user. For
example:

HTTP 201 CREATED
Content-Type: application/json
Vary: Accept
Allow: POST, OPTIONS, HEAD

{
"id": 9,
"short_name": "",
"full_name": " ",
"all_permissions": [],
"user_permissions": [],
"groups": [],
"last_login": "2015-05-05T09:12:01.888514Z",
"is_superuser": false,
"email": "likeforreal1@yodawg.dawg",
"first_name": "",
"last_name": "",
"other_names": "",
"username": "likeforreal1",
"is_staff": false,
"is_active": true,
"date_joined": "2015-05-05T09:12:01.790167Z",
"is_national": false

}

Note: This API server does not implement email address confirmation. A future release might implement that.

Note: The registration operation described above suffices, for public users.

The manner in which users should be linked to counties has already been discussed in the Authorization section.

1.5. Authentication and authorization 15

Master Facility List Kenya Documentation, Release 0.0.1a3

Linking users to groups

In order to assign a user to a group, you will need to know the group ID (which you can obtain from /api/groups/
).

PATCH an already existing user with a payload similar to this example:

{
"groups": [

{"id": 1, "name": "Documentation Example Group"}
]

}

In order to remove them from their assigned roles, PATCH with an empty groups list.

Note: This server does not support the direct assignment of permissions to users. That is deliberate.

Updating user details

Every writable attribute of a user record can be PATCH``ed. For example, to inactivate or retire
a user, ``PATCH the user’s (detail) record and set is_active to false.

For example: if the detail record for the user we registered above (likeforreal) is to be found at /api/users/
9/, the user can be inactivated by PATCH ing /api/users/9/ with:

{
"active": false

}

Note: The same general approach can be used for any other flag e.g is_superuser.

Password changes

The password of the logged in user can be changed by making a POST to /api/rest-auth/password/
change/ a payload similar to this example:

{
"old_password": "oldanddonewith",
"new_password1": "newhotness",
"new_password2": "newhotness"

}

Note: A future version of this server may add support for social authentication e.g login via Facebook, Twitter or
Google accounts.

Using the API - basic principles

All the material here assumes that you already have access to an MFL test environment.

16 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

See The API sandbox and Installing for evaluation or Installing for development for information on how to get access
to a test environment.

The MFL v2 project subscribes to the API First approach. It is built to interoperate. We “eat our own dog food” by
insisting that the official user interfaces be just one more set of API clients, with no special privileges.

This guide is for the authors of client applications (applications that consume the RESTful web e.g. The service
catalog). Those who would like to make changes to the MFL API server code itself should refer to the Workflow
guide.

The MFL 2 API is “RESTish”. We subscribe to the principles of REST but are not pedantic about it. It is built using
the excellent Django REST Framework.

HTTP and HTTPS

All API actions are based on HTTP and its verbs e.g. GET and POST.

HTTP
Verb

Description

HEAD Used to retrieve header information about a resource
GET Used to retrieve a resource and for any read-only operation
POST Used to create a resource and sometimes to change it
PUT Used to mutate an existing resource. We, however, encourage the use of PATCH instead of PUT

whenever possible.
PATCH Used to edit an already existing resource
DELETE Used to delete an already existing resource

Production instances should always run over HTTPS.

Data Format

The MFL API server supports JSON for all API endpoints.

Some endpoints support CSV and Excel output. This will be indicated in the relevant sections of the documentation.

The preferred data format is JSON. We strongly encourage you to use JSON - you will find it to be more reliable,
since it is the format used by the official front-ends and is therefore extensively tested.

In order to request a specific format, you will need to learn how to use content negotiation .

Content Negotiation using headers

Send the correct Accept header. For example:

To get json

curl -i -H “Accept: application/json” -H “Content-Type: application/json” http://localhost:8000/api/
common/contacts/

To get csv

curl -i -H “Accept: application/csv” -H “Content-Type: application/csv” http://localhost:8000/api/
common/contacts/

To get a resource in Microsoft Excel format

curl -i -H “Accept: application/xlsx” -H “Content-Type: application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet” http://localhost:8000/api/common/contacts/

1.6. Using the API - basic principles 17

http://www.api-first.com/
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.django-rest-framework.org/
http://www.django-rest-framework.org/api-guide/content-negotiation/
http://localhost:8000/api/common/contacts/
http://localhost:8000/api/common/contacts/
http://localhost:8000/api/common/contacts/
http://localhost:8000/api/common/contacts/
http://localhost:8000/api/common/contacts/

Master Facility List Kenya Documentation, Release 0.0.1a3

Please note that the examples above do not factor in Authentication and authorization.

Content negotiation using query parameters

Append a ?format=<> GET parameter. For example:

• to get JSON (the default), append ?format=json to the URL

• to get CSV append ?format=csv to the URL

• to get Excel, append ?format=excel to the URL

Common fields

All MFL (Master Facilities List) resources have the following fields:

Field Description
id A UUID. This is the database record’s primary key.
created An ISO 8601 timestamp (UTC time zone) that indicates when the resource was created
updated An ISO 8601 timestamp (UTC time zone) that shows when the last update occured
active A boolean; will be set to false when the record is retired
deleted A boolean; will be set to true when the record is removed. The API will in-fact not return deleted

items by default.
created The ID of the user that created the record. The user model is the only one with non UUID primary

keys.
updated The ID of the user that last updated the record.

The example listing below clearly shows the shared fields:

{
"count": 5,
"next": null,
"previous": null,
"results": [

{
"id": "16f7593f-0a21-41b6-87f1-ef2c4ec7e029",
"created": "2015-05-03T02:30:26.345994Z",
"updated": "2015-05-03T02:30:26.346007Z",
"deleted": false,
"active": true,
"name": "POSTAL",
"description": null,
"created_by": 1,
"updated_by": 1

},
{

"id": "f4eaf905-be91-4050-b154-600e31510306",
"created": "2015-05-03T02:30:26.342216Z",
"updated": "2015-05-03T02:30:26.342229Z",
"deleted": false,
"active": true,
"name": "FAX",
"description": null,
"created_by": 1,
"updated_by": 1

},
{

18 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

"id": "f4e835d3-e6a4-4d2d-9d37-344a3da1bb0a",
"created": "2015-05-03T02:30:26.338468Z",
"updated": "2015-05-03T02:30:26.338481Z",
"deleted": false,
"active": true,
"name": "LANDLINE",
"description": null,
"created_by": 1,
"updated_by": 1

},
{

"id": "68281bd2-d616-418d-ab01-616a225b643b",
"created": "2015-05-03T02:30:26.334496Z",
"updated": "2015-05-03T02:30:26.334510Z",
"deleted": false,
"active": true,
"name": "MOBILE",
"description": null,
"created_by": 1,
"updated_by": 1

},
{

"id": "b2ce5bc9-0c73-4586-b5d2-e96c69b90b85",
"created": "2015-05-03T02:30:26.328938Z",
"updated": "2015-05-03T02:30:26.328956Z",
"deleted": false,
"active": true,
"name": "EMAIL",
"description": null,
"created_by": 1,
"updated_by": 1

}
]

}

These fields are exposed via filters in most list endpoints. The examples below show those filters in use:

Filter Example and examples
updated_beforeReturns results where the date is less than or equal to the supplied timestamp. An example of a

valid query is GET /api/facilities/facilities/?
updated_before=2014-05-06T10:36:45.112488Z

updated_afterReturns results where the date is greater than or equal to the supplied timestamp. An example of a
valid query is GET /api/facilities/facilities/?
updated_after=2014-05-06T10:36:45.112488Z

created_beforeSame as for updated_before, but operates on creation timestamps
created_afterSame as for updated_after, but operates on creation timestamps
is_active Can be used to retrieve active or inactive results only e.g GET

/api/facilities/facilities/?is_active=false

Note: Filters can be combined / chained.

Documentation examples

All the examples in this documentation will use the recommended JSON format.

1.6. Using the API - basic principles 19

Master Facility List Kenya Documentation, Release 0.0.1a3

Data notations

The example below demonstrates the manner in which example JSON payloads in the documentation should be inter-
preted:

{
"name": "John Doe",
"gender": "M",
"age": 33,
"houses": [

{
"city": "Nairobi",
"type": "Flat"

},
{

"city": "Mombasa",
"type": "Bungalow"

}
],
"phone": {

"work": "8781923",
"home": "213789123"

}
}

This table describes the data above

Property Type Description
name string Name of the person
age integer Age of the person
gender string Gender of the person
houses list of objects A list of houses the person owns
houses[].city string The city in which the house is in
houses[].type string The type of the house
phone object The person’s phone numbers
phone.work string Work phone number
phone.home string Home phone number

The [] notation is used to indicate a property of every object in a list. For example, houses[].city means every
object in the list houses has a property called city.

Data types

The data types are standard JSON. The MFL API uses UUIDs for its primary keys.

20 Chapter 1. Developers guide

http://www.json.org/
http://en.wikipedia.org/wiki/Universally_unique_identifier

Master Facility List Kenya Documentation, Release 0.0.1a3

Data
type

JSON
Representation

Description

string string A sequence of zero or more characters wrapped in double quotes.
object object A collection of name-value pairs wrapped in curly braces : { and }
list array A collection of values
boolean boolean Represents truthy values and falsy values.Valid values are true and

false
null null Represents null values
integer integer Integer values
decimal string Precision decimal values represented as strings
uuid string A string of 32 characters used as a unique identifier (UUIDs)
datetime string A string representing date and time values (Dates and times)
url string A string representing the location of a network resource

URLs

URLs in this document shall be written in shortform, excluding the scheme and domain (or IP) from which MFL can
be accessed.

For a production system, the scheme shall always be https, unless otherwise specified.

For example, if MFL is running from the IP 192.168.1.56, a full URL could be https://192.168.1.56/api/
common/contacts/. In the documentation, the URL shall be written as /api/common/contacts/, exluding
the scheme and domain (or IP).

Note: All URLs have a trailing slash unless specified otherwise. For example, the url https://192.168.1.
56/v1/claims/ is not equivalent to the url https://192.168.1.56/v1/claims. The latter will result in a
HTTP 404 (Not Found) response

URL Parameters

Any API endpoints that support url parameters shall be specified in the following format:

/api/common/counties/<value>/

For example to retrieve a county by its ID (UUID), the URL shall be specified as:

/api/common/counties/<id>/

e.g. /api/common/counties/89d8f3dd698b46e6a052f355a231858d/

URL Query Parameters

Any API endpoints that support query parameters shall be specified in the following format:

/api/common/counties/?name=<value>

For example to query the county endpoint by name, the URL shall be specified as:

/api/common/counties/?name=<name>

e.g. /api/common/counties/?name=Nairobi

1.6. Using the API - basic principles 21

http://en.wikipedia.org/wiki/Universally_unique_identifier

Master Facility List Kenya Documentation, Release 0.0.1a3

Dates and times

All dates and times shall be represented as datetime strings in ISO 8601 format i.e.

YYYY-MM-DDTHH:MM:SSZ

e.g. 2015-03-30T15:23:89Z

If timezone is to be included, the timezone shall be UTC, thus the format becomes

YYYY-MM-DDTHH:MM:SS+0000

e.g. 2015-03-30T15:23:89+0000

Any date that does not have a timezone shall be assumed to be UTC.

UUIDs

UUIDs are used as unique record identifiers for each record in MFL. All UUIDs used in MFL are version 4 UUIDs.

HTTP Errors

400 (Bad Request) This error occurs if the request given to the server is malformed or does not meet certain criteria
e.g. invalid data.

401 (Unauthorized) The request to access a resource was unauthorized. (Authentication and authorization)

403 (Forbidden) The authorized user does not have permission to access a resource (Authentication and authoriza-
tion)

404 (Not found) The requested resource was not found

410 (Gone) The requested resource has been removed

500 (Server Error) A server error has occurred

Pagination

Endpoints that return multiple items will be paginated with a page size of 25 by default. All endpoints returning a list
of items shall have the following format:

GET /api/common/constituencies/?page=2

{
"count": 290,
"next": "http://localhost:8000/api/common/constituencies/?page=3",
"previous": "http://localhost:8000/api/common/constituencies/",
"results": [

{
... // list of items requested, in this case constituencies

]
}

A client can request a larger page size by specifying the page_size parameter e.g /api/common/contacts/
?page_size=100. There page size limit is selected at server configuration time; it will usually be around 1000
items.

22 Chapter 1. Developers guide

https://en.wikipedia.org/wiki/ISO_8601
http://tools.ietf.org/html/rfc4122.html

Master Facility List Kenya Documentation, Release 0.0.1a3

Audit trail

The API server provides an audit trail for all non third-party resources. This audit trail can be accessed on detail
endpoints by appending an include_audit=true query parameter.

For example, if there was a contact with the id 28d2a0c8-40f4-4686-97d0-d7c6f453fcb3, a GET request to
/api/common/contacts/28d2a0c8-40f4-4686-97d0-d7c6f453fcb3/?include_audit=true
would return a payload that has a revisions key that contains a representation of every past revision of that specific
contact.

Search

Every list endpoint supports full text search. Search is implemented as a filter, using the search query parameter.

For example, to search for contacts that have the word “meru” in them, the query would be /api/common/
contacts/?search=meru.

The API sandbox

Our experience teaches us that the biggest roadblock to systems integration is usually communication. Developers
operate at a level of precision and detail that is alien to most people. We’ve been spoilt by our past dabblings with high
quality API documentation sites like the Stripe API site.

Swagger

The API can be interacted with through Swagger from the link api/explore/

The Browsable API

The API is accesible from the URL api/. This is the entry point into the entire list of all the URLs in the API and the
methods and that are allowed on an endpoint.

API Metadata support

The api/ URL has been designed to make it easy for a client accessing an endpoint to know the methods that are
allowed on the endpoint. The metadata support also allows a client to know the fields that an endpoint accepts and
whether they are required or not.

Metadata resources

This chapter assumes that the reader is familiar with the general principles explained in the Using the API - basic
principles chapter.

The MFL’s job description is to standardize the management of information relating to facilities (including community
health units), provide a standard catalogue of available healthcare The service catalog and act as a central ingress point
for regulation. However, in order to do this, the MFL needs to have a constellation of support resources in its data
model.

1.7. The API sandbox 23

https://stripe.com/docs/api

Master Facility List Kenya Documentation, Release 0.0.1a3

This chapter concerns itself with the resources that hold “setup” type information. These resources wil often be used
to populate drop-downs and other types of choosers in the web / mobile front-ends.

Contact Types

The contact type resource allows us to move the configuration of contact types that are recognized by the server from
code to configuration.

This API will typically be used by web front-ends that need to populate contact type selection dropdowns during the
creation of contacts/

The contact type list endpoint is at /api/common/contact_types/ while the detail end-
point will be at /api/common/contact_types/<pk>/ (for example, the contact whose id is
3a05b4e7-fb8e-4c23-ac95-4e36ac2b99fa can be retrieved by GET``ting ``/api/common/
contact_types/3a05b4e7-fb8e-4c23-ac95-4e36ac2b99fa/).

When creating a new contact, the only necessary fields are the name and description. The following is a valid
POST payload:

{
"name": "KONTACT TYPE",
"description": "Documentation Example"

}

Towns

The town resource allows us to set up the system’s list of towns.

This API will typically be used by front-ends that need to populate town selection dropdowns during the creation of
facility records.

The town list endpoint is at /api/common/towns/. As with every other resource
in this API, the detail endpoint will be at /api/common/towns/ e.g /api/common/
towns/e8f369f1-d115-43a1-a19b-ae40b7b4b19e/ for a town whose primary key is
e8f369f1-d115-43a1-a19b-ae40b7b4b19e.

When creating a new town, the only mandatory parameter is the name. The following is a valid POST payload:

{
"name": "Documentation Town"

}

Administrative units

The second generation MFL implements the post 2010 (Kenyan) constitution administrative structure. This structure
has only three levels, after the national one: counties, constituencies and wards.

There are 47 counties. Each county contains a number of constituencies - all adding up to 290. Each constituency in
turn contains a number of wards - all adding up to 1450.

The constituencies will sometimes be referred to as “sub-counties”. The wards often - ut not always - correspond to
locations in the previous administrative structure.

It is unlikely that an API client will need to alter the administrative unit setup data (it is part of the server’s default
data). API support for editing has still been supplied - as a failsafe mechanism.

24 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Counties

Counties can be listed by visiting /api/common/counties/. Individual county de-
tails can be listed by visiting /api/common/counties/<pk>/ e.g /api/common/
counties/dd999449-d36b-47f2-a958-1f5bb52951d4/ for a county whose id is
dd999449-d36b-47f2-a958-1f5bb52951d4.

Note: The county detail endpoint is atypical.

It embeds a geographic feature (GeoJSON) under the county_boundary key and the coordinates of all facilities
(as a map of GeoJSON points) in the county under the key facility_coordinates.

This API provides all the raw information that is needed to render a map of the county and plot the facilities on that
map.

Constituencies

Constituencies can be listed by visiting /api/common/constituencies/. Individual constituency
details can be viewed by visiting /api/common/constituencies/<pk>/ e.g /api/common/
constituencies/16da4d8a-4bff-448b-8fbb-0f64ee82c05a/ for the constituency with an id
16da4d8a-4bff-448b-8fbb-0f64ee82c05a.

Note: Like the county detail endpoint, the constituency detail endpoint is atypical. It embeds the same coordinates
and boundary information.

Wards

Wards can be listed by visiting /api/common/wards/. Individual ward details can be retrieved at /api/
common/wards/<pk>/ e.g /api/common/wards/41ae635c-5dba-40af-bb74-37d8d0a4c175/ for
the ward with an id 41ae635c-5dba-40af-bb74-37d8d0a4c175.

Note: Like the county and constituency detail endpoints, the ward detail endpoint is atypical because it embeds
coordinates and boundary information.

Facility Types

The purpose of this resource is to populate dropdowns used in facility creation and edit screens. The API also supports
the creation of an administrative interface that can be used to add new facility types and retire old ones.

Facility types can be listed at /api/facilities/facility_types/. Individual facility de-
tails can be listed at /api/facilities/facility_types/<pk>/ e.g /api/facilities/
facility_types/ccf14e50-2606-40b9-96fd-0dc5b3ed4a15/ for the facility whose id is
ccf14e50-2606-40b9-96fd-0dc5b3ed4a15.

The only required fields when creating a new facility type are name (which should be set to something meaningful)
and sub_division (which can be null). The following is a minimal but valid POST payload:

1.8. Metadata resources 25

Master Facility List Kenya Documentation, Release 0.0.1a3

{
"name": "Test facility type for docs",
"sub_division": null

}

Facility owners and owner types

Facility owner types provide a mechanism by which the owners of facilities can be classified, arbitrarily. Examples are
“Non Governmental Organizations”, “Faith Based Organizations” and the “Ministry of Health”. These owner types
can be changed at will.

In the MFL 1 era, facility owners were set up in a very general manner e.g “Private Enterprise (Institution)” and
“Private Practice - Unspecified”. There is no technical reason why these facility owners cannot be more specific e.g
names of specific private sector organizations.

Facility owner types

Facility owner types can be listed at /api/facilities/owner_types/. Predictably, the detailed representa-
tions will be found at 7ce5a7b1-9a5e-476c-a01c-8f52c4233926.

When creating a new facility owner type, the only mandatory field is the name. For example: the following is a
perfectly valid POST payload:

{
"name": "Owner type for docs"

}

Facility owners

Facility owners can be listed at /api/facilities/owners/. Detail representations can
be obtained from /api/facilities/owners/<pk>/ e.g /api/facilities/owners/
f770a132-f62a-418a-96b4-062c3cc7860c/.

When registering a new facility owner, the POST payload should contain at least the name, description and
abbreviation. For example:

{
"name": "Imaginary BigCorp.",
"description": "BigCorp owns everything",
"abbreviation": "BIG",

}

Note: The setup of owners and owner types should be performed with care, because of the importance of this metadata
in analysis / reporting.

Job titles

The job titles that are available to be assigned to facility officers can be listed at /api/facilities/
job_titles/. Individual job title detail resources will be at /api/facilities/job_titles/<pk> e.g
/api/facilities/job_titles/7ec51365-75b7-45e5-873b-8bb3c97bbe21.

26 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

When creating a new job title, the name and description should be sent as a POST payload to the list endpoint.
The example below is a valid payload:

{
"name": "Boss",
"description": "Big Cahunna"

}

Regulating bodies

The regulators that are known to the server can be listed by GET``ting ``/api/
facilities/regulating_bodies/. Predictaby, the detail of each can be retrieved at /api/
facilities/regulating_bodies/<pk>/ e.g /api/facilities/regulating_bodies/
07f8302f-042a-4a9c-906b-10d69092b43e/.

When registering a new regulating body, you should set the name, abbreviation and regulation_verb fields.
For example:

{
"name": "A newly legislated regulator",
"abbreviation": "ANLR",
"regulation_verb": "Gazettment"

}

Regulating body contacts

After creating a regulating body, one or more contacts can be associated with it by POST``ing to ``/api/
facilities/regulating_body_contacts/ the id of the regulating_body (returned by the API after
creating the body or retrieved from the relevant list / detail endpoint) and the id of the contact (obtained in a
similar manner).

Suppose that the id for the newly created regulating body is 5763a053-668e-4ca7-bab4-cda3da396453.
Suppose also that we have just created a contact with id 7dd62ab9-94c2-48d6-a10f-d903bd57acd5.

We can associate that contact and the regulating body by POST``ing to ``/api/facilities/
regulating_body_contacts/ the following payload:

{
"regulating_body": "5763a053-668e-4ca7-bab4-cda3da396453",
"contact": "7dd62ab9-94c2-48d6-a10f-d903bd57acd5"

}

The regulating body contacts that already exist can be listed by issuing a GET to /api/
facilities/regulating_body_contacts/. If you would like to filter those that belong
to a known regulating body, use a regulating_body query parameter, with the id of the
regulating body as the filter value e.g /api/facilities/regulating_body_contacts/?
regulating_body=5763a053-668e-4ca7-bab4-cda3da396453. You could also filter the regulating
body contacts using the id of a known contact, although the use cases for that are more limited.

Note: This section introduces some patterns that will recur in this API:

• The use of filters: the list APIs are filterable by most of the fields that they list. You can explore this further in
the The API sandbox.

• The use of explicit join tables for many to many relationships.

1.8. Metadata resources 27

Master Facility List Kenya Documentation, Release 0.0.1a3

The regulating_body_contact resource that is the subject of this section is an example. That is a deliberate
choice - we find that, even though it makes the API clients do a little more work, it leads to more reliable APIs. In
RESTful APIs, nested serialization / deserialization is a massive pain. We’d rather not deal with it.

Facility Operation Status

Operation Status is what indicates whether a facility is operation or non operational.

Listing Available Operation Status

To list all the available operation status in MFL do a GET to the URL api/facilities/facility_status/

Sample Expected Response data:

{
"count": 4,
"next": null,
"previous": null,
"page_size": 30,
"current_page": 1,
"total_pages": 1,
"start_index": 1,
"end_index": 4,
"results": [

{
"id": "7e5cfa76-7564-4263-89d6-c4e30ce64b39",
"created": "2015-09-28T08:59:03.979532Z",
"updated": "2015-09-28T08:59:03.979567Z",
"deleted": false,
"active": true,
"search": null,
"name": "Unknown",
"description": null,
"created_by": 1,
"updated_by": 1

},
{

"id": "c3b2f2f3-2cfa-4203-bc92-476f63069377",
"created": "2015-09-28T08:59:03.973257Z",
"updated": "2015-09-28T08:59:03.973276Z",
"deleted": false,
"active": true,
"search": null,
"name": "Pending Opening",
"description": null,
"created_by": 1,
"updated_by": 1

},
{

"id": "c879932e-4763-420a-9a87-adddb874b662",
"created": "2015-09-28T08:59:03.967246Z",
"updated": "2015-09-28T08:59:03.967266Z",
"deleted": false,
"active": true,
"search": null,

28 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

"name": "Not-Operational",
"description": null,
"created_by": 1,
"updated_by": 1

},
{

"id": "d498f6bb-af28-435d-b83c-39e81421a83c",
"created": "2015-09-28T08:59:03.957568Z",
"updated": "2015-09-28T08:59:03.957590Z",
"deleted": false,
"active": true,
"search": null,
"name": "Operational",
"description": null,
"created_by": 1,
"updated_by": 1

}
]

}

Expected Response Code: HTPP_200_OK

Creating an Operation Status

To add a new operation status POST to the URL api/facilities/facility_status/ a payload similar to
the one shown below:

{
"name": "Test Status",
"description": "This is just for testing"

}

Sample Expected Response data:

{
"id": "4a67f0f4-bc3a-461f-ad26-4aad885482f4",
"created": "2015-10-27T08:19:55.764752Z",
"updated": "2015-10-27T08:19:55.764767Z",
"deleted": false,
"active": true,
"search": null,
"name": "Test Status",
"description": "This is just for testing",
"created_by": 4,
"updated_by": 4

}

Expected Response Code: HTTP_201_CREATED

Updating a single Operation Status

To update a single operation status do a PATCH to the URL api/facilities/facility_status/
<facility_status_id>/

1.8. Metadata resources 29

Master Facility List Kenya Documentation, Release 0.0.1a3

For example to update operation status we just created we would do a PATCH to the URL api/facilities/
facility_status/4a67f0f4-bc3a-461f-ad26-4aad885482f4/ with a payload similar to the one be-
low:

{
"name": "Test Status edited"

}

Sample Expected Response data

{
"id": "4a67f0f4-bc3a-461f-ad26-4aad885482f4",
"created": "2015-10-27T08:19:55.764752Z",
"updated": "2015-10-27T08:19:55.764767Z",
"deleted": false,
"active": true,
"search": null,
"name": "Test Status edited",
"description": "This is just for testing",
"created_by": 4,
"updated_by": 4

}

Expected Response code: HTTP_200_OK

The service catalog

This chapter assumes that the reader is familiar with the general principles explained in the Using the API - basic
principles chapter.

In order for the MFL to do its job as the keystone of the Kenyan national health information system, there needs to be
a standard registry of services.

At the time when this edition of the MFL was built, no such thing existed. The MFL therefore took on the responsibility
of providing that registry.

This chapter concerns itself with the setup of the service catalog. The service catalog has two primary goals:

• to model healthcare services in a manner that is flexible and future proof

• to standardize service codes

Note: Standardization of service codes is a pre-requisite for interoperability between the MFL and other systems.

Note: The flexibility will allow the MFL to keep pace with changes in healthcare and policy.

Service Categories

Service categories are the “broad headings” under which healthcare services are classified. An example is “Com-
prehensive Emergency Obstetric Care (CEOC)”, an umbrella for services that respond to life-threatening emergency
complications and are offered by facilities whose human resources include doctors and whose infrastructure includes
operating theatres and incubators.

30 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Existing service categories can be listed by issuing a GET to /api/facilities/service_categories/.

To add a new service category, POST to the same URL a payload similar to this:

{
"name": "A new service category",
"description": "What is it really about",
"abbreviation": "ABBR"

}

Services

Services are the granular “product” delivered to end users. Some examples are “Provider Initiated Counselling and
Testing” and Oral Health Services (Dental Services)”.

Existing services can be listed at /api/facilities/services/.

When creating a new service, POST the name, description, abbreviation and category. For example:

{
"name": "A new service",
"description": "The best new service since bread slicing",
"abbreviation": "ANS",
"category": "2bdfd814-5cba-4673-916e-96b6a98cf1c9"

}

Note: Services get auto-assigned code s. A service code is immutable once issued. The service codes are expected
to become a standard identifier for services.

Options and service options

In order to understand the options API, we’ll take a look at the Facility Creation Form from the 2010 Master Facility
List Implementation Guide (the guiding document for the previous edition of the MFL).

In the form above, many services have Yes and No options. Some services require a numeric level (levels 1 to 6
from the Kenya Essential Package for Health [KEPH]), while obstetric services are classified into Basic or Comp
(comprehensive).

That form is far from comprehensive (that was found out in practice). A naive implementation of that form would
hobble the system if a new standard service catalog emerged.

This API responds to that challenge by creating a mechanism by which a service can be associated with an arbitrary
range of options.

Note: This approach will make API clients (including the official web front-ends) do a lot more work; but in this
case, we think that it is worthwhile.

Options

“Options” are the possible “choices” in a service questionnare, like the one shown above.

1.9. The service catalog 31

Master Facility List Kenya Documentation, Release 0.0.1a3

32 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Using that example: “Yes” and “No” are options for the services under the “HIV Prevention Services” category, while
the numbers “1,2,3,4,5,6” are options for the KEPH service classification section.

The known service options can be listed and created at /api/facilities/options/. To create a new option,
you need to POST a payload that includes the following fields:

Field Description
value The value that will be stored in the database, and analyzed. This should be a constant that is

friendly to analytical tools e.g one that does not have unnecessary punctuation and spacing. This
will be a string.

dis-
play_text

The description that will be displayed to the user wherever the option appears in the user interface.
This should be plain text. It cannot be blank.

is_exclusive_optionThis is a boolean value; if true, only one of the exclusive options can be selected for a specific
facility and service. A user interface should intepret this by implementing a control that behaves
like radio buttons.

op-
tion_type

The choices are BOOLEAN, INTEGER, DECIMAL and TEXT. This controls the type of response
data that is valid for that option.

Here is an example of a valid POST payload:

{
"value": "YES",
"display_text": "Yes",
"is_exclusive_option": true,
"option_type": "BOOLEAN"

}

Service Options

The service options resource is used to link services and options. To use an example from the form above, the service
“Home Based Care (HBC)” should be linked with the options Yes and No. Service options can be viewed and
configured at /api/facilities/service_options/. To create a new link, you need to know the id of the
service and the option.

For example: to link an option with the id 53c3f729-97d1-4c9d-9fff-d2edc797b185 with the service
with the id 80613650-f765-4032-a9d3-bb0fc9cc37cc, POST to /api/facilities/options/ the
following payload:

{
"service": "80613650-f765-4032-a9d3-bb0fc9cc37cc",
"option": "53c3f729-97d1-4c9d-9fff-d2edc797b185"

}

Linking facilities to services

The final step is to link a facility to the services that it offers. Facilities are linked to services through service
options.

If the service option that we created above has the id f09af53e-5c6f-468d-a41d-df51693e51a3 and
we’d like to link it to a facility whose id is c4169b23-5cbb-4ed8-a556-8a4fc43af17e, POST to /
facilities/facility_services/ the following payload:

{
"facility": "c4169b23-5cbb-4ed8-a556-8a4fc43af17e",

1.9. The service catalog 33

Master Facility List Kenya Documentation, Release 0.0.1a3

"selected_option": "f09af53e-5c6f-468d-a41d-df51693e51a3"
}

Facilities

This chapter assumes that the reader is familiar with the general principles explained in the Using the API - basic
principles chapter.

The MFL is not merely a “list” of facilities; it has rich APIs to manage their life cycles and to support interaction
with other healthcare systems. This chapter concerns itself with what is arguably the “core” of the MFL system - the
maintenance of facility information. Facilities APIs fall into the following groups:

Function Resources / APIs
Facility Information storage

• Facility
• Facility Physical Addresses
• Facility Contacts
• Facility Units
• Facility Services

Facility Workflow / Life cycle
• Approval
• Publishing (synchronization)
• Regulation
• Upgrade
• Downgrade

Facility ratings
• Facility service ratings
• Facility ratings report

Facility downloads
• Facility cover letters
• Facility correction templates
• Facility excel exports

Facility dashboard APIS
• Analysis by administrative units
• Analysis by type
• Analysis by owner and owner category
• Analysis by regulator and regulation status

Note: One of the things associated with facilities that are registered on the Master Facilities List is a Master Facilities
List (MFL) Code.

The MFL code is a unique number (integral) that is sequential and immutable. The immutability is taken seriously
- the MFL codes that were issued under the first generation system will not be re-issued under the second generation
MFL system.

Codes that are issued under MFL 2 will start at 100000.

Facility information storage

34 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Note: These APIs are the “heart” of the MFL system. A well-behaved front-end should take an integrated approach,
presenting output from these APIs under one set of screens (instead of five sets, one for each resource type).

Facilities

Listing multiple records

The facilities that are currently registered can be listed at /api/facilities/facilities/.

Retrieving a single record

Each facility has a UUID id. A facility’s detail record can be listed at /api/facilities/facilities/
<id>/. For example: if a facility record’s id is 2927d31f-b1a0-4d17-93b0-ea648af7b9f0,
the detail URL for the facility record will be /api/facilities/facilities/
2927d31f-b1a0-4d17-93b0-ea648af7b9f0/.

Filtering and search

Facilities - as listed at /api/facilities/facilities/ can be filtered using the following:

1.10. Facilities 35

Master Facility List Kenya Documentation, Release 0.0.1a3

Filter Explanation
name This does a case insensitive partial match but accepts only one name to filter by e.g

/api/facilities/facilities/?name=molo.
code Filter by one or more facility codes e.g

/api/facilities/facilities/?code=15003,15002. The , is used to separate
individual parameters. This does exact matches.

description Similar to name but operating on descriptions e.g
/api/facilities/facilities/?name=molo

facil-
ity_type

Filter by the id``s of one or more facility types e.g ``/api/facilities/
facilities/?facility_type=f25ba517-3b8d-4692-ba7b-3524f6ec58e5,
b2225473-08f1-4e86-a47a-0a61cf75e731. Facility types can be listed at
/api/facilities/facility_types/.

opera-
tion_status

Filter by the id of one or more operation statuses from
/api/facilities/facility_status/

ward Filter by the id of wards (from /api/common/wards/ e.g /api/facilities/
facilities/?ward=353404d7-02e6-422f-b64f-b1c7d0f1bcf0
)

county Filter by the id of counties (from /api/common/counties/ e.g /api/facilities/
facilities/?county=fa47afa2-a78a-421f-ad9f-55e6cbfc280c
)

con-
stituency

Filter by the id of constituencies (from /api/common/constituencies/ e.g
/api/facilities/facilities/?
constituencies=93280ce0-670f-4b96-a449-57d65f0dcace
)

owner Filter by the id of one or more owners. Owners can be listed at /api/facilities/owners/
owner_type Filter by the id of one or more owner types. Owner types can be listed at

/api/facilities/owner_types/
offi-
cer_in_charge

Filter by the id of one or more officers-in-charge. The officers can be listed at
/api/facilities/officers/

num-
ber_of_beds

Filter by the number of beds, supplying one or more filter parameters e.g
/api/facilities/facilities/?number_of_beds=20,21,22,23,24

num-
ber_of_cots

Filter by the number of cots, supplying one ormore filter parameters e.g
/api/facilities/facilities/?number_of_cots=10,11,12

open_whole_dayA boolean filter e.g /api/facilities/facilities/?open_whole_day=true
open_whole_weekA boolean filter e.g /api/facilities/facilities/?open_whole_week=true
is_classified A boolean filter that determines if a facility’s coordinates should be shown or not. The public

front-end should omit classified facilities by default. i.e. publish those that can be listed with
/api/facilities/facilities/?is_classified=false

is_published A boolean filter that determines if a facility has been cleared for display on the public site. The
public site should only display facilities that can be listed with
/api/facilities/facilities/?is_published=true

is_regulated The facilities that are pending action from the regulators can be listed with
/api/facilities/facilities/?is_regulated=False

The following filters are common to all list endpoints in this API, other than /api/users/.

36 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Filter Explanation
up-
dated_before

The most recently updated facilities can be listed with a query similar to /api/facilities/
facilities/?updated_before=2015-05-09T08:57:48.094112Z. The datetime is in
ISO 8601 format.

cre-
ated_before

Similar to updated_before, but operating on creation dates. Creation dates are not “touched”
after the initial creation of the resource.

up-
dated_after

Similar to updated_before, but returns records newer than the specified datetime

cre-
ated_after

Similar to updated_after, but works with creation dates.

up-
dated_on

This is similar to the date filters above but performs exact matches on the update date.

cre-
ated_on

This is also performs exact matches.

is_active For all resources in this server, the preferred way to “retire” records is to mark them as inactive. This
allows the API client to request only active or only inactive records.

search Perform a full text search that looks through all fields. e.g
/api/facilities/facilities/?search=endebess gives back all facilities that have
“endebess” anywhere in their name, description or attributes.

Note: These filters can be combined / chained.

For example: /api/facilities/facilities/?ward=353404d7-02e6-422f-b64f-b1c7d0f1bcf0&open_whole_day=true

Adding a new record

The following are the important fields when adding a new facility:

1.10. Facilities 37

Master Facility List Kenya Documentation, Release 0.0.1a3

Field Explanation
name The name of the faciity e.g “Musembe Dispensary (Lugari)”
abbreviation A shortened name
description Free text that supplies any additional detail that is required
loca-
tion_desc

An explanation of the location, in “plain” language e.g “Eldoret - Webuye Highway (at Musembe
Mkt junction)”

num-
ber_of_beds

The number of beds as per the facility’s license

num-
ber_of_cots

The number of cots as per the facility’s license

open_whole_daytrue if the facility is a 24 hour operation
open_whole_weektrue if the facility is a 7 day operation
facil-
ity_type

An id, obtained by listing /api/facilities/facility_types/

opera-
tion_status

An id, obtained from /api/facilities/facility_status/. This is the overall state of
the facility e.g “Operational” or “Not Operational”

ward An id, obtained from /api/common/wards/. Facilities are attached at the level of the
smallest administrative area (the ward).

owner An id, obtained from /api/facilities/owners/.
offi-
cer_in_charge

An id, obtained from /api/facilities/officers/

physi-
cal_address

An id, obtained from /api/common/address/

parent Optional. If a facility is a “branch” of a larger facility, the id of the parent facility should be
supplied here.

The following example illustrates a valid POST payload:

{
"name": "Demo Facility",
"abbreviation": "DEMOFAC",
"description": "This is an example in the documentation",
"location_desc": "Planet: Mars",
"number_of_beds": 20,
"number_of_cots": 0,
"open_whole_day": true,
"open_whole_week": true,
"facility_type": "db8f93ad-b558-405a-89b5-a0cdb318ee6e",
"operation_status": "ee194a52-db9d-401c-a2ef-9c8225e501cd",
"ward": "a64d930d-883e-4b96-ba39-c792a1cd04f2",
"owner": "f4c7ca47-7ee6-4795-ac1c-a5d219e329ad",
"officer_in_charge": "972c9c96-fe27-4803-b6f8-c933310e2f44",
"physical_address": "88dde94b-dc42-4b13-b1cb-05eca047678c",
"parent": null

}

A successful POST will get back a HTTP 201 Created response. A representation of the freshly created resource
will be returned in the response.

Updating an existing record

In order to update an existing record, PATCH the appropriate field from the record’s detail view.

For example, if the facility that we created above got the id set to
e88f0c1a-e1e4-44ff-8db1-8c4135abb080 (this will be returned to the client in the resource re-

38 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

turned after successful creation), we can change its location_desc from “Planet: Mars” to “Planet: Venus” by
sending a PATCH to /api/facilities/facilities/e88f0c1a-e1e4-44ff-8db1-8c4135abb080/
with the following payload:

{
"location_desc": "Planet: Venus"

}

A successful PATCH will get back a HTTP 200 OK response and a representation of the freshly updated resource
will be returned.

Deleting a record

In order to delete the record that we just created, send a DELETE with an empty payload to the detail URL i.e. to /
api/facilities/facilities/e88f0c1a-e1e4-44ff-8db1-8c4135abb080/ in the example above.

A successful DELETE will get back a HTTP 204 NO CONTENT response.

Physical addresses

Listing multiple records

The physical addresses known to the system can be listed at /api/common/address/.

In addition to the common filters that are already explained above, physical addresses have the following extra filters:

Field Explanation
town Filter by the id of a town. Towns can be listed at /api/common/towns/ e.g

/api/common/address/?town=b2af0361-c924-4ba2-9bc6-82333fc0a26f
postal_code Filter by the postal_code e.g /api/common/address/?postal_code=00100
address Filter by the actual text of the address itself e.g

/api/common/address/?address=P.O.%20Box%201
near-
est_landmark

Filter by the contents of the nearest_landmark field e.g
/api/common/address/?nearest_landmark=kicc

plot_number Filter by the plot_number field e.g /api/common/address/?plot_number=940

Retrieving a single record

The detail endpoint is /api/common/address/<id>/ e.g /api/common/address/
20d01a89-f6b5-4a4d-b788-32182d427c18/ for the address whose id is
20d01a89-f6b5-4a4d-b788-32182d427c18.

Adding a new record

Supply the following fields:

Field Explanation
postal_code A valid postal code e.g “00100”
address An address e.g “No. 11A, Kabarnet Court, off Kabarnet Road” or “P.O. Box 5980”
nearest_landmark Free text, left to the discretion of the person creating the record
plot_number Free text, left to the discretion of the person entering the record
town The id of a town, as listed at /api/common/towns/

1.10. Facilities 39

Master Facility List Kenya Documentation, Release 0.0.1a3

{
"postal_code": "00100",
"address": "No. 11A, Kabarnet Court, off Kabarnet Road",
"nearest_landmark": "Kingdom Business Centre",
"plot_number": "-",
"town": "b2af0361-c924-4ba2-9bc6-82333fc0a26f"

}

A successful POST will get back a HTTP 201 Created response. A representation of the freshly created resource
will be returned in the response.

Updating an existing record

PATCH the detail endpoint above e.g to set the plot_number for the example record above, send the following
PATCH payload to /api/common/address/20d01a89-f6b5-4a4d-b788-32182d427c18/:

{
"plot_number": "250"

}

A successful PATCH will get back a HTTP 200 OK response. A representation of the updated resource will be
returned in the response.

Deleting a record

Send a DELETE request to the detail endpoint. In the example above, the DELETE would be sent to /api/common/
address/20d01a89-f6b5-4a4d-b788-32182d427c18/.

A successful DELETE will get back a HTTP 204 NO CONTENT response.

Facility contacts

Listing multiple records

Facility contacts can be listed at /api/facilities/contacts/.

In addition to the common contacts that are already explained above, facility contacts have the following extra fields:

Field Explanation
fa-
cil-
ity

The id of the relevant facility, as listed at /api/facilities/facilities/ e.g
/api/facilities/contacts/?facility=faaefb75-dba4-4564-8acb-6b947685de24

con-
tact

The id of a contact, as listed at /api/common/contacts/ e.g
/api/facilities/contacts/?contact=2f5fe4c2-0371-4ba0-ba31-79d997d71c6a

Retrieving a single record

The detail endpoint is /api/facilities/contacts/<id>/. For example, the detail URL for the facil-
ity contact whose id is 9641f588-a5c0-4c0d-ad13-cfcf98a2fb7 is /api/facilities/contacts/
9641f588-a5c0-4c0d-ad13-cfcf98a2fb7.

40 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Adding a new record

The only required fields are the facility and contact (as documented above).

The following example is a valid POST payload:

{
"facility": "faaefb75-dba4-4564-8acb-6b947685de24",
"contact": "2f5fe4c2-0371-4ba0-ba31-79d997d71c6a"

}

A successful POST will get back a HTTP 201 Created response. A representation of the freshly created resource
will be returned in the response.

Updating an existing record

PATCH the detail endpoint with the new values e.g to change the contact in the record above, a valid PATCH payload
could be:

{
"contact": "516f64b5-a12c-4323-b918-a5512b4baf6a"

}

A successful PATCH will get back a HTTP 200 OK response. A representation of the updated resource will be
returned in the response.

Deleting a record

Send a DELETE request to the detail endpoint.

A successful DELETE will get back a HTTP 204 NO CONTENT response.

Facility units

A facility may contain within it multiple semi-independent units e.g a pharmacy, a lab and a radiology unit.

Note: These units may fall under the scope of different regulators. This API server does not currently handle that.

Listing multiple records

Facility units can be listed via a GET to /api/facilities/facility_units/.

In addition to the common filters, facility units can be filtered by the following fields:

Field Explanation
facil-
ity

The id of the facility, as listed at /api/facilities/facilities/ e.g /api/facilities/
facility_units/?facility=faaefb75-dba4-4564-8acb-6b947685de24

name The name of the facility unit e.g /api/facilities/facility_units/?
facility=faaefb75-dba4-4564-8acb-6b947685de24&name=pharmacy

de-
scrip-
tion

The description of the facility unit e.g /api/facilities/facility_units/?
facility=faaefb75-dba4-4564-8acb-6b947685de24&description=hospital%20pharmacy

1.10. Facilities 41

Master Facility List Kenya Documentation, Release 0.0.1a3

Retrieving a single record

A single facility unit record can be retrieved at its detail endpoint i.e /api/facilities/
facility_units/<id>/ e.g /api/facilities/facility_units/
1fcc5c30-9170-4c9d-8d05-9695ba81a08c/.

Adding a new record

When adding a new facility unit, the fields of interest are the name, description and facility.

The following is a valid POST payload for /api/facilities/facility_units/:

{
"name": "Pharmacy",
"description": "Hospital Pharmacy",
"facility": "faaefb75-dba4-4564-8acb-6b947685de24"

}

A successful POST will get back a HTTP 201 Created response. A representation of the freshly created resource
will be returned in the response.

Updating an existing record

A PATCH to the detail endpoint will update the relevant field(s): For example:

{
"description": "Community Pharmacy"

}

A successful PATCH will get back a HTTP 200 OK response. A representation of the updated resource will be
returned in the response.

Deleting a record

Send a DELETE request to the detail endpoint.

A successful DELETE will get back a HTTP 204 NO CONTENT response.

Facility services

These APIs link facilities to The service catalog.

Listing multiple records

The currently registered facility services can be listed via GET to /api/facilities/facility_services/.

In addition to the standard filters, facility services have the following additional filters:

Field Explanation
facility id of a facility, as obtained from /api/facilities/facilities/
se-
lected_option

id of a service catalog service option, as obtained from
/api/facilities/service_options/

42 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Retrieving a single record

A facility service record can be retrieved at /api/facilities/facility_services/<id>/ e.g /
api/facilities/facility_services/df6bc639-1d9b-49f8-8f95-51e6de9c93e2/ for the fa-
cility service whose id is df6bc639-1d9b-49f8-8f95-51e6de9c93e2.

Adding a new record

To associate a facility with a service, the required fields are facility and selected_option.

The following is an example POST payload:

{
"service": "f465cb89-995c-4004-9f32-1d97fa6d0eb2",
"option": "f465cb89-995c-4004-9f32-1d97fa6d0eb2"

}

A successful POST will get back a HTTP 201 Created response. A representation of the freshly created resource
will be returned in the response.

Updating an existing record

Issue a PATCH to the detail endpoint with the new value. For example, to change the option the example record we
created above, the following payload could be sent via PATCH to /api/facilities/facility_services/
df6bc639-1d9b-49f8-8f95-51e6de9c93e2/:

{
"option": "7dde4be8-1c1e-43ce-8569-eebb63bcb329"

}

A successful PATCH will get back a HTTP 200 OK response. A representation of the updated resource will be
returned in the response.

Deleting a record

Issue a DELETE to the detail endpoint.

A successful DELETE will get back a HTTP 204 NO CONTENT response.

Facility workflows

Note: These five workflows are the day-to-day operations performed on the MFL system. A well behaved front-
end should integrate them into the facility information screens that handle the facility information services mentioned
above, rather than give each of these its own set of screens.

Note: These workflows have multiple interactions with the role based access control setup.

1.10. Facilities 43

Master Facility List Kenya Documentation, Release 0.0.1a3

The facility “publishing” workflow

The first generation MFL system had a notion of “synchronizing” facility records to the “public site”. This notion
arose beceause the “public” MFL system was a separate system.

This API does away with that notion. All applications - admin or public, web or mobile - share the same API. Facilities
that should be seen in the public API have is_published set to true and is_classified set to false.

Note: When is_classified is true, a user accessing the public site will need to be logged in with an account
that has a the view_classified_facilities permission.

To “publish” a facility, simply PATCH the facility’s detail URL and set is_published to true. Newly created
facilities are not published by default.

To “classify” a facility, PATCH its detail endpoint with is_classified set to true. A facility is not classified by
default.

Note: The public user interface should add an is_published=true filter to every request made to the facilities
endpoints. For an unauthenticated user, it should also append is_classified=false to every call to the facilities
list endpoint.

The administration user interface should implement role based access control, limiting publishing to users with the
publish_facilities permission.

Facility ratings

Ratings are scores given to a facility’s services. One facility service can be rated by multiple users. One user, can rate
multiple facility services.

The scores given to a service range from 1 to 5, with 1 being the lowest score and 5 being the highest score.

Note: The facility ratings APIs will be used by both the public and administration user interfaces. The public
interface’s concern is to facilitate ratings by the general public. The admninistration interface will present read-only
summary information.

Facility service ratings

To rate a facility service, simply make a POST to api/facilities/facility_service_ratings/ with the
facility_service’s id and the score given. For example,

{
"facility_service": "80613650-f765-4032-a9d3-bb0fc9cc37cc",
"rating": 3

}

Facility rating reports

The rating reports available include:

1. number of users with specific rating/score

44 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

2. sorting of facilities by average score

3. sorting of facility services by average score

4. sorting of facility services in a facility by average score

Facility downloads

Note: Some of these downloads e.g the facility correction template are there for historical reasons. A better approach
would involve the use of mobile interfaces (supported by this server’s APIs) to facilitate data collection and data
updates in the field.

Facility cover letters

To download a facilities cover letter:

GET the URL api/facilities/facility_cover_report/<facility_id>/

Facility correction templates

To download a facility’s correction template:

GET the URL api/facilities/facility_correction_template/<id>/

Facilty Inspection Report

To download a facility’s inspection report: GET the URL api/facilities/
facility_inspection_report/<facility_id>/

Facility Excel reports

Note: The authors of this API treated Excel and CSV output as simply one more format that data can be exported
into. Excel and CSV data comes from the same serializers that produce the standard API JSON and XML output.
This has two positive effects:

• it can use all the available filters

• every list API endpoint (not just the facilities list API endpoint) can produce CSV and Excel

e.g. to get an excel file of facilities: GET the URL api/facilities/facilities/?format=excel

Facility dashboard APIs

This API is accesbile by administrators at both the county and the National level. The dashboard API does a high
level analysis of different aspects of the facilities. Currently, it supports analysis of facilities by owners, administrative
units, facility types, facility owner types and analysis by time created.

To get the analyzed data: GET the URL api/facilities/dashboard/. The data that the endpoint responds
with is dependent upon the priviledges of the user logged in.

1.10. Facilities 45

Master Facility List Kenya Documentation, Release 0.0.1a3

For a National user, the following response is expected

{
"owners_summary": [

{
"count": 5,
"name": "State Coorporation"

},
{

"count": 1203,
"name": "Private Enterprise (Institution)"

},
{

"count": 0,
"name": "NOT IN LIST"

},
{

"count": 3,
"name": "Humanitarian Agencies"

},
{

"count": 179,
"name": "Private Practice - Unspecified"

},

],
"recently_created": 8361,
"county_summary": [

{
"count": 784,
"name": "NAIROBI"

},
{

"count": 392,
"name": "MERU"

},
{

"count": 379,
"name": "NAKURU"

},
{

"count": 363,
"name": "KITUI"

},
{

"count": 358,
"name": "NYERI"

},
{

"count": 333,
"name": "KIAMBU"

},
{

"count": 267,
"name": "KAJIADO"

},
{

"count": 256,
"name": "MOMBASA"

46 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

},
{

"count": 243,
"name": "MACHAKOS"

},
{

"count": 233,
"name": "KILIFI"

}
],
"total_facilities": 8361,
"status_summary": [

{
"count": 0,
"name": "Facility_Gazette_By_ID"

},
{

"count": 0,
"name": "PENDING"

},
{

"count": 0,
"name": "Not-Operational"

},
{

"count": 8361,
"name": "OPERATIONAL"

},
{

"count": 0,
"name": "Licensing"

},
{

"count": 0,
"name": "Registration"

},
{

"count": 0,
"name": "Gazettment"

}
],
"owner_types": [

{
"count": 0,
"name": "Other"

},
{

"count": 268,
"name": "Non-Governmental Organizations"

},
{

"count": 3226,
"name": "Private Institutions and Private Practice"

},
{

"count": 853,
"name": "Faith Based Organization"

},

1.10. Facilities 47

Master Facility List Kenya Documentation, Release 0.0.1a3

{
"count": 356,
"name": "Other Public Institution"

},
{

"count": 3658,
"name": "Ministry of Health"

}
],
"constituencies_summary": [],
"types_summary": [

{
"count": 119,
"name": "District Hospital"

},
{

"count": 901,
"name": "Health Centre"

},
{

"count": 3808,
"name": "Dispensary"

}
]

}

For a County user (Mombasa County in this case), the following response is expected

{
"owners_summary": [

{
"count": 5,
"name": "Local Authority T Fund"

},
{

"count": 33,
"name": "Community Development Fund"

},
{

"count": 78,
"name": "Company Medical Service"

},
{

"count": 265,
"name": "Non-Governmental Organizations"

},
{

"count": 225,
"name": "Other Faith Based"

},
{

"count": 10,
"name": "Supreme Council for Kenya Muslims"

},

],
"owner_types": [

48 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

{
"count": 189,
"name": "Private Institutions and Private Practice"

},
{

"count": 10,
"name": "Faith Based Organization"

},
{

"count": 27,
"name": "Other Public Institution"

},
{

"count": 23,
"name": "Ministry of Health"

}
],
"constituencies_summary": [

{
"count": 71,
"name": "MVITA"

},
{

"count": 49,
"name": "LIKONI"

},
{

"count": 46,
"name": "NYALI"

},
{

"count": 44,
"name": "CHANGAMWE"

},
{

"count": 25,
"name": "KISAUNI"

},
{

"count": 21,
"name": "JOMVU"

}
],
"types_summary": [

{
"count": 2735,
"name": "Medical Clinic"

},
{

"count": 196,
"name": "Other Hospital"

},
{

"count": 119,
"name": "Sub-District Hospital"

},
{

"count": 172,

1.10. Facilities 49

Master Facility List Kenya Documentation, Release 0.0.1a3

"name": "Nursing Home"
}

]
}

Facility types

There are many types of facilities ranging from health centers, hospitals, dispensaries, national hospitals etc.

Facility types form the basis of upgrading and downgrading of facilities.

A facility type has five distinct fields:

Field Explanation
id The primary key of the facility type
name The name of the facility type e.g HEALTH_CENTER
sub-
division

A sub-division of the facility type e.g A hospitla has got several sub divisions e.g District Hospital of
Provincial Hospital

preceed-
ing

A facility type that comes before the type e.g a Provincial Hospital comes before a National Hospital

Creating A facility type

POST to api/facilities/facility_types/ a payload similar to the one below

{
"name": "Hospital",
"sub_division": "Provincial Hospital",
"preceding": "950047f7-dae4-4803-9818-9886004daaf1"

}

Expected Response Code: HTTP 201 CREATED

Expected sample data:

{
"id": "11494347-f40c-4fbb-8632-cc1f35fe1fc9",
"created": "2015-05-21T14:38:03.298142Z",
"updated": "2015-05-21T14:38:03.298162Z",
"deleted": false,
"active": true,
"search": null,
"name": "Hospital",
"sub_division": "Provincial Hospital",
"created_by": 1,
"updated_by": 1,
"preceding": "950047f7-dae4-4803-9818-9886004daaf1"

}

Listing Facillity types

GET the URL api/facilities/facility_types/

50 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Sample Response data:

{
"count": 27,
"next": "http://localhost:8000/api/facilities/facility_types/?page=2",
"previous": null,
"results": [

{
"id": "11494347-f40c-4fbb-8632-cc1f35fe1fc9",
"created": "2015-05-21T14:38:03.298142Z",
"updated": "2015-05-21T14:38:03.298162Z",
"deleted": false,
"active": true,
"search": null,
"name": "Hospital",
"sub_division": "Provincial Hospital",
"created_by": 1,
"updated_by": 1,
"preceding": "950047f7-dae4-4803-9818-9886004daaf1"

},
{

"id": "950047f7-dae4-4803-9818-9886004daaf1",
"created": "2015-05-15T13:45:13.592372Z",
"updated": "2015-05-15T13:45:13.592404Z",
"deleted": false,
"active": true,
"search": null,
"name": "District Hospital",
"sub_division": null,
"created_by": 1,
"updated_by": 1,
"preceding": null

}
]

}

Expected Response code: HTTP 200 OK

Retrieving a facility type

GET the URL api/facilities/facility_types/<id>/

For example to get the details of a facility type whose is 950047f7-dae4-4803-9818-9886004daaf1 do a
GET to the URL api/facilities/facility_types/950047f7-dae4-4803-9818-9886004daaf1/

Sample Response data:

{
"id": "950047f7-dae4-4803-9818-9886004daaf1",
"created": "2015-05-15T13:45:13.592372Z",
"updated": "2015-05-15T13:45:13.592404Z",
"deleted": false,
"active": true,
"search": null,
"name": "District Hospital",
"sub_division": null,
"created_by": 1,
"updated_by": 1,

1.11. Facility types 51

Master Facility List Kenya Documentation, Release 0.0.1a3

"preceding": null
}

Expected Response code HTTP 200 OK

Updating Facility types

PATCH the URL api/facilities/facility_types/<id>/with a payload containing the fields to be edited.
For example to update a facility type’s name whose id is 950047f7-dae4-4803-9818-9886004daaf1 do a PATCH to
the URL api/facilities/facility_types/950047f7-dae4-4803-9818-9886004daaf1/ with a
payload similar to the one below

{
"name": "District Hospital Edited"

}

Sample Expected Response data:

{
"id": "950047f7-dae4-4803-9818-9886004daaf1",
"created": "2015-05-15T13:45:13.592372Z",
"updated": "2015-05-15T13:45:13.592404Z",
"deleted": false,
"active": true,
"search": null,
"name": "District Hospital Edited",
"sub_division": null,
"created_by": 1,
"updated_by": 1,
"preceding": null,

}

Expected Response Code: HTTP 200 OK

Facility Upgrades and Downgrades

Upgrading or downgrading a facility is as easy as changing the facility type of a facility to another type. The person
doing this should have the sufficient permssions to do so. This is however a two step process. The First step involves
making the upgrade or the downgrade and the second involves confirming the upgrade or the downgrade.

Upgrading/Downgrading a Facility (First Step)

POST to api/facilities/facility_upgrade/ a payload similar to the one shown below

{
"reason": "A good reason for the upgrade",
"facility": "cc585b49-dc42-47a3-a08a-7f2c39633393", // id of the facility
"facility_type": "57a0351b-accd-4ccf-b19f-38920ea78e75" // id of the facility type

}

Sample Response Data:

52 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

{
"id": "70610b2b-ddd8-49b4-8594-52c236a834d2",
"created": "2015-05-21T15:37:56.240505Z",
"updated": "2015-05-21T15:37:56.240522Z",
"deleted": false,
"active": true,
"search": null,
"reason": "A good reason for the upgrade",
"is_confirmed": false,
"is_cancelled": false,
"created_by": 3,
"updated_by": 3,
"facility": "cc585b49-dc42-47a3-a08a-7f2c39633393",
"facility_type": "57a0351b-accd-4ccf-b19f-38920ea78e75"

}

Expected Response Code: HTTP 201 CREATED

Confirming Upgrade or Downgrade (Second Step)

The CHRIO may choose to either to confirm or cancel a facility upgrade or downgrade.

To confirm a facility upgrade/downgrade PATCH api/facilities/facility_upgrade/<id>/ where the
id identifies a particular facility upgrade/downgrade.

For example to confirm the facility upgrade done above do a PATCH to api/facilities/
facility_upgrade/70610b2b-ddd8-49b4-8594-52c236a834d2 with the payload below:

{
"is_confirmed": true

}

Expected Response data:

{
"id": "70610b2b-ddd8-49b4-8594-52c236a834d2",
"created": "2015-05-21T15:37:56.240505Z",
"updated": "2015-05-21T15:37:56.240522Z",
"deleted": false,
"active": true,
"search": null,
"reason": "A good reason for the upgrade",
"is_confirmed": true,
"is_cancelled": false,
"created_by": 3,
"updated_by": 3,
"facility": "cc585b49-dc42-47a3-a08a-7f2c39633393",
"facility_type": "57a0351b-accd-4ccf-b19f-38920ea78e75"

}

Expected HTTP Response code HTTP 200 OK

Cancelling a facility upgrade/downgrade(Second Step)

Cancelling a facility upgrade or downgrade is very similar to confirming a facility upgrade with a minor change in the
payload sent.

1.12. Facility Upgrades and Downgrades 53

Master Facility List Kenya Documentation, Release 0.0.1a3

Do a PATCH to the url api/facilities/facility_upgrade/<id>/with a payload similar to the one shown
below:

{
"is_cancelled": true

}

Note: It is after the confirmation of a facility upgrade or downgrade that a facility is deemed to have been upgraded
or downgraded and the changes reflected in the facility.

Listing Facilities that are due for upgrade/downgrade Confirmation

GET the URL /api/facilities/facility_upgrade/?is_confirmed=false

Sample Response data:

{
"count": 1,
"next": null,
"previous": null,
"results": [

{
"id": "70610b2b-ddd8-49b4-8594-52c236a834d2",
"created": "2015-05-21T15:37:56.240505Z",
"updated": "2015-05-21T15:37:56.240522Z",
"deleted": false,
"active": true,
"search": null,
"reason": "A good reason for the upgrade",
"is_confirmed": false,
"is_cancelled": false,
"created_by": 3,
"updated_by": 3,
"facility": "cc585b49-dc42-47a3-a08a-7f2c39633393",
"facility_type": "57a0351b-accd-4ccf-b19f-38920ea78e75"

}
]

}

Expected Response code: HTTP 200 OK

Listing all the facilties whose upgrades and downgrades have been declined: GET the URL /api/facilities/
facility_upgrade/?is_cacelled=true

The resulting payload and expected response code are similar the ones above

Listing all the the Upgrades/Downgrades of a facility

GET the URL /api/facilities/facility_upgrade/?facility=<id>

For example a get to the URL api/facilities/facility_upgrade/?
facility=cc585b49-dc42-47a3-a08a-7f2c3963339311 results in the data shown below and the
a response code of HTTTP 200 OK

54 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

{
"count": 1,
"next": null,
"previous": null,
"results": [

{
"id": "70610b2b-ddd8-49b4-8594-52c236a834d2",
"created": "2015-05-21T15:37:56.240505Z",
"updated": "2015-05-21T15:37:56.240522Z",
"deleted": false,
"active": true,
"search": null,
"reason": "A good reason for the upgrade",
"is_confirmed": true,
"is_cancelled": true,
"created_by": 3,
"updated_by": 3,
"facility": "cc585b49-dc42-47a3-a08a-7f2c39633393",
"facility_type": "57a0351b-accd-4ccf-b19f-38920ea78e75"

}
]

}

Community Health Units

This chapter assumes that the reader is familiar with the general principles explained in the Using the API - basic
principles chapter.

Kenya’s community health strategy relies on community health workers for outreach at the lowest levels (embedded
into communities). These workers are organized into community health units. The second edition of the Master
Facilities List provides APIs for the management of community health units.

This chapter concerns itself with the resources that model community health units and link them to facilities.

Note: Community health units are an extension of the Master Facilities List. A community health unit is a health
service delivery structure within a defined geographic area covering a population of approximately 5,000 people.

Each unit is assigned 2 Community Health Extension Workers (CHEWs) and community health volunteers who offer
promotie, preventative and basic curative services.

Each unit is governed by a Community Health Committee (CHC) and is linked to a specific health facility.

The role of a community health unit is to bring services closer to the people that need them. Those services include:

• Water and sanitation hygiene; e.g. Faecal management, Household water treatment and demonstrations on hand
washing with soap, etc.

• Advice on maternal and child health e.g. Immunization, Individual birth plan, etc.

• Provision of Family planning commodities.

• Growth monitoring for children under 5 years.

• Deworming of children.

• Provision of Long Lasting Insecticide Treated Nets (LLITNs).

• Management of diarrhea, injuries, wounds, jiggers and other minor illnesses.

1.13. Community Health Units 55

Master Facility List Kenya Documentation, Release 0.0.1a3

• Provision of Information, Education & Communication (IEC) materials

• Defaulter tracing (ART, TB and Immunization)

• Referrals to health facilities

• First Aid Services

The implementation of community health units in this API is semi-independent. The units connect to the rest of MFL
at only one point - their linkage to facilities.

Community Health Unit Approvers

The community health approvers resource holds the details of entities that are involved in approval of community
health units.

The known approvers can be listed by issuing a GET to /api/chul/approvers/. To register a new approving
entity, you need to supply a name, description and abbreviation. The following example illustrates that:

{
"name": "Division of Community Health Services",
"description": "Division of Community Health Services, Ministry of Health",
"abbreviation": "DCHS"

}

Community Health Unit Statuses

The community health unit statuses that are known / available can be listed at /api/chul/statuses/ via GET.
These will be used to mark the current status of a community health unit, and when analysing the status of registered
community health units.

To create a new status, you need to POST a name and a description. Here is an example payload:

{
"name": "ACTIVE",
"description": "Actively Deployed"

}

Note: This reflects the operational status of the Community Health Unit.

Community Health Units

Community health units can be listed via GET to /api/chul/units/.

To add a new community health unit, POST to /api/chul/units/, POST a payload that has a name, facility
and status. For the facility and status, the id s are sent (foreign keys).

For example:

{
"name": "Gachie Health Unit",
"facility": "2927d31f-b1a0-4d17-93b0-ea648af7b9f0",
"status": "0e2ba3fc-9c81-4c30-b52e-b62664462cb7"

}

56 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Note: The community health unit code is auto-assigned. Immediately after creating the facility record, the code (
and other auto-assigned fields) will be inserted in the response.

Community Health Unit Contacts

A community health unit may be linked to zero or more contacts. The contacts will have been created at /api/
common/contacts/ using APIs that are discussed in the Metadata resources chapter.

Community health unit contacts can be listed and created at /api/common/contacts/. To list a community
health unit to a contact, POST to that endpoint the id of the contact and the id of the community health unit. The
example payload below illustrates that:

{
"health_unit": "2d425ab7-0002-4b95-9cd1-638972efb75d",
"contact": "7dd62ab9-94c2-48d6-a10f-d903bd57acd5"

}

Community Health Unit Approvals

The approval status of community health units is listed / maintained at /api/chul/unit_approvals/.

To record a new approval, you should supply a comment, approval_date, approver, approval_status
and health_unit.

The approver is the id of an approver registered at /api/chul/approvers/. The approval_status is
the id of an approval status registered at /api/chul/approval_statuses/. The health_unit is the id
of a community health unit registered at /api/chul/units/. The comment is a free-text explanation, while the
approval_date is an ISO 8601 date (not datetime) string that represents the date when the approval occured.

The following example is a valid POST payload:

{
"comment": "For documentation / training purposes",
"approval_date": "2015-05-09",
"approver": "02b610c1-067f-4e0c-9bad-31cc029f6ee3",
"approval_status": "44c2abfd-3944-484f-ae4c-b30778e25398",
"health_unit": "96645d26-8e4e-4078-9e10-a5176f5432df"

}

Note: This reflects the approval status of the Community Health Unit.

Community Health Workers

Community health workers are attached to community health units. They are listed and maintained at /api/chul/
workers/.

When registering a new community health worker, supply a first_name, last_name, surname, id_number
and health_unit. The health_unit is the id of the community health unit that the worker is attached to, and
can be retrieved from /api/chul/units/.

1.13. Community Health Units 57

Master Facility List Kenya Documentation, Release 0.0.1a3

{
"first_name": "Does",
"last_name": "Not",
"surname": "Exist",
"id_number": 545432,
"health_unit": "96645d26-8e4e-4078-9e10-a5176f5432df"

}

Community Health Workers Contacts

A community health worker can be linked to a contact that has already been registered at /api/common/
contacts/ by POST ing to /api/chul/workers_contacts/ the id of the worker and the id of the contact.

For example:

{
"health_worker": "db04b653-b0f7-434f-a224-3ea4d93b69c1",
"contact": "2d04afdc-46a8-4b11-85b8-63f5c035366f"

}

Community Health Workers Approvals

The approval status of community health workers is maintained at /api/chul/worker_approvals/.

The key pieces of information to maintain about each approval are the approver (an id of an approver regis-
tered at /api/chul/approvers/), approval_status (id of an approval status registered at /api/chul/
approval_statuses/) and health_worker (id of a health worker registered at /api/chul/workers/
) and a free-form comment.

The example below is a valid POST payload:

{
"approver": "02b610c1-067f-4e0c-9bad-31cc029f6ee3",
"approval_status": "44c2abfd-3944-484f-ae4c-b30778e25398",
"health_worker": "db04b653-b0f7-434f-a224-3ea4d93b69c1",
"comment": "Documentation example"

}

Regulation

This chapter assumes that the reader is familiar with the general principles explained in the Using the API - basic
principles chapter.

Every healthcare facility falls under the regulatory scope of at least one regulator. For example - at the time of writing,
most healthcare facilities are licensed by the Kenya Medical Practitioners and Dentists Board.

Regulators have their own information systems. The MFL provides APIs that can facilitate two way data flow between
the regulators’ systems and the Master Facilities List.

For regulation of facilities to occur in the system two entities are required:

1. The regulating body

2. The regulation status

58 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Regulatory Bodies

These are the bodies that are in-charge of assessing whether a facility should be licensed, gazetted or registered. They
also determine the KEPH level of operation of a facility.

Creation

POST to /api/facilities/regulating_bodies/ a payload similar to the one shown below:

{
"name": "Kenya Medical Practitioners Pharmacists and Dentists Board",
"abbreviation": "KMPPDB",
"regulation_verb": "license", // e .g gazette license register
"regulatory_body_type": "d195219b-7b5b-4395-889b-3dbcb7bfccf6" // this is the id

→˓of the owner type of facilities they regulate
}

Expected Response code HTTP 201 CREATED

Sample response data:

{
"id": "fbb96308-454f-4d1d-9ca4-597018d460b7",
"created": "2015-05-08T16:24:09.552222Z",
"updated": "2015-05-08T16:24:09.552245Z",
"deleted": false,
"active": true,
"search": null,
"name": "Kenya Medical Practitioners Pharmacists and Dentists Board",
"abbreviation": "KMPDB",
"regulation_verb": "license",
"created_by": 3,
"updated_by": 3,
"regulatory_body_type": null,
"contacts": []

}

Updating

Do a PATCH to /api/facilities/regulating_bodies/<id> with a payload containing only the fields
that are to be modified.

For example:

{
"name": "Kenya Medical Practitioners Pharmacists and Dentists Board"

}

Expected HTTP Response code HTTP 200 OK

Sample response data:

{
"id": "fbb96308-454f-4d1d-9ca4-597018d460b7",
"created": "2015-05-08T16:24:09.552222Z",
"updated": "2015-05-08T16:24:09.552245Z",

1.14. Regulation 59

Master Facility List Kenya Documentation, Release 0.0.1a3

"deleted": false,
"active": true,
"search": null,
"name": "Kenya Medical Practitioners Pharmacists and Dentists Board edited",
"abbreviation": "KMPPDB",
"regulation_verb": "license",
"created_by": 3,
"updated_by": 3,
"regulatory_body_type": null,
"contacts": []

}

Listing

Do a GET the /api/facilities/regulating_bodies/

Below is a sample response data from the endpoint:

{
"count": 2,
"next": null,
"previous": null,
"results": [

{
"id": "bdc6d243-af73-438f-be01-224f621bf538",
"created": "2015-05-08T15:58:18.351751Z",
"updated": "2015-05-08T15:58:18.351772Z",
"deleted": false,
"active": true,
"search": null,
"name": "Pharmacy & Poisons Board",
"abbreviation": "Pharmacy & Poisons Board",
"regulation_verb": "Licensing",
"created_by": 1,
"updated_by": 1,
"regulatory_body_type": null,
"contacts": []

},
{

"id": "5a797ac9-dbbb-4579-b2c3-dee80c2ae43b",
"created": "2015-05-08T15:58:18.346141Z",
"updated": "2015-05-08T15:58:18.346164Z",
"deleted": false,
"active": true,
"search": null,
"name": "Clinical Officers Council",
"abbreviation": "COC",
"regulation_verb": "Licensing",
"created_by": 1,
"updated_by": 1,
"regulatory_body_type": null,
"contacts": []

}
]

}

60 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Retrieving

To retrieve a single regulatory body do a GET to the url api/facilities/regulating_bodies/<id>/ Id
being the id of the regulatory body. The response data will be similar to the data shown below:

{
"id": "bdc6d243-af73-438f-be01-224f621bf538",
"created": "2015-05-08T15:58:18.351751Z",
"updated": "2015-05-08T15:58:18.351772Z",
"deleted": false,
"active": true,
"search": null,
"name": "Pharmacy & Poisons Board",
"abbreviation": "Pharmacy & Poisons Board",
"regulation_verb": "Licensing",
"created_by": 1,
"updated_by": 1,
"regulatory_body_type": null,
"contacts": []

}

Regulatory Statuses

A regulation state is a state in which the facility will be after the regulator has assessed a facility’s suitability for that
state.

The default states are as provided in the implementation guide.

1. PENDING_LICENSING

2. LICENSED

3. LICENSE_SUSPENDED

4. LICENSE_CANCELLED

5. PENDING_REGISTRATION

6. REGISTERED

7. PENDING_GAZETTEMENT

8. GAZETTED

Listing

Do a GET to the url api/facilities/regulation_status/ Example response

{
"count": 2,
"next": null,
"previous": null,
"results": [

{
"id": "d195219b-7b5b-4395-889b-3dbcb7bfccf6",
"next_state_name": "",
"previous_state_name": "Pending Registration",
"created": "2015-05-08T10:00:48.608555Z",

1.14. Regulation 61

Master Facility List Kenya Documentation, Release 0.0.1a3

"updated": "2015-05-08T10:00:48.608572Z",
"deleted": false,
"active": true,
"search": null,
"name": "Registered",
"description": null,
"is_initial_state": false,
"is_final_state": false,
"created_by": 1,
"updated_by": 1,
"previous_status": "1390d5c3-9226-44a0-b464-13d17fed2b41",
"next_status": null

},
{

"id": "5287dbfc-e2c0-410f-80e3-7ec20ac4dc79",
"next_state_name": "",
"previous_state_name": "Pending Gazettment",
"created": "2015-05-08T10:00:48.601773Z",
"updated": "2015-05-08T10:00:48.601808Z",
"deleted": false,
"active": true,
"search": null,
"name": "Gazettment",
"description": null,
"is_initial_state": false,
"is_final_state": true,
"created_by": 1,
"updated_by": 1,
"previous_status": "06d215ec-4a8c-469f-88df-028e597a348d",
"next_status": null

}
]

}

Creation

Creating a regulation status requires one to know the entire regulation workflow of a facility from the first state to the
last state. This is so since as one configures a state they have to know whether it is the initial state, the final state or an
intermediary state.

This section will be divided into 3 parts.

1. Creating an initial state

To create the very first regulation state. To create it do a POST to the api/facilities/regulation_status/
with the similar to the one shown below.

{
"name": "PENDING_LICENSING",
"description": "This is the very first state after a facility has been approved

→˓by the CHRIO",
"is_initial_state": true,

}

62 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Expected response code. HTTP 201 CREATED

Sample Response data:

{
"id": "698e1e45-0ab7-466f-a449-9091036cfa31",
"next_state_name": "Pending Licensing",
"previous_state_name": "Pending Licensing",
"created": "2015-05-08T16:17:32.016528Z",
"updated": "2015-05-08T16:17:32.016543Z",
"deleted": false,
"active": true,
"search": null,
"name": "PENDING_LICENSING",
"description": "This is the very first state after a facility has been approved

→˓by the CHRIO",
"is_initial_state": false,
"is_final_state": true,
"created_by": 3,
"updated_by": 3,
"previous_status": "1938861f-2c34-49c5-808f-caa0ed1c3681",
"next_status": "1938861f-2c34-49c5-808f-caa0ed1c3681"

}

2. Creating a final State

Creating a final state is very similar to creating an initial state.

POST to /api/facilities/regulation_status/ The only change will be to substitute the is_initial_state
with is_final_state and add a previous_state to the sample payload.

{
"name": "LICENSED",
"description": "This is the final state after a facility has been given a

→˓license by the regulating body",
"is_final_state": true,
'previous_state': "1938861f-2c34-49c5-808f-caa0ed1c3681" // id of the preceding

→˓state
}

Expected response code: HTTP 201 CREATED

Sample Response data:

{
"id": "698e1e45-0ab7-466f-a449-9091036cfa31",
"next_state_name": "Pending Licensing",
"previous_state_name": "Pending Licensing",
"created": "2015-05-08T16:17:32.016528Z",
"updated": "2015-05-08T16:17:32.016543Z",
"deleted": false,
"active": true,
"search": null,
"name": "LICENSED",
"description": "This is the final state after a facility has been given a

→˓license by the regulating body",
"is_initial_state": false,
"is_final_state": true,

1.14. Regulation 63

Master Facility List Kenya Documentation, Release 0.0.1a3

"created_by": 3,
"updated_by": 3,
"previous_status": "1938861f-2c34-49c5-808f-caa0ed1c3681",
"next_status": "1938861f-2c34-49c5-808f-caa0ed1c3681"

}

3. Creating an intermediary State.

An intermediary should have a preceding and succeeding state. Here is an example:

POST to /api/facilities/regulation_status/

{
"name": "INTERMEDIARY_STATE",
"description": "This is the state in-between state 1 and state 3",
"previous_status": "1938861f-2c34-49c5-808f-caa0ed1c3681" // id of the preceding

→˓state ,
"next_status": "1938861f-2c34-49c5-808f-caa0ed1c3681" // id of the suceeding state

}

Expected response HTTP 201 CREATED

sample Reponse data:

{
"id": "698e1e45-0ab7-466f-a449-9091036cfa31",
"next_state_name": "Pending Licensing",
"previous_state_name": "Pending Licensing",
"created": "2015-05-08T16:17:32.016528Z",
"updated": "2015-05-08T16:17:32.016543Z",
"deleted": false,
"active": true,
"search": null,
"name": "INTERMEDIARY_STATE",
"description": "This is the state in-between state 1 and state 3",
"is_initial_state": false,
"is_final_state": false,
"created_by": 3,
"updated_by": 3,
"previous_status": "1938861f-2c34-49c5-808f-caa0ed1c3681",
"next_status": "1938861f-2c34-49c5-808f-caa0ed1c3681"

}

Retrieving a single regulatory state

Do a GET to the url /api/facilities/regulation_status/<id> where id is the id of the regulatory state.

{
"id": "d195219b-7b5b-4395-889b-3dbcb7bfccf6",
"next_state_name": "",
"previous_state_name": "Pending Registration",
"created": "2015-05-08T10:00:48.608555Z",
"updated": "2015-05-08T10:00:48.608572Z",
"deleted": false,
"active": true,

64 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

"search": null,
"name": "Registered",
"description": null,
"is_initial_state": false,
"is_final_state": false,
"created_by": 1,
"updated_by": 1,
"previous_status": "1390d5c3-9226-44a0-b464-13d17fed2b41",
"next_status": null

}

Expected Response HTTP 200 OK

Updating a regulatory state

Do a PATCH to /api/facilities/regulation_status/<id>/ with the payload being the fields to update.
Here is a sample payload

{

"name": "Registered Edited"
}

The above payload will update the details of the state whose id is the url.

Expected Response code: HTTP 200 OK

Sample Response data:

{
"id": "d195219b-7b5b-4395-889b-3dbcb7bfccf6",
"next_state_name": "",
"previous_state_name": "Pending Registration",
"created": "2015-05-08T10:00:48.608555Z",
"updated": "2015-05-08T10:00:48.608572Z",
"deleted": false,
"active": true,
"search": null,
"name": "Registered Edited",
"description": null,
"is_initial_state": false,
"is_final_state": false,
"created_by": 1,
"updated_by": 1,
"previous_status": "1390d5c3-9226-44a0-b464-13d17fed2b41",
"next_status": null

}

Listing Facilities pending regulation

Do a GET to the url /api/facilities/facility_regulation_status/?regulated=False This will
respond with a list of the facilities that have been modified and need to be regulated or the facilities that have been not
yet been regulated. The response data will be similar to the sample response data below:

1.14. Regulation 65

Master Facility List Kenya Documentation, Release 0.0.1a3

{
"count": 1,
"next": null,
"previous": null,
"results": [

{
"id": "8c0964a1-b733-40e4-b0be-1874749e469b",
"regulary_status_name": null,
"facility_type_name": "District Hospital",
"owner_name": "Ministry of Health",
"owner_type_name": "Ministry of Health",
"county": "TRANS NZOIA",
"constituency": "ENDEBESS",
"created": "2015-05-08T09:58:36.862227Z",
"updated": "2015-05-08T09:58:36.862242Z",
"deleted": false,
"active": true,
"search": null,
"name": "Endebess District Hospital",
"code": 14455,
"abbreviation": "",
"description": "",
"location_desc": "Kitale Swam Road",
"number_of_beds": 20,
"number_of_cots": 8,
"open_whole_day": true,
"open_whole_week": true,
"is_classified": false,
"is_published": true,
"is_synchronized": false,
"created_by": 1,
"updated_by": 1,
"facility_type": "1d2e7d02-97e0-470b-9889-549df3ff49f8",
"operation_status": "e865f01b-8937-40fc-a095-fbbb83c59461",
"ward": "a4223139-30e4-4253-88fe-405a622aa2f7",
"owner": "7506421d-7838-4eee-9a44-7c92fd76d0b9",
"officer_in_charge": null,
"physical_address": "3c75fb20-619d-4591-8f93-56f7493ee764",
"parent": null,
"contacts": []

},
{

"id": "854bb94d-7a87-45c7-9243-4b9d9751a690",
"regulary_status_name": null,
"facility_type_name": "Health Centre",
"owner_name": "Ministry of Health",
"owner_type_name": "Ministry of Health",
"county": "TRANS NZOIA",
"constituency": "ENDEBESS",
"created": "2015-05-08T09:58:36.849294Z",
"updated": "2015-05-08T09:58:36.849311Z",
"deleted": false,
"active": true,
"search": null,
"name": "Kwanza Health Centre",
"code": 15003,
"abbreviation": "",
"description": "",

66 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

"location_desc": "",
"number_of_beds": 18,
"number_of_cots": 0,
"open_whole_day": false,
"open_whole_week": true,
"is_classified": false,
"is_published": true,
"is_synchronized": false,
"created_by": 1,
"updated_by": 1,
"facility_type": "3c8a65ec-8489-4483-b32b-057098a9fe08",
"operation_status": "e865f01b-8937-40fc-a095-fbbb83c59461",
"ward": "4e203a27-8c37-468e-8b39-407193a6d862",
"owner": "7506421d-7838-4eee-9a44-7c92fd76d0b9",
"officer_in_charge": null,
"physical_address": "3c75fb20-619d-4591-8f93-56f7493ee764",
"parent": null,
"contacts": []

}
]

}

Regulate a facility

POST to /api/facilities/facility_regulation_status/ a payload similar to the one shown below:

{

"reason": "The facility has met all the requirements",
"license_number": "F135/2015",
"facility": "d0cf7632-2854-464f-8638-03d1c021f519",
"regulating_body": "ed3ac8af-c1a7-42f4-9f0d-a9c5e4cf3c13",
"regulation_status": "5287dbfc-e2c0-410f-80e3-7ec20ac4dc79"

}

Expected Reponse Code HTTP 201 Created

Sample Reponse data:

{
"id": "594f7bd1-ce6b-4a6d-82c2-523b1710ec31",
"created": "2015-05-08T16:10:22.604609Z",
"updated": "2015-05-08T16:10:22.604631Z",
"deleted": false,
"active": true,
"search": null,
"reason": "The facility has met all the requirements",
"license_number": "F135/2015",
"is_confirmed": false,
"is_cancelled": false,
"created_by": 3,
"updated_by": 3,
"facility": "d0cf7632-2854-464f-8638-03d1c021f519",
"regulating_body": "ed3ac8af-c1a7-42f4-9f0d-a9c5e4cf3c13",
"regulation_status": "5287dbfc-e2c0-410f-80e3-7ec20ac4dc79"

}

1.14. Regulation 67

Master Facility List Kenya Documentation, Release 0.0.1a3

GIS Support

This chapter assumes that the reader is familiar with the general principles explained in the Using the API - basic
principles chapter.

The MFL 2 API server uses the excellent GeoDjango and PostGIS to provide The service catalog that can be used to
generate facility maps, perform geographic queries and validate facility coordinate data. You can read more about this
at the GIS Support page.

What is GIS?

A geographic information system (GIS) lets us visualize, question, analyze, and interpret data to understand relation-
ships, patterns, and trends.

Master Facility List data is inherently geographical - the Master Facility List should have coordinates for all facilities
in Kenya. The GIS APIs provided by this server support the visualization, interogation and analysis of this data.

Note: The official front-ends barely scratch the surface when it comes to the use of GIS data. These APIs are open to
third party applications too.

GIS data formats

There are many GIS file formats to choose from. We chose to go with GeoJSON because it fits in with our general
preference for JSON. It is easy to convert from GeoJSON to ESRI Shapefile and KML formats.

A brief note about points

In “day to day language”, we might be accustomed to expressing points as (latitude, longitude) pairs e.g (-1.300462,
36.791533) for the location of this writer’s office at the time of writing. When expressing that location as a GeoJSON
“point”, we’ll need to “flip” the coordinates, so that the GeoJSON for this author’s office would be:

{
type: "Point",
coordinates: [

36.791533,
-1.300462

]
}

How do I move from GeoJSON to a map?

If you are building a web application, take a look at Leaflet and OpenLayers.

If you are working on a mobile application, you could take a look at the Google Maps API or its competitors e.g Bing
Maps.

If you are working on on a desktop application, we assume that you know what you are doing and do not need any
helpful pointers.

68 Chapter 1. Developers guide

https://docs.djangoproject.com/en/dev/ref/contrib/gis/
http://postgis.net/
http://en.wikipedia.org/wiki/GIS_file_formats
http://geojson.org/geojson-spec.html
http://en.wikipedia.org/wiki/Shapefile
http://en.wikipedia.org/wiki/Keyhole_Markup_Language
http://leafletjs.com/
http://openlayers.org/
https://developers.google.com/maps/

Master Facility List Kenya Documentation, Release 0.0.1a3

Administrative units

Kenya has a three tier administrative structure: the country has 47 counties. Each county has a number of constituen-
cies, with the total for the country being 290 constituencies. Each constituency has a number of wards, with the total
for the country being 1450 wards. The GIS enabled APIs follow this administrative structure.

Note: This server also has resources that contain country boundaries. The default distribution has data from the World
Borders Dataset (from http://thematicmapping.org/).

We have not documented the country boundary APIs for the following reasons:

• The county, constituency and ward boundary APIs meet all of the Kenyan MFL needs.

• The borders in the World Borders Dataset are inaccurate - sometimes lopping off several square kilometers
around the borders.

Note: The default distribution has map (boundary) data for 1482 out of 1450 wards.

The administrative unit data is considered “setup data” - loaded at server install time, rarely changed afterward. For
that reason, the documentation will focus on retrieval and interpretation. If you need to change or add, the basic
principles explained in the Using the API - basic principles chapter still apply.

Counties

Counties can be listed by sending a GET to /api/common/counties/. Every county is identified by a name and
code.

An individual county’s detail record is available at /api/common/counties/<pk>/ e.g /api/
common/counties/dd999449-d36b-47f2-a958-1f5bb52951d4/ for the county whose id is
dd999449-d36b-47f2-a958-1f5bb52951d4.

Note: The county detail view is “rich”. It embeds a facility_coordinates key that shows the location of
every facility in that county.

The facility co-ordinates are a map, with the facility names as keys. For example:

facility_coordinates: {
AAR Gwh Health Care Ltd: {

type: "Point",
coordinates: [

36.80897,
-1.29467

]
},
Dr Musili Clinic (Afya Centre-Nairobi): {

type: "Point",
coordinates: [

36.82763,
-1.28799

]
},
// truncated for brevity

1.15. GIS Support 69

http://thematicmapping.org/

Master Facility List Kenya Documentation, Release 0.0.1a3

The county detail view also embeds within itself the appropriate county_boundary. The contents of this will be
discussed in the next section.

County Boundaries

County boundaries can be listed at /api/gis/county_boundaries/. The list view is a GeoJSON “FeatureC-
ollection”, while the detail view is a GeoJSON “Feature”.

Note: The border (polygon) is under the geometry key for every feature.

Every boundary (feature) serialization has the following fields:

• center - a Point that represents the geometric centre of the area

• facility_count - the number of facilities in that geographic area

• density - a synthetic value (roughly comparable to facilities per square kilometer, although it is not actually
facilities / sq.km). This is used by front-end clients to color-code maps.

• constituency_ids - a list of the id s (primary keys) of the constituencies under that county. These can
be appended to the /api/common/constituencies/ endpoint i.e /api/constituencies/<id>/
in order to retrieve the details of each constituency in the county.

• constituency_boundary_ids - a list of the id s of the constituency boundary objects for the constituen-
cies under the county in question. These can be used to retrieve the constituency boundaries at /api/gis/
constituency_boundaries/<pk>/.

Constituencies

Constituencies can be listed by sending a GET to /api/common/constituencies/. Every constituency is
identified by a name and a code.

Note: The constituency detail view is, like the county detail view, “rich”. It embeds facility_coordinates
and the relevant constituency_boundary.

Constituency Boundaries

Constituency boundaries can be listed at /api/gis/constituency_boundaries/. The output is simi-
lar to that of the county boundary endpoints, with the following differences: it embeds ward_ids instead of
constituency_ids and ward_boundary_ids instead of constituency_boundary_ids.

Wards

Wards can be listed by sending a GET to /api/common/wards/. Every ward is identified by a name and a code.

Note: The ward detail view is, like the county and constituency detail views, “rich”. It embeds
facility_coordinates and the relevant ward_boundary.

70 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Ward Boundaries

Ward boundaries can be listed at /api/gis/ward_boundaries/. The output is similar to that of the county
boundary endpoints, with the following differences: as the smallest administrative unit, a ward does not embed the
coordinates of any other administrative unit.

Lookup administrative units

It is possible to determine the location of a facility using it’s coordinates by sending a POST to /api/mfl_gis/
ikowapi/ with the longitude and latitude.

{
"longitude": 1.3213,
"latitude": 4.53434

}

The response, if successful, shall provide the ward, constituency and county ids and names.

{
"ward": "<ward id>",
"ward_name": "<ward name>",
"ward_code": "<ward code>",
"constituency": "<constituency id>",
"constituency_name": "<constituency name>",
"constituency_code": "<constituency code>",
"county": "<id of the county>",
"county_name": "<county name>",
"county_code": "<county code>"

}

Facility Coordinates

The facility coordinates resources can be found at /api/gis/coordinates/. The example below will be used
to explain the format:

{
id: "1051cac1-b6e1-46c6-8782-a182dd1a9c50",
type: "Feature",
geometry: {

type: "Point",
coordinates: [

34.92687,
0.88226

]
},
properties: {

created: "2015-05-06T17:29:47.710254Z",
updated: "2015-05-06T17:29:47.710266Z",
deleted: false,
active: true,
search: null,
collection_date: "2015-05-06T17:29:48.624415Z",
created_by: 1,
updated_by: 1,
facility: "7f91fb27-8fa5-4160-b572-2dc0ad7a554e",

1.15. GIS Support 71

Master Facility List Kenya Documentation, Release 0.0.1a3

source: "c027c6fa-19b2-4fcd-83fa-f84705be84ea",
method: "1a3f3df8-8c18-4cac-89cc-93dc59a0e057"

}
}

The facility’s location is the geometry Point. The facility in question is identified by the
facility property, which contains a facility primary key that can be used to retrieve the facili-
ties from /api/facilities/facilities/<pk>/ e.g. /api/facilities/facilities/
7f91fb27-8fa5-4160-b572-2dc0ad7a554e/ for the example above.

To set up new facility coordinates, POST to /api/gis/coordinates/ a payload similar to the example below:

{
"coordinates": {

"type": "Point",
"coordinates": [

34.96962,
0.45577

]
},
"facility": "be6ca131-5767-45b2-8213-104214becdd3",
"source": "c027c6fa-19b2-4fcd-83fa-f84705be84ea",
"method": "cd0bbbcf-60fa-4b76-b48c-5dcda414b43d"

}

Every geocode is associated with a geocode source and a geocode method. The source key in the payload above is
for the geocode source while the method key is for the geocode method.

Geocode sources are viewed/created at /api/gis/geo_code_sources/ while geocode methods are
viewed/created at /api/gis/geo_code_methods/. Both take a name and a description.

Workflow

MFL API v2 is a liberally licensed (MIT license) project. All development occurs in the open on the MFL API
Github project. We use the MFL API Github issue list to manage bug reports and enhancement requests.

This project uses the GitFlow Workflow.

In summary:

• all work should occur in feature branches

• the target for pull requests is the develop branch

• the release manager (presently @ngurenyaga) will periodically create release branches that ultimately get
merged into master and tagged

• fixes on released versions will occur in hotfix branches

We adhere to semantic versioning - https://semver.org .

In order to deploy a new version, you will need to have a $HOME/.pypirc that has the correct pypi credentials. The
command to deploy is fab deploy. The credentials are not stored on GitHub - for obvious reasons.

72 Chapter 1. Developers guide

http://choosealicense.com/licenses/mit/
https://github.com/MasterFacilityList/mfl_api
https://github.com/MasterFacilityList/mfl_api
https://github.com/MasterFacilityList/mfl_api/issues
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://github.com/ngurenyaga
https://semver.org

Master Facility List Kenya Documentation, Release 0.0.1a3

Contributors’ code of conduct

We have an open-door policy when it comes to contributions. At the same time, we’d like to build a friendly community
up around the MFL project, and to be good citizens of the open source clinical informatics landscape.

This project welcomes input - which could be code, but also documentation, training, support on adoption, bug reports
and feature requests.

Our code of conduct is based on the Django Code of Conduct. The important parts are reproduced below:

• Be friendly and patient.

• Be welcoming. We strive to be a community that welcomes and supports people of all backgrounds and iden-
tities. This includes, but is not limited to members of any race, ethnicity, culture, national origin, colour,
immigration status, social and economic class, educational level, sex, sexual orientation, gender identity and
expression, age, size, family status, political belief, religion, and mental and physical ability.

• Be considerate. Your work will be used by other people, and you in turn will depend on the work of others.
Any decision you take will affect users and colleagues, and you should take those consequences into account
when making decisions. Remember that we’re a world-wide community, so you might not be communicating
in someone else’s primary language.

• Be respectful. Not all of us will agree all the time, but disagreement is no excuse for poor behavior and
poor manners. We might all experience some frustration now and then, but we cannot allow that frustration to
turn into a personal attack. It’s important to remember that a community where people feel uncomfortable or
threatened is not a productive one. Members of the Django community should be respectful when dealing with
other members as well as with people outside the Django community.

• Be careful in the words that you choose. We are a community of professionals, and we conduct ourselves pro-
fessionally. Be kind to others. Do not insult or put down other participants. Harassment and other exclusionary
behavior aren’t acceptable. This includes, but is not limited to:

– Violent threats or language directed against another person.

– Discriminatory jokes and language.

– Posting sexually explicit or violent material.

– Posting (or threatening to post) other people’s personally identifying information (“doxing”).

– Personal insults, especially those using racist or sexist terms.

– Unwelcome sexual attention.

– Advocating for, or encouraging, any of the above behavior.

– Repeated harassment of others. In general, if someone asks you to stop, then stop.

• When we disagree, try to understand why. Disagreements, both social and technical, happen all the time
and Django is no exception. It is important that we resolve disagreements and differing views constructively.
Remember that we’re different. The strength of Django comes from its varied community, people from a wide
range of backgrounds. Different people have different perspectives on issues. Being unable to understand why
someone holds a viewpoint doesn’t mean that they’re wrong. Don’t forget that it is human to err and blaming
each other doesn’t get us anywhere, rather offer to help resolving issues and to help learn from mistakes.

Regulator Synchronization

Regulator synchronization is divided into two sections:

1. Part 1: Attached Facilities Synchronization

1.17. Contributors’ code of conduct 73

https://www.djangoproject.com/conduct/

Master Facility List Kenya Documentation, Release 0.0.1a3

2. Part 2: Stand Alone Facilities Synchronization

Part 1: Attached Facilities Synchronization

Attached facilities are those facilities that offer specialized health services such as pharmaceutical services, laboratory
services, opthalmology services, physiotherapy services etc besides offering other general health services.

This is for Attached facilities that are initially created in the RHRIS system and do not have a master facility code
assigned to them. This endpoint provides a way to enable the regulatory system to notify the master facility list(MFL)
that there are facilities that have been registered and they are not in the MFL. After which the concerned officer
(CHRIO) can ensure that the facilities are registered with the MFL.

The synchronization process:

The regulator synchronization resource has the following important fields:

Field Required Explanation
Name Yes This is the name of the facility
Regisration_number Yes This the registration number as assigned by the regulator
County Yes This is the code of the county where the facility is located
Owner Yes The id of the owner as the per the MFL
Facility_type Yes The id of the facility type as per the MFL
Mfl_code No The mfl code assigned to the facility once it is created in MFL

Obtaining the owner’s ids

The owner’s ids can be obtained by doing a GET to the URL api/facilities/owners/

Sample Expected Result:

{
"count": 30,
"next": null,
"previous": null,
"page_size": 30,
"current_page": 1,
"total_pages": 1,
"start_index": 1,
"end_index": 30,
"results": [

{
"id": "aa1aca14-2937-4b49-b1a5-3c1ce05895ae",
"owner_type_name": "Faith Based Organization",
"created": "2015-09-23T13:16:13.988038Z",
"updated": "2015-09-23T13:16:13.988060Z",
"deleted": false,
"active": true,
"search": null,
"name": "Faith Based",
"description": null,
"code": 1013,
"abbreviation": null,
"created_by": 1,
"updated_by": 1,
"owner_type": "c35677b6-05a4-4233-9dfa-9544476850c4"

},
{

74 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

"id": "aa32ee6f-3653-4fb8-bd2e-4e59b61a952c",
"owner_type_name": "Ministry of Health",
"created": "2015-09-23T13:16:13.961025Z",
"updated": "2015-09-23T13:16:13.961049Z",
"deleted": false,
"active": true,
"search": null,
"name": "Ministry of Health",
"description": null,
"code": 1010,
"abbreviation": null,
"created_by": 1,
"updated_by": 1,
"owner_type": "33ebff77-f5fc-46dd-b675-7abd56d7bfdf"

}

]
}

Expected Response code: HTTP_200_OK

Obtaining the facility type ids

The facility type’s ids can be obtained by doing a GET to the URL api/facilities/facility_types/
Sample Expected Result

{
"count": 41,
"next": "http://localhost:8061/api/facilities/facility_types/?page=2",
"previous": null,
"page_size": 30,
"current_page": 1,
"total_pages": 2,
"start_index": 1,
"end_index": 30,
"results": [

{
"id": "1ce27507-9bd0-43cf-8a6f-4519a018ad27",
"owner_type_name": null,
"created": "2015-09-23T13:16:13.438542Z",
"updated": "2015-09-23T13:16:13.438562Z",
"deleted": false,
"active": true,
"search": null,
"name": "Laboratory (Stand-alone)",
"abbreviation": null,
"sub_division": null,
"created_by": 1,
"updated_by": 1,
"owner_type": null,
"preceding": null

},
{

"id": "f9f5bd67-b679-4711-8752-d77c2397ddc9",
"owner_type_name": null,
"created": "2015-09-23T13:16:13.431970Z",
"updated": "2015-09-23T13:16:13.431993Z",
"deleted": false,
"active": true,

1.18. Regulator Synchronization 75

Master Facility List Kenya Documentation, Release 0.0.1a3

"search": null,
"name": "Hospital",
"abbreviation": null,
"sub_division": null,
"created_by": 1,
"updated_by": 1,
"owner_type": null,
"preceding": null

}
]

}

Step 1

First the regulator system posts to MFL the details of the facilities that have been created in the RHIS and are not in
the MFL. To do this do a POST to api/facilitiess/regulator_sync/ a payload similar to the one below:

{
"name": "Mama Lucy Kibaki hospital",
"registration_number": 100,
"county": 47,
"owner": "aa1aca14-2937-4b49-b1a5-3c1ce05895ae",
"facility_type": "f9f5bd67-b679-4711-8752-d77c2397ddc9"

}

Sample Expected Response:

{
"id": "817c8a79-a3e5-46b1-aba5-4cb4de78a5da",
"county_name": "NAIROBI",
"owner_name": "Other Faith Based",
"facility_type_name": "Hospital",
"created": "2015-09-26T09:38:12.801942Z",
"updated": "2015-09-26T09:38:12.801959Z",
"deleted": false,
"active": true,
"search": null,
"name": "Mama Lucy Kibaki hospital",
"registration_number": "100",
"county": 47,
"mfl_code": null,
"created_by": 4,
"updated_by": 4,
"facility_type": "f9f5bd67-b679-4711-8752-d77c2397ddc9",
"owner": "aa1aca14-2937-4b49-b1a5-3c1ce05895ae"

}

Expected Response Code:

HTTP_201_CREATED

Step 2

Once a facility synchronization has been initiated, the request to register a facility will appear on the concerned
CHRIO’s dashboard. On registration of the facility with the MFL the mfl_code will be field and the RHRIS can now
pull and get a facility’s mfl_code.

76 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Listing of synchronized facilities

To list the facilities requested do a GET to the URL api/facilities/regulator_sync/

Sample Expected Result:

{
"count": 3,
"next": null,
"previous": null,
"page_size": 30,
"current_page": 1,
"total_pages": 1,
"start_index": 1,
"end_index": 3,
"results": [

{
"id": "817c8a79-a3e5-46b1-aba5-4cb4de78a5da",
"county_name": "NAIROBI",
"owner_name": "Other Faith Based",
"facility_type_name": "Hospital",
"created": "2015-09-26T09:38:12.801942Z",
"updated": "2015-09-26T09:38:12.801959Z",
"deleted": false,
"active": true,
"search": null,
"name": "Mama Lucy Kibaki hospital",
"registration_number": "100",
"county": 47,
"mfl_code": null,
"created_by": 4,
"updated_by": 4,
"facility_type": "f9f5bd67-b679-4711-8752-d77c2397ddc9",
"owner": "aa1aca14-2937-4b49-b1a5-3c1ce05895ae"

},
{

"id": "94e91d84-6f73-48c1-855e-5a9539845971",
"county_name": "GARISSA",
"owner_name": "Private Practice - Medical Specialist",
"facility_type_name": "Sub-District Hospital",
"created": "2015-09-25T10:08:05.715148Z",
"updated": "2015-09-25T10:08:05.715194Z",
"deleted": false,
"active": true,
"search": null,
"name": "Kamau Kiarie",
"registration_number": "14535",
"county": 7,
"mfl_code": null,
"created_by": 1,
"updated_by": 1,
"facility_type": "8b3b71b8-23ae-48a5-b7ee-e5078794c6c7",
"owner": "a164b5bf-8caa-4558-9ba5-a77c87363b3d"

},
{

"id": "f827f31d-aed0-4d63-90ad-7320769e4638",
"county_name": "TAITA TAVETA",
"owner_name": "Private Practice - Medical Specialist",
"facility_type_name": "Sub-District Hospital",

1.18. Regulator Synchronization 77

Master Facility List Kenya Documentation, Release 0.0.1a3

"created": "2015-09-25T10:07:54.192779Z",
"updated": "2015-09-25T10:07:54.192817Z",
"deleted": false,
"active": true,
"search": null,
"name": "Mama Lucy",
"registration_number": "14535",
"county": 6,
"mfl_code": null,
"created_by": 1,
"updated_by": 1,
"facility_type": "8b3b71b8-23ae-48a5-b7ee-e5078794c6c7",
"owner": "a164b5bf-8caa-4558-9ba5-a77c87363b3d"

}
]

}

Part 2: Stand Alone Facilities Synchronization

Stand alone facilities are those facilities that offer only one specialized health care service. e.g laboratories, pharma-
cies, blood bank centers etc.

Synchronization process

Stand alone facilities such as pharmacies are registered in the regulator systems and are inspected and they start
operating. On final inspection, the facilities are pushed to MFL via the API:

Pushing a Facility Basic Details

To push the details to MFL POST to api/facilities/facilities/ a payload similar to the one below:

{
"owner": "af7f2be2-3454-4ba8-ae01-d24c05cfb382",
"name": "Rehema Pharmacy (Bahati)",
"official_name": "Rehema Pharmacy",
"registration_number": "PBB 12444",
"open_whole_day": true,
"open_public_holidays": false,
"open_weekends": true,
"open_late_night": false,
"plot_number": "LR/14414/KEN",
"location_desc": "Along Chiefs Road",
"facility_type": "6bbfc198-23f0-4310-9170-24ac05e2e49e",
"operation_status": "3f5634c7-5a47-4e1d-b2f5-8e9b2308acf0",
"ward": "b530b7ed-a110-431f-9a19-847eb706792d",
"regulatory_body": "e4ae432e-8a0a-402c-ab6c-1c9033102bb5",
"town": "ee724c13-abfe-44cb-98ce-9ec36a1e97a9"

}

The fields in the payload are explained below:

78 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Field Re-
quired

Explanation

name Yes This is the unique name of a facility e.g Agha Khan Medical
Centre(Mombasa)

official_name Yes This is the name of the facility e.g Agha Khan medical centre
open_whole_day No Indicates whether a facility is open 24 hours a day
open_public_holidays No Indicates whether a facility is open on public holidays
open_late_night No Indicates whether a facility is open late night
open_weekends No Indicates whether a facility is open on weekends
plot_mumber No The plot number of where the facility is located
location_desc No A description on how to access the facility e.g which road to use
facility_type Yes This is the type of the facility <id> of the facility type e.f pharmacy
operation_status Yes The operation status id e.g Operation Status Id
ward Yes The ward ID of where the facility is located
regulatory_body Yes The regulatory body ID of the facility e.g Pharmacy and Poisons Board id
town No The id of the town or health centre where the facility is located
registration_number Yes This the registration number as assigned by the regulator
owner Yes The id of the owner as the per the MFL

Sample Expected Response:

{
"id": "da3c4efe-57df-4d65-aa29-b6eb6719e469",
"regulatory_status_name": "Pending License",
"facility_type_name": "Pharmacy",
"owner_name": "Private Practice - Unspecified",
"owner_type_name": "Private Institutions and Private Practice",
"owner_type": "2b8b031e-8d5a-47eb-b89c-a63d11e2b70a",
"operation_status_name": "Operational",
"county": "NAIROBI",
"constituency": "MATHARE",
"ward_name": "KIAMAIKO",
"average_rating": 0,
"facility_services": [],
"is_approved": null,
"has_edits": false,
"latest_update": null,
"regulatory_body_name": "Pharmacy & Poisons Board",
"owner": "af7f2be2-3454-4ba8-ae01-d24c05cfb382",
"date_requested": "2015-11-10T10:27:53.932Z",
"date_approved": null,
"latest_approval_or_rejection": null,
"sub_county_name": null,
"created": "2015-11-10T10:27:53.932878Z",
"updated": "2015-11-10T10:27:53.932886Z",
"deleted": false,
"active": true,
"search": null,
"name": "Rehema Pharmacy (Bahati)",
"official_name": "Rehema Pharmacy",
"code": 100000,
"registration_number": "PBB 12444",
"abbreviation": null,
"description": null,
"number_of_beds": 0,
"number_of_cots": 0,
"open_whole_day": true,

1.18. Regulator Synchronization 79

Master Facility List Kenya Documentation, Release 0.0.1a3

"open_public_holidays": false,
"open_weekends": true,
"open_late_night": false,
"is_classified": false,
"is_published": false,
"attributes": null,
"regulated": false,
"approved": false,
"rejected": false,
"bank_name": null,
"branch_name": null,
"bank_account": null,
"facility_catchment_population": null,
"nearest_landmark": null,
"plot_number": "LR/14414/KEN",
"location_desc": "Along Chiefs Road",
"closed": false,
"closed_date": null,
"closing_reason": null,
"created_by": 4,
"updated_by": 4,
"facility_type": "6bbfc198-23f0-4310-9170-24ac05e2e49e",
"operation_status": "3f5634c7-5a47-4e1d-b2f5-8e9b2308acf0",
"ward": "b530b7ed-a110-431f-9a19-847eb706792d",
"parent": null,
"regulatory_body": "e4ae432e-8a0a-402c-ab6c-1c9033102bb5",
"keph_level": null,
"sub_county": null,
"town": "ee724c13-abfe-44cb-98ce-9ec36a1e97a9",
"contacts": []

}

Note: The MFL code assigned to the facility is in the response data (The field is code).

Expected Response Code:

HTTP_201_CREATED

It is clear that there is data that needs to be mapped between MFL and the regulators in order for this work.

The data includes:

1. Wards

2. Owners

3. Operation status

4. Facility types

5. Regulatory Bodies

6. Towns

All the above data is explained under the Metadata resources section of the documentation.

80 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Pushing a Facility Geo-location Details

To push the geo-location details of a facility do a POST to the URL api/gis/facility_coordinates/ with a
payload similar to the one shown below:

{
"source":"da488b76-2581-40d5-9377-3550e28cfb77", // The id of the source of the

→˓geo-code
"method":"4e1f460f-db3e-4e67-a906-2afc789f8f3a", // The id of the method used to

→˓obtain the geo-code
"collection_date":"2015-10-31T21:00:00.000Z", //Date when the geocode was obtained
"facility":"da3c4efe-57df-4d65-aa29-b6eb6719e469", // The facility id to which

→˓the geo-code belongs

"coordinates": {
"type":"Point",
"coordinates":[

36.87593521921288, // longitude
-1.254507474965246 // latitude

]

}

}

Expected Response Code HTTP_201_CREATED

Sample Expected Response

{
"id":"c0d862d4-aa86-4cf0-9f10-8ec83b764321",
"source_name":"DHMT Nakuru","method_name":"Taken with GPS Device",
"created":"2015-11-10T10:45:01.731129Z",
"updated":"2015-11-10T10:45:01.731141Z","deleted":false,
"active":true,"search":null,

"coordinates":{
"type":"Point",
"coordinates":[

36.87593521921288,
-1.254507474965246

]

},

"collection_date":"2015-10-31T21:00:00Z",
"created_by":13,
"updated_by":13,
"facility":"da3c4efe-57df-4d65-aa29-b6eb6719e469",
"source":"da488b76-2581-40d5-9377-3550e28cfb77",
"method":"4e1f460f-db3e-4e67-a906-2afc789f8f3a"

}

1.18. Regulator Synchronization 81

Master Facility List Kenya Documentation, Release 0.0.1a3

After obtaining the id from the response data do a PATCH to the URL api/facilities/facilities/
<facility_id> with a payload similar to the one shown below:

{
"coordinates": "c0d862d4-aa86-4cf0-9f10-8ec83b764321" // the id obtained from the

→˓response data above

}

Expected Response Code: HTTP_204_NO_CONTENT

There is no response data.

Note:

1. The geo-code methods ids are obtained from the endpoint api/gis/geo_code_methods/

2. The geo-code sources ids are obtained from the endpoint api/gis/geo_code_sources/

3. Watch out for the order of the coordinates; the longitude comes before the latitude otherwise the geocodes will
not validate.

Pushing a Facility Contacts

To push a facility’s contacts do a PATCH to the URL api/facilities/facilities/<facility_id> with
a payload similar to the one shown below:

{
"contacts":[

{
"contact_type":"17287e65-021f-4319-92fb-e032e2c3de72", // the contact

→˓type id
"contact":"0200046" // the actual contact

},

{
"contact_type":"9417c555-e36f-4502-941e-9a9943c534d5",
"contact":"1414141241"

}

]

}

Expected Response code: HTTP_204_NO_CONTENT

There is no response data

Note: The contact types ids can be obtained from the endpoint api/common/contact_types/

82 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

Pushing a Facility’s Officer-In-Charge

To push the details of a facility’s officer-in-charge to a PATCH to the URL api/facilities/facilities/
<facility_id> with a payload similar to the one shown below:

{
"officer_in_charge":{

"name":"Alex Aluoch",
"reg_no":"P15/3525/5235",

"contacts":[
{

"type":"17287e65-021f-4319-92fb-e032e2c3de72", // the contact type id
"contact":"020133555" // the actual contact

},

{
"type":"d7c0405c-1f69-4d1d-9895-24e6af997429",
"contact":"0756456288"

}

],

"title":"ba36158a-0d61-4014-aa55-111425b06775" // the job title id

}

}

Expected Response code: HTTP_204_NO_CONTENT

There is no response data

Note: To obtain the job-titles go to the URL api/facilities/job_titles/

Pushing a Facility’s Services

To push a facility’s services do a PATCH to the URL api/facilities/facilities/<facility_id> with a
payload similar to the one shown below:

{
"services":[

{
"service":"59c4e20e-eb00-427c-8533-61719b0db77d" // the service id

},

{
"service":"78aac8b6-c2d7-4204-b074-8b83fb1ef070", // the service id
"option":"888c5b48-2334-436d-a806-3a57e1933e8b" // the option id

},

1.18. Regulator Synchronization 83

Master Facility List Kenya Documentation, Release 0.0.1a3

{
"service":"576c9964-ee5a-4a6f-b1fd-32064d76bb77" // the service id

}

]

}

Expected Response code: HTTP_204_NO_CONTENT

There is no response data

Note: Services in MFL

All the service in MFL can be obtained from the URL api/facilities/services/

It is important to note that there are two types of services in the MFL:

a). Services with options

b). Services without options

For the services that do not have options only the service id is posted and when the service has an option such as basic
or comprehensive the service id is posted together with the option id as the payload above shows.

Each service from the endpoint api/facilities/services/ comes together with its group and from the group
object the options can be obtained.

To list all the option groups do a GET to api/facilities/option_groups/ and to get the details of one single
option group do a GET to api/facilities/option_groups/<option_group_id>

Once details of a facility have been pushed to MFL, all the facility details can be obtained through doing a GET to
api/facilities/facilities/<facility_id>

For example a GET to api/facilities/facilities/da3c4efe-57df-4d65-aa29-b6eb6719e469/
would result in the details of the facility that was created and updated in the sample payloads above.

{
"id": "da3c4efe-57df-4d65-aa29-b6eb6719e469",
"regulatory_status_name": "Pending License",
"facility_type_name": "Pharmacy",
"owner_name": "Private Practice - Unspecified",
"owner_type_name": "Private Institutions and Private Practice",
"owner_type": "2b8b031e-8d5a-47eb-b89c-a63d11e2b70a",
"operation_status_name": "Operational",
"county": "NAIROBI",
"constituency": "MATHARE",
"ward_name": "KIAMAIKO",
"average_rating": 0.0,

"facility_services": [
{

"average_rating": 0.0,
"category_id": "edd7631d-b2f3-4008-9c76-e3abb68a547d",
"number_of_ratings": 0,
"option": null,
"service_name": "Short Term FP",
"option_name": "Yes",

84 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

"service_id": "576c9964-ee5a-4a6f-b1fd-32064d76bb77",
"service_code": 1012,
"id": "f053976f-3b0a-42ce-8b92-4695cce1bbf0",
"category_name": "Family Planning"

},

{
"average_rating": 0.0,
"category_id": "edd7631d-b2f3-4008-9c76-e3abb68a547d",
"number_of_ratings": 0,
"option": "888c5b48-2334-436d-a806-3a57e1933e8b",
"service_name": "Permanent FP",
"option_name": "Level 3",
"service_id": "78aac8b6-c2d7-4204-b074-8b83fb1ef070",
"service_code": 1051,
"id": "bbb2ce77-5537-43c5-9364-66c307b21c6a",
"category_name": "Family Planning"

},

{
"average_rating": 0.0,
"category_id": "edd7631d-b2f3-4008-9c76-e3abb68a547d",
"number_of_ratings": 0,
"option": null,
"service_name": "Long Term FP",
"option_name": "Yes",
"service_id": "59c4e20e-eb00-427c-8533-61719b0db77d",
"service_code": 1013,
"id": "985d94c3-409b-4a5a-b53d-f9589d338d68",
"category_name": "Family Planning"

}

],

"is_approved": null,
"has_edits": false,
"latest_update": null,
"regulatory_body_name": "Pharmacy & Poisons Board",
"owner": "af7f2be2-3454-4ba8-ae01-d24c05cfb382",
"date_requested": "2015-11-10T10:27:53.932Z",
"date_approved": null,
"latest_approval_or_rejection": null,
"sub_county_name": null,

"facility_contacts": [
{

"contact_type_name": "FAX",
"contact": "1414141241",
"id": "341c5ea6-9d85-47f2-b635-12ee013c7da7",
"contact_id": "e729ea90-2dde-4361-95f2-fd94c059f56b"

},

{
"contact_type_name": "LANDLINE",

1.18. Regulator Synchronization 85

Master Facility List Kenya Documentation, Release 0.0.1a3

"contact": "0200046",
"id": "e0a85e74-47fa-4112-aa76-fd9dccd2fb89",
"contact_id": "95395096-0a61-4b5b-88d8-123402eb86ba"

}

],
"coordinates": "c0d862d4-aa86-4cf0-9f10-8ec83b764321",
"latest_approval": null,

"boundaries": {
"county_boundary": "d89fad95-0f7d-4044-87ec-f8a7ad9fcac2",
"ward_boundary": "0f8d1126-d978-4f3e-afe8-e46635ddc0fe",
"constituency_boundary": "0f0ecac3-fb36-450d-bd93-efb8558a1a1e"

},

"service_catalogue_active": true,
"facility_units": [],

"officer_in_charge": {
"name": "Alex Aluoch",

"contacts": [
{

"contact_type_name": "MOBILE",
"officer_contact_id": "fe69052a-4466-45ce-ab64-80d7f7c1eef8",
"type": "d7c0405c-1f69-4d1d-9895-24e6af997429",
"contact_id": "edb51ac8-71e2-477a-852b-f90ff3152973",
"contact": "0756456288"

},

{
"contact_type_name": "LANDLINE",
"officer_contact_id": "ae3cbec5-f9e5-4ec0-9465-af5f13773256",
"type": "17287e65-021f-4319-92fb-e032e2c3de72",
"contact_id": "d8f51a01-a0a5-49d8-9be9-0ae0a4c604cc",
"contact": "020133555"

}

],

"id_number": null,
"reg_no": "P15/3525/5235",
"title": "ba36158a-0d61-4014-aa55-111425b06775",
"title_name": "Medical Superintendant"

},

"town_name": "Bahati",
"keph_level_name": null,
"created": "2015-11-10T10:27:53.932878Z",
"updated": "2015-11-10T10:27:53.932886Z",
"deleted": false,
"active": true,
"search": null,

86 Chapter 1. Developers guide

Master Facility List Kenya Documentation, Release 0.0.1a3

"name": "Rehema Pharmacy (Bahati)",
"official_name": "Rehema Pharmacy",
"code": 100000,
"registration_number": "PBB 12444",
"abbreviation": null,
"description": null,
"number_of_beds": 0,
"number_of_cots": 0,
"open_whole_day": true,
"open_public_holidays": false,
"open_weekends": true,
"open_late_night": false,
"is_classified": false,
"is_published": false,
"regulated": false,
"approved": false,
"rejected": false,
"bank_name": null,
"branch_name": null,
"bank_account": null,
"facility_catchment_population": null,
"nearest_landmark": null,
"plot_number": "LR/14414/KEN",
"location_desc": "Along Chiefs Road",
"closed": false,
"closed_date": null,
"closing_reason": null,
"created_by": 4,
"updated_by": 4,
"facility_type": "6bbfc198-23f0-4310-9170-24ac05e2e49e",
"operation_status": "3f5634c7-5a47-4e1d-b2f5-8e9b2308acf0",
"ward": "b530b7ed-a110-431f-9a19-847eb706792d",
"parent": null,
"regulatory_body": "e4ae432e-8a0a-402c-ab6c-1c9033102bb5",
"keph_level": null,
"sub_county": null,
"town": "ee724c13-abfe-44cb-98ce-9ec36a1e97a9",

"contacts": [
"e729ea90-2dde-4361-95f2-fd94c059f56b",
"95395096-0a61-4b5b-88d8-123402eb86ba"

]

}

1.18. Regulator Synchronization 87

	Developers guide
	Installing for evaluation
	Installing for development
	Installing for production
	The big picture
	Authentication and authorization
	Using the API - basic principles
	The API sandbox
	Metadata resources
	The service catalog
	Facilities
	Facility types
	Facility Upgrades and Downgrades
	Community Health Units
	Regulation
	GIS Support
	Workflow
	Contributors' code of conduct
	Regulator Synchronization

