

Master Facility List API server documentation

This is documentation for the API server for the second generation Kenyan Ministry of Health Master Facility List (MFL). The MFL system’s “home” is at
http://ehealth.or.ke/facilities/ . This documentation is aimed at developers (both MFL developers and those developing third party systems that use the MFL API) and system administrators.

There is a downloadable PDF version [https://media.readthedocs.org/pdf/mfl-api/latest/mfl-api.pdf] of this documentation, a
mobile friendly EPUB version [http://readthedocs.org/projects/mfl-api/downloads/epub/latest/] and a downloadable HTML version [http://readthedocs.org/projects/mfl-api/downloads/htmlzip/latest/].

Developers guide

	Installing for evaluation
	Deployment Assumptions

	Vagrant

	Installation

	Installing for development
	Getting started

	Installing for production
	Setting up the environment

	The pre-deploy checklist

	Configuring the ansible inventory

	The big picture
	Interoperability

	Standardization

	Unification

	Authentication and authorization
	Authentication

	Authorization

	Setting up users, permissions and groups

	User management

	Using the API - basic principles
	HTTP and HTTPS

	Data Format

	Common fields

	URLs

	URL Parameters

	URL Query Parameters

	Dates and times

	UUIDs

	HTTP Errors

	Pagination

	Audit trail

	Search

	The API sandbox
	Swagger

	The Browsable API

	API Metadata support

	Metadata resources
	Contact Types

	Towns

	Administrative units

	Facility Types

	Facility owners and owner types

	Job titles

	Regulating bodies

	Facility Operation Status

	The service catalog
	Service Categories

	Services

	Options and service options

	Options

	Service Options

	Linking facilities to services

	Facilities
	Facility information storage

	Facility workflows

	Facility ratings

	Facility downloads

	Facility types
	Creating A facility type

	Listing Facillity types

	Retrieving a facility type

	Updating Facility types

	Facility Upgrades and Downgrades
	Upgrading/Downgrading a Facility (First Step)

	Confirming Upgrade or Downgrade (Second Step)

	Cancelling a facility upgrade/downgrade(Second Step)

	Listing Facilities that are due for upgrade/downgrade Confirmation

	Listing all the the Upgrades/Downgrades of a facility

	Community Health Units
	Community Health Unit Approvers

	Community Health Unit Statuses

	Community Health Units

	Community Health Workers

	Community Health Workers Contacts

	Community Health Workers Approvals

	Regulation
	Regulatory Bodies

	Creation

	Updating

	Listing

	Retrieving

	Regulatory Statuses

	Listing

	Creation

	1. Creating an initial state

	2. Creating a final State

	3. Creating an intermediary State.

	Retrieving a single regulatory state

	Updating a regulatory state

	Listing Facilities pending regulation

	Regulate a facility

	GIS Support
	What is GIS?

	GIS data formats

	A brief note about points

	How do I move from GeoJSON to a map?

	Administrative units

	Facility Coordinates

	Workflow

	Contributors’ code of conduct

	Regulator Synchronization
	Part 1: Attached Facilities Synchronization

	Part 2: Stand Alone Facilities Synchronization

Installing for evaluation

In this scenario, you do not plan to make any changes to the MFL API server
but you need to have a local copy against which you can test a new API
client or a new third party integration.

We recommend that you use Vagrant [https://www.vagrantup.com/] and Virtualbox [https://www.virtualbox.org/] to create a test
server for yourself.

If you are an expert Vagrant user, you can substitute Virtualbox with VMWare
Desktop / Player, HyperV etc. You’ll have an easier time if you are on a
_nix e.g Ubuntu or OS X.

Deployment Assumptions

The deployment scripts will fail unless the following are true:

	you are on a vagrant supported OS (so far Ubuntu 14.04LTS has been tested)

	you have run ssh-keygen and have a public key at $HOME/.ssh/id_rsa.pub

Vagrant

Before installation, you will need to have the vagrant-env [https://github.com/gosuri/vagrant-env] plugin.
The installation is as simple as running

vagrant plugin install vagrant-env

Ansible [https://docs.ansible.org] is used to provision the vagrant box. An understanding of ansible is recommended though not required.

Installation

	Ensure vagrant is installed

	Create a python virtual environment and activate the created virtual environment.

	Install ansible in the virtual environment.

	Set the following environment variables:

	DATABASE_NAME the name of the database to user

	DATABASE_USER the database user to use

	DATABASE_PASSWORD the database password to use

	Run vagrant up. It shall download and setup everything in the virtual machine.

	The system is ready to use

Installing for development

You’ll have an easier time if you are on a current Ubuntu. On Ubuntu, the
key dependencies can be installed with:

sudo apt-get install postgresql binutils postgis gdal-bin libproj-dev
libgeoip1 graphviz libgraphviz-dev

To build lxml on Debian 8 you have to install:

sudo apt-get install libxml2-dev libxslt-dev

You may need to install distribution specific packages e.g on Ubuntu 14.04
with the default PosgreSQL 9.3:

sudo apt-get install postgresql-9.3-postgis-2.1

In order to build some of the Python dependencies in the virtualenv, some
libraries will need to be in place. Again, if you are on a recent Ubuntu, you
can get them at once with:

Note

This project has been tested with Python2. It may work with Python3 but it
has not been tested

sudo apt-get build-dep python-shapely python-numpy cython python-psycopg2
libxml2-dev libxslt1-dev libffi-dev

Note

You must ensure that ElasticSearch is running. In a typical Ubuntu install
(from the .deb supplied by ElasticSearch), the search server is not
started by default.

Getting started

A: Running the system from source code

	Create a virtualenv

	Activate the created vitualenv and run pip install -r requirements.txt

	
	Run the following commands sequentially:

	
	
	fab setup_db

	This drops the database if it exists, creates the database and runs migrations.

	
	fab load_demo_data

	This will load sample test data for the API if the project DEBUG
attribute in settings is set to True.

	
	fab recreate_search_index

	Creates an Elasticsearch index. Before running this command ensure that
Elasticsearch is up and running. This command causes the data that has been
loaded in the database to be indexed in ElasticSearch.

Note

At times during development one may want to retain the database. To do so,
call fab load_demo_data and fab recreate_search_index.

Also one may want to recreate the database. Calling fab setup_db drops the database,
creates it again and runs migrations. After this one may proceed to load the data

and create the search index as desired.

	B: Installing the system

	Activate the virtualenv and run python setup.py install while in the project folder.

Installing for production

This server has been developed and tested on Ubuntu [http://www.ubuntu.com/] Linux (any Ubuntu
that is currently “in support” will do). It should be trivial to get it
working on any *NIX (including OS X).

Kindly note that this restriction applies to the servers only, and not to
any of the API clients e.g browsers and third party systems. Clients can
run on any modern operating system.

We supply an Ansible [http://www.ansible.com/home] playbook that automates this entire process.

Setting up the environment

This server is built as a Twelve-Factor App [http://12factor.net/]. For that reason, the key
configuration parameters are stored in the environment - set up directly in
the operating system as environment variables or as a .env file in the
application’s root folder.

The .env file holds confidential configuration information. For that
reason, it is not tracked in version control (version control has an example
.env whose values should not be used in production).

A proper .env file should set the following values up:

SECRET_KEY=pleasechangetoanewlygeneratedsecretkey
DEBUG=off # NEVER run with Debug=True in production

Use real email settings here e.g from Amazon SES
EMAIL_HOST=''
EMAIL_HOST_USER=''
EMAIL_HOST_PASSWORD=''

Here because the original user was too lazy to write ruby code for the VagrantFile
DATABASE_USER=mfl # Change this
DATABASE_PASSWORD=mfl # **CHANGE** this, no matter how lazy you feel
DATABASE_NAME=mfl # Change this

Make sure you change this in lockstep with the three DATABASE_* vars above
DATABASE_URL='postgres://mfl:mfl@localhost:5432/mfl'

Location where the administration frontend is running
FRONTEND_URL='http://localhost:8062'
DEBUG=False
REALTIME_INDEX=True # ** set to true to update the search index in realtime**
HTTPS_ENABLED=True # ** Set to true if HTTPS will be used
AWS_ACCESS_KEY_ID=<AWS access key>
AWS_SECRET_ACCESS_KEY=<AWS secret key>
AWS_STORAGE_BUCKET_NAME=<AWS bucket name>
STORAGE_BACKEND=<storage backend e.g storages.backends.s3boto.S3BotoStorage>

Warning

Please make sure that you have set up secure values.

You will need to save a copy of the .env at a secure location (not in
the code repository). If you loose the .env / forget the values, you
could lose the ability to maintain the deployed production system.

The pre-deploy checklist

You MUST work your way through the Django deployment checklist [https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/].

Configuring the ansible inventory

There is an inventory file in the playbooks folder. This file should
be edited to have a line for each server that is managed by Ansible.

The following is an example:

azure_test_server ansible_ssh_host=mfl.slade360.co.ke ansible_ssh_port=22 ansible_ssh_user=azureuser ansible_ssh_private_key_file=/home/ngurenyaga/.ssh/id_rsa

The template breaks down roughly to this:

<a descriptive name we choose for the server>
ansible_ssh_host=<an IP address or host name>
ansible_ssh_port=<the port over which the SSL daemon is listening on the remote machine>
ansible_ssh_user=<the username to log in with on the remote machine>
ansible_ssh_private_key_file=<a path to a local SSH private key>

Warning

The SSH private key must be kept private.

In the site.yml file ensure that the relevant variables are updated e.g

mfl_public_web_version: "0.0.1a13" //set to the version of public website that should be deployed
mfl_admin_web_version: "0.0.1a21" //set version of the administration site to be deployed
has_ssl: true // set this to true if the site should run on HTTPs
cert_file: "" // Give the location of the HTTPS certificate file
key_file: "" // Give the location of the HTTPS key file
public_web_server_name: "public.test_domain.com" //The public website URL
admin_web_server_name: "public.test_domain.com" //The administration website URL

load_demo_data: false , //set to true if demonstration data needs to be loaded
warm_cache: false, // set this to true if the cache needs to be refreshed
server_url: "https://testdomain.com, //THe API-server URL
username: <Public user username>
password: <public password>,
client_id: <OAUTH client id for the public user >,
client_secret:<OAUTH client secret for the public user>

Once all the deployment attributes have been set, cd into the playbooks folder and run the command below:

ansible-playbook site.yml

It deploys the API server, the public website and the administration website and they should be available
from the URLs provided in the site.yml file once the command has finished executing.

Warning

If you are working off a recent Ubuntu Linux on your laptop, you should
comment out SendEnv LANG LC_* in /etc/ssh/ssh_config.

The forwarding of language environment variables from the local computer
is known to cause mischief on the remote server.

Warning

This server should only be run on a non-threaded server e.g gunicorn
in the standard multi-process configuration.

This is because the geographic features rely on GDAL, which is not
thread safe.

The big picture

The Master Facilities List is one of the building blocks of the Kenyan
National Health Information System. The second edition of the MFL is focused
on interoperability, standardization and unification.

Interoperability

This system adopts an API First approach, as explained in the Using the API - basic principles
chapter.

The authors have gone to great lengths to make it easy for other systems
- with the correct authorization - to read and write MFL data.

Standardization

The MFL’s core mission includes the standardization of facility codes. In this
edition, the core mission has been expanded to include the standardization of
service codes. You can read more about that in the The service catalog chapter.

Unification

The first generation of the Master Facilities List (and its “satellites”)
had five semi-independent systems: public and administration systems for the
“core” MFL, a mirror of those two for the Master Community Units List and
a regulators interface.

This release unifies them all under a single API. That API is client agnostic
- the client could be a web or mobile application, another system or even a
reporting tool.

Note

A future release of this system could standardize more things e.g
practitioner codes.

Authentication and authorization

Authentication [http://www.django-rest-framework.org/api-guide/authentication/] is the process of associating an API request with a specific
user, while authorization [http://www.django-rest-framework.org/api-guide/permissions/] determines if the user has permission to perform
the requested operation.

Authentication

A system like this has to consider the needs of programmatic clients
(like integrations into other systems) and the needs of “actual users”
(in this case people logged in to the web interfaces).

The MFL API server supports both session (cookie based) and OAuth 2 (token based) authentication. For both approaches, the production API server must be run over HTTPS.

Session Authentication

Logging in

POST the credentials to /api/rest-auth/login/. The payload should be
similar to the example below:

{
 "username": "hakunaruhusa@mfltest.slade360.co.ke",
 "password": "hakunaruhusa"
}

A successful login will have a HTTP 200 OK response. The response payload
will have a single key parameter: a Django Rest Framework TokenAuthentication [http://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication] key. For example:

{
 "key": "f9a978cd00e9dc0ebfe97d633d98bde4b35f9279"
}

Note

Please note that the username is actually an email address.

Note

We discourage the use of token authentication. Kindly see the section on
OAuth2 below.

Logging out

Send an empty (no payload) POST to /api/rest-auth/logout/.

A successful logout will get back a HTTP 200 OK response, and a success
message similar to the one below:

{
 "success": "Successfully logged out."
}

Getting user details after login

After a user is logged in, a typical client (such as a web application) will
need to get additional information about the user. This additional information
includes permissions.

If the user is logged in, a GET to /api/rest-auth/user/ will get back
a HTTP 200 OK response and a user details payload similar to this example:

{
 "id": 3,
 "short_name": "Serikali",
 "full_name": "Serikali Kuu ",
 "all_permissions": [
 "common.add_town",
 "oauth2_provider.change_accesstoken",
 "mfl_gis.delete_wardboundary",
 "auth.add_permission",
 "chul.change_approvalstatus",
 "facilities.delete_facilitytype",
 // a long list of permissions; truncated for brevity
],
 "user_permissions": [],
 "groups": [],
 "last_login": "2015-05-04T16:33:36.085065Z",
 "is_superuser": true,
 "email": "serikalikuu@mfltest.slade360.co.ke",
 "first_name": "Serikali",
 "last_name": "Kuu",
 "other_names": "",
 "username": "serikalikuu",
 "is_staff": true,
 "is_active": true,
 "date_joined": "2015-05-03T02:39:03.440962Z",
 "is_national": true,
 "requires_password_change": false
}

If the user is not logged in, the return message will be a
HTTP 403 FORBIDDEN with the following message:

{
 "detail": "Authentication credentials were not provided."
}

Note

If a user needs to change their password e.g because it was created by an
admin and must be changed on first login, the requires_password_change
boolean property will be set to true.

Every well behaved web client should observe this property and
implement the appropriate “roadblock”.

OAuth2 Authentication

You can learn all that you need to know about OAuth2 by reading rfc6749 [https://tools.ietf.org/html/rfc6749].

A simple OAuth2 workflow

If you are in too much of a hurry to read all that, here is what you
should do:

Registering a new “application”

You should know the user ID of the user that you’d like to register an
application for. You can obtain that ID from the user details API described
above or from /api/users/.

You need to know the authorization_grant_type that you’d like for the new
application. For the example below, we will use password. If you do not
know what to choose, read rfc6749 [https://tools.ietf.org/html/rfc6749] .

The next decision is the choice of client_type. For the example below,
we will use confidential. As always - consult rfc6749 [https://tools.ietf.org/html/rfc6749] for more context.

POST to /api/users/applications/ a payload similar to this example:

{
 "client_type": "confidential",
 "authorization_grant_type": "password",
 "name": "Demo / Docs Application",
 "user": 3
}

A successful POST will get back a HTTP 201 CREATED response, and
a representation of the new application. This example request got back
this representation:

{
 "id": 1,
 "client_id": "<redacted>",
 "redirect_uris": "",
 "client_type": "confidential",
 "authorization_grant_type": "password",
 "client_secret": "<redacted>",
 "name": "Demo / Docs Application",
 "skip_authorization": false,
 "user": 3
}

Note

	The client_id and client_secret fields were automatically assigned.

	The skip_authorization and redirect_urls fields have default values.

	A single user can be associated with multiple applications.

Authenticating using OAuth2 tokens

First, obtain an access token by POST ing the user’s credentials to
/o/token/. For example:

curl -X POST -d "grant_type=password&username=serikalikuu@mfltest.slade360.co.ke&password=serikalikuu" http://sfzgvKKVpLxyHn3EbZrepehJnLn1r0OOFnuqBNy7:7SMXKum5CJVWABxIitwszES3Kls5RTBzYzJDI5jdvgPcw0vSjP5pnlYHfANSkPyn8pzSfyi5ETesPGXbbiKih0D3YRjE49IlsMShJy0p6pxLOLp72UKsNKxnj08H0fXP@localhost:8000/o/token/

Which breaks down as:

curl -X POST -d grant_type=<grant_type>&username=<email>&password=<password>" http://<client_id>:<client_secret>@<host>:<por>/o/token/

If you authenticate successfully, the reply from the server will be a JSON
payload that has the issued access token, the refresh token, the access token
type, expiry and scope. For example:

{
 "access_token": "fKDvh2fFLR1iFPuB26RUEalbjYO4rx",
 "token_type": "Bearer",
 "expires_in": 36000,
 "refresh_token": "jLwpCh3WbOXBeb01XMeZR5AQYedkj1",
 "scope": "read write"
}

Pick the access_token and send it in an Authorization: Bearer header
e.g

curl -H "Authorization: Bearer ziBLqoXwVEA8lW9yEmE260AZ4lCJHq" http://localhost:8000/api/common/counties/

Authorization

This server’s Role Based Access Control [http://en.wikipedia.org/wiki/Role-based_access_control] setup is based on the
Django framework permissions and authorization [https://docs.djangoproject.com/en/1.8/topics/auth/default/#topic-authorization] system.

Understanding the role based access control setup

The user details API endpoint (explained above) returns the logged in user’s
permissions.

A user’s permissions come from three “sources”:

	the permissions assigned to the group (role) that the user belongs to

	the permissions assigned directly to the user

	the is_superuser boolean flag; a user who is a “superuser” automatically gets all permissions

The MFL API server has an additional “layer” of authorization: whether a user
is a “national user” or a “county user”. In certain list endpoints (chiefly
those that deal directly with facilities), a “county” user will have their
results limited to facilities that are located in their county.

Note

This API server does not support “true” unauthenticated read-only access
For the public site, OAuth2 credentials (that correspond to a role with
limited access) will be used.

Note

From the point of view of the MFL API, regulator systems are just one more
set of API clients.

Users and counties

In 2010, Kenya got a new constitution. One of the major changes was the
establishment of a devolved system of government.

The second generation MFL API (this server) is designed for the era of
devolution. In this system, facility record management should occur at the
county level.

The separation of privileges between data entry staff (“makers”) and those
responsible for approval (“checkers”) can be modelled easily using the
role based access control setup described above.

The only additional need is the need to link county level users to counties,
and use that information to limit their access. This has been achieved by
adding an is_national boolean flag to the custom user model and adding a
resource that links users to counties. The example user resource below
represents a non-national (county) user (note the is_national field):

{
 "id": 4,
 "short_name": "Serikali",
 "full_name": "Serikali Ndogo ",
 "all_permissions": [
 "common.add_town",
 // many more permissions
],
 "user_permissions": [],
 "groups": [],
 "last_login": null,
 "is_superuser": true,
 "email": "serikalindogo@mfltest.slade360.co.ke",
 "first_name": "Serikali",
 "last_name": "Ndogo",
 "other_names": "",
 "username": "serikalindogo",
 "is_staff": true,
 "is_active": true,
 "date_joined": "2015-05-03T02:39:03.443301Z",
 "is_national": false
}

In order to link a user to a county, you need to have two pieces of
information:

	the user’s id

	the county’s id - easily obtained from /api/common/counties/

With these two pieces of information in place, POST to /api/common/user_counties/ a payload similar to this example:

{
 "user": 4,
 "county": "d5f54838-8743-4774-a866-75d7744a9814"
}

A successful operation will get back a HTTP 201 CREATED response and
a representation of the newly created resource. For example:

{
 "id": "073d8bfa-2a86-4f9a-9cbe-0b8ac6780c3a",
 "created": "2015-05-04T17:44:56.441006Z",
 "updated": "2015-05-04T17:44:56.441027Z",
 "deleted": false,
 "active": true,
 "created_by": 3,
 "updated_by": 3,
 "user": 4,
 "county": "d5f54838-8743-4774-a866-75d7744a9814"
}

The filtering of results by county is transparent (the API client does not
need to do anything).

Note

A user can only have one active link to a county at any particular time.
Any attempt to link a user to more than one county at a time will get a
validation error.

If you’d like to change the county that a user is linked to, you will need
to first inactivate the existing record (PATCH it and set active
to false).

In order to determine the role that a user is currently linked to, issue a
GET similar to /api/common/user_counties/?user=4&active=true. In
this example, 4 is the user’s id.

Setting up users, permissions and groups

Permissions

API clients should treat permissions as “fixed” builtins. The server does not
implement any endpoint that can be used to add, edit or remove a permission.

The available permissions can be listed by issuing a GET to
/api/users/permissions/. The results will look like this:

{
 "count": 216,
 "next": "http://localhost:8000/api/users/permissions/?page=2",
 "previous": null,
 "results": [
 {
 "id": 61,
 "name": "Can add email address",
 "codename": "add_emailaddress",
 "content_type": 21
 },
 {
 "id": 62,
 "name": "Can change email address",
 "codename": "change_emailaddress",
 "content_type": 21
 },
 {
 "id": 63,
 "name": "Can delete email address",
 "codename": "delete_emailaddress",
 "content_type": 21
 },
 // truncated for brevity
]
}

Note

The content_type keys in the example above originate from
Django’s contenttypes framework [https://docs.djangoproject.com/en/1.8/ref/contrib/contenttypes/]. For an API consumer, they are an
implementation detail / curiosity; API clients will nto need to know more
about them.

Groups

The API server provides APIs that can be used to create roles, alter existing
roles and retire roles.

Existing roles (groups) can be listed by issuing a GET to
/api/users/groups/.

Creating a new role

POST to /api/users/groups/ a payload that similar to the one below:

{
 "name": "Documentation Example Group",
 "permissions": [
 {
 "id": 61,
 "name": "Can add email address",
 "codename": "add_emailaddress"
 },
 {
 "id": 62,
 "name": "Can change email address",
 "codename": "change_emailaddress"
 }
]
}

A successful operation will get back a HTTP 201 CREATED status.

Note

You must supply both a name and permissions.

Updating an existing role

PUT or PATCH to a group detail URL e.g /api/users/groups/1/.

For example, to take away from the example role the “Can change email address”
permission, the following PATCH request should be sent:

{
 "permissions": [
 {
 "id": 61,
 "name": "Can add email address",
 "codename": "add_emailaddress"
 }
]
}

A similar approach will be followed to add permissions.

A successful operation will get back a HTTP 200 OK status.

Note

Permissions will always be overwritten when you perform an update.

User management

User registration (sign up)

POST to /api/rest-auth/registration/ a payload similar to this example:

{
 "username": "likeforreal",
 "email": "likeforreal@yodawg.dawg",
 "password1": "most_secure_password_in_the_world_like_for_real",
 "password2": "most_secure_password_in_the_world_like_for_real"
}

A successful operation will get back a HTTP 201 CREATED response and
a representation of the new user. For example:

HTTP 201 CREATED
Content-Type: application/json
Vary: Accept
Allow: POST, OPTIONS, HEAD

{
 "id": 9,
 "short_name": "",
 "full_name": " ",
 "all_permissions": [],
 "user_permissions": [],
 "groups": [],
 "last_login": "2015-05-05T09:12:01.888514Z",
 "is_superuser": false,
 "email": "likeforreal1@yodawg.dawg",
 "first_name": "",
 "last_name": "",
 "other_names": "",
 "username": "likeforreal1",
 "is_staff": false,
 "is_active": true,
 "date_joined": "2015-05-05T09:12:01.790167Z",
 "is_national": false
}

Note

This API server does not implement email address confirmation.
A future release might implement that.

Note

The registration operation described above suffices, for public users.

The manner in which users should be linked to counties has already been
discussed in the Authorization section.

Linking users to groups

In order to assign a user to a group, you will need to know the group
ID (which you can obtain from /api/groups/).

PATCH an already existing user with a payload similar to this example:

{
 "groups": [
 {"id": 1, "name": "Documentation Example Group"}
]
}

In order to remove them from their assigned roles, PATCH with an empty
groups list.

Note

This server does not support the direct assignment of permissions to users.
That is deliberate.

Updating user details

Every writable attribute of a user record can be PATCH``ed. For example,
to inactivate or retire a user, ``PATCH the user’s (detail) record and set
is_active to false.

For example: if the detail record for the user we registered above
(likeforreal) is to be found at /api/users/9/, the user can be
inactivated by PATCH ing /api/users/9/ with:

{
 "active": false
}

Note

The same general approach can be used for any other flag e.g
is_superuser.

Password changes

The password of the logged in user can be changed by making a POST to
/api/rest-auth/password/change/ a payload similar to this example:

{
 "old_password": "oldanddonewith",
 "new_password1": "newhotness",
 "new_password2": "newhotness"
}

Note

A future version of this server may add support for social authentication
e.g login via Facebook, Twitter or Google accounts.

Using the API - basic principles

All the material here assumes that you already have access to an
MFL test environment.

See The API sandbox and Installing for evaluation or Installing for development
for information on how to get access to a test environment.

The MFL v2 project subscribes to the API First [http://www.api-first.com/] approach. It is built to
interoperate. We “eat our own dog food” by insisting that the official
user interfaces be just one more set of API clients, with no special
privileges.

This guide is for the authors of client applications (applications that
consume the RESTful web e.g. The service catalog). Those who would like to make changes to
the MFL API server code itself should refer to the Workflow guide.

The MFL 2 API is “RESTish”. We subscribe to the principles of REST [http://en.wikipedia.org/wiki/Representational_state_transfer] but
are not pedantic about it. It is built using the excellent
Django REST Framework [http://www.django-rest-framework.org/].

HTTP and HTTPS

All API actions are based on HTTP and its verbs e.g. GET and POST.

	HTTP Verb
	Description

	HEAD
	Used to retrieve header information about a resource

	GET
	Used to retrieve a resource and for any read-only operation

	POST
	Used to create a resource and sometimes to change it

	PUT
	Used to mutate an existing resource. We, however, encourage the use of PATCH instead of PUT whenever possible.

	PATCH
	Used to edit an already existing resource

	DELETE
	Used to delete an already existing resource

Production instances should always run over HTTPS.

Data Format

The MFL API server supports JSON for all API endpoints.

Some endpoints support CSV and Excel output. This will be indicated in the
relevant sections of the documentation.

The preferred data format is JSON. We strongly encourage you to use JSON
- you will find it to be more reliable, since it is the format used by the
official front-ends and is therefore extensively tested.

In order to request a specific format, you will need to learn how to use
content negotiation [http://www.django-rest-framework.org/api-guide/content-negotiation/] .

Content Negotiation using headers

Send the correct Accept header. For example:

To get json

curl -i -H “Accept: application/json” -H “Content-Type: application/json” http://localhost:8000/api/common/contacts/

To get csv

curl -i -H “Accept: application/csv” -H “Content-Type: application/csv” http://localhost:8000/api/common/contacts/

To get a resource in Microsoft Excel format

curl -i -H “Accept: application/xlsx” -H “Content-Type: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet” http://localhost:8000/api/common/contacts/

Please note that the examples above do not factor in Authentication and authorization.

Content negotiation using query parameters

Append a ?format=<> GET parameter. For example:

	to get JSON (the default), append ?format=json to the URL

	to get CSV append ?format=csv to the URL

	to get Excel, append ?format=excel to the URL

Common fields

All MFL resources have the following fields:

	Field
	Description

	id
	A UUID. This is the database record’s primary key.

	created
	An ISO 8601 timestamp (UTC time zone) that indicates when the resource was created

	updated
	An ISO 8601 timestamp (UTC time zone) that shows when the last update occured

	active
	A boolean; will be set to false when the record is retired

	deleted
	A boolean; will be set to true when the record is removed. The API will in-fact not return deleted items by default.

	created
	The ID of the user that created the record. The user model is the only one with non UUID primary keys.

	updated
	The ID of the user that last updated the record.

The example listing below clearly shows the shared fields:

{
 "count": 5,
 "next": null,
 "previous": null,
 "results": [
 {
 "id": "16f7593f-0a21-41b6-87f1-ef2c4ec7e029",
 "created": "2015-05-03T02:30:26.345994Z",
 "updated": "2015-05-03T02:30:26.346007Z",
 "deleted": false,
 "active": true,
 "name": "POSTAL",
 "description": null,
 "created_by": 1,
 "updated_by": 1
 },
 {
 "id": "f4eaf905-be91-4050-b154-600e31510306",
 "created": "2015-05-03T02:30:26.342216Z",
 "updated": "2015-05-03T02:30:26.342229Z",
 "deleted": false,
 "active": true,
 "name": "FAX",
 "description": null,
 "created_by": 1,
 "updated_by": 1
 },
 {
 "id": "f4e835d3-e6a4-4d2d-9d37-344a3da1bb0a",
 "created": "2015-05-03T02:30:26.338468Z",
 "updated": "2015-05-03T02:30:26.338481Z",
 "deleted": false,
 "active": true,
 "name": "LANDLINE",
 "description": null,
 "created_by": 1,
 "updated_by": 1
 },
 {
 "id": "68281bd2-d616-418d-ab01-616a225b643b",
 "created": "2015-05-03T02:30:26.334496Z",
 "updated": "2015-05-03T02:30:26.334510Z",
 "deleted": false,
 "active": true,
 "name": "MOBILE",
 "description": null,
 "created_by": 1,
 "updated_by": 1
 },
 {
 "id": "b2ce5bc9-0c73-4586-b5d2-e96c69b90b85",
 "created": "2015-05-03T02:30:26.328938Z",
 "updated": "2015-05-03T02:30:26.328956Z",
 "deleted": false,
 "active": true,
 "name": "EMAIL",
 "description": null,
 "created_by": 1,
 "updated_by": 1
 }
]
}

These fields are exposed via filters in most list endpoints. The examples
below show those filters in use:

	Filter
	Example and examples

	updated_before
	Returns results where the date is less than or equal to the supplied timestamp. An example of a valid query is GET /api/facilities/facilities/?updated_before=2014-05-06T10:36:45.112488Z

	updated_after
	Returns results where the date is greater than or equal to the supplied timestamp. An example of a valid query is GET /api/facilities/facilities/?updated_after=2014-05-06T10:36:45.112488Z

	created_before
	Same as for updated_before, but operates on creation timestamps

	created_after
	Same as for updated_after, but operates on creation timestamps

	is_active
	Can be used to retrieve active or inactive results only e.g GET /api/facilities/facilities/?is_active=false

Note

Filters can be combined / chained.

Documentation examples

All the examples in this documentation will use the recommended JSON format.

Data notations

The example below demonstrates the manner in which example JSON payloads
in the documentation should be interpreted:

{
 "name": "John Doe",
 "gender": "M",
 "age": 33,
 "houses": [
 {
 "city": "Nairobi",
 "type": "Flat"
 },
 {
 "city": "Mombasa",
 "type": "Bungalow"
 }
],
 "phone": {
 "work": "8781923",
 "home": "213789123"
 }
}

This table describes the data above

	Property
	Type
	Description

	name
	string
	Name of the person

	age
	integer
	Age of the person

	gender
	string
	Gender of the person

	houses
	list of objects
	A list of houses the person owns

	houses[].city
	string
	The city in which the house is in

	houses[].type
	string
	The type of the house

	phone
	object
	The person’s phone numbers

	phone.work
	string
	Work phone number

	phone.home
	string
	Home phone number

The [] notation is used to indicate a property of every object in a list.
For example, houses[].city means every object in the list houses
has a property called city.

Data types

The data types are standard JSON [http://www.json.org/]. The MFL API uses UUIDs [http://en.wikipedia.org/wiki/Universally_unique_identifier] for its
primary keys.

	Data type
	JSON Representation
	Description

	string
	string
	A sequence of zero or more characters wrapped in double quotes.

	object
	object
	A collection of name-value pairs wrapped in curly braces : { and }

	list
	array
	A collection of values

	boolean
	boolean
	Represents truthy values and falsy values.Valid values are true and false

	null
	null
	Represents null values

	integer
	integer
	Integer values

	decimal
	string
	Precision decimal values represented as strings

	uuid
	string
	A string of 32 characters used as a unique identifier (UUIDs [http://en.wikipedia.org/wiki/Universally_unique_identifier])

	datetime
	string
	A string representing date and time values (Dates and times)

	url
	string
	A string representing the location of a network resource

URLs

URLs in this document shall be written in shortform, excluding the scheme and
domain (or IP) from which MFL can be accessed.

For a production system, the scheme shall always be https, unless
otherwise specified.

For example, if MFL is running from the IP 192.168.1.56, a full URL could be https://192.168.1.56/api/common/contacts/. In the documentation, the
URL shall be written as /api/common/contacts/, exluding the scheme and
domain (or IP).

Note

All URLs have a trailing slash unless specified otherwise.
For example, the url https://192.168.1.56/v1/claims/ is not equivalent
to the url https://192.168.1.56/v1/claims.
The latter will result in a HTTP 404 (Not Found) response

URL Parameters

Any API endpoints that support url parameters shall be specified in the following format:

/api/common/counties/<value>/

For example to retrieve a county by its ID (UUID), the URL shall be
specified as:

/api/common/counties/<id>/

e.g. /api/common/counties/89d8f3dd698b46e6a052f355a231858d/

URL Query Parameters

Any API endpoints that support query parameters shall be specified in the following format:

/api/common/counties/?name=<value>

For example to query the county endpoint by name, the URL shall be
specified as:

/api/common/counties/?name=<name>

e.g. /api/common/counties/?name=Nairobi

Dates and times

All dates and times shall be represented as datetime strings in
ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] format i.e.

YYYY-MM-DDTHH:MM:SSZ

e.g. 2015-03-30T15:23:89Z

If timezone is to be included, the timezone shall be UTC, thus the format becomes

YYYY-MM-DDTHH:MM:SS+0000

e.g. 2015-03-30T15:23:89+0000

Any date that does not have a timezone shall be assumed to be UTC.

UUIDs

UUIDs are used as unique record identifiers for each record in MFL.
All UUIDs used in MFL are version 4 UUIDs [http://tools.ietf.org/html/rfc4122.html].

HTTP Errors

	400 (Bad Request)

	This error occurs if the request given to the server is malformed or does not meet certain criteria e.g. invalid data.

	401 (Unauthorized)

	The request to access a resource was unauthorized. (Authentication and authorization)

	403 (Forbidden)

	The authorized user does not have permission to access a resource (Authentication and authorization)

	404 (Not found)

	The requested resource was not found

	410 (Gone)

	The requested resource has been removed

	500 (Server Error)

	A server error has occurred

Pagination

Endpoints that return multiple items will be paginated with a page size of 25
by default. All endpoints returning a list of items shall have the following
format:

GET /api/common/constituencies/?page=2

{
"count": 290,
"next": "http://localhost:8000/api/common/constituencies/?page=3",
"previous": "http://localhost:8000/api/common/constituencies/",
"results": [
 {
 ... // list of items requested, in this case constituencies
]
}

A client can request a larger page size by specifying the page_size parameter
e.g /api/common/contacts/?page_size=100. There page size limit is selected at
server configuration time; it will usually be around 1000 items.

Audit trail

The API server provides an audit trail for all non third-party resources.
This audit trail can be accessed on detail endpoints by appending an
include_audit=true query parameter.

For example, if there was a contact with the id
28d2a0c8-40f4-4686-97d0-d7c6f453fcb3, a GET request to
/api/common/contacts/28d2a0c8-40f4-4686-97d0-d7c6f453fcb3/?include_audit=true
would return a payload that has a revisions key that contains a
representation of every past revision of that specific contact.

Search

Every list endpoint supports full text search. Search is implemented
as a filter, using the search query parameter.

For example, to search for contacts that have the word “meru” in them, the
query would be /api/common/contacts/?search=meru.

The API sandbox

Our experience teaches us that the biggest roadblock to systems integration
is usually communication. Developers operate at a level of precision and
detail that is alien to most people. We’ve been spoilt by our past dabblings
with high quality API documentation sites like the Stripe API site [https://stripe.com/docs/api].

Swagger

The API can be interacted with through Swagger from the link api/explore/

The Browsable API

The API is accesible from the URL api/. This is the entry point into the
entire list of all the URLs in the API and the methods and that are allowed on an
endpoint.

API Metadata support

The api/ URL has been designed to make it easy for a client accessing an endpoint
to know the methods that are allowed on the endpoint. The metadata support also allows
a client to know the fields that an endpoint accepts and whether they are required or
not.

Metadata resources

This chapter assumes that the reader is familiar with the general
principles explained in the Using the API - basic principles chapter.

The MFL’s job description is to standardize the management of information
relating to facilities (including community health units), provide a standard
catalogue of available healthcare The service catalog and act as a central ingress
point for regulation. However, in order to do this, the MFL needs to have a
constellation of support resources in its data model.

This chapter concerns itself with the resources that hold “setup” type
information. These resources wil often be used to populate drop-downs
and other types of choosers in the web / mobile front-ends.

Contact Types

The contact type resource allows us to move the configuration of contact types
that are recognized by the server from code to configuration.

This API will typically be used by web front-ends that need to populate
contact type selection dropdowns during the creation of contacts/

The contact type list endpoint is at /api/common/contact_types/ while the
detail endpoint will be at /api/common/contact_types/<pk>/ (for example,
the contact whose id is 3a05b4e7-fb8e-4c23-ac95-4e36ac2b99fa can be
retrieved by GET``ting
``/api/common/contact_types/3a05b4e7-fb8e-4c23-ac95-4e36ac2b99fa/).

When creating a new contact, the only necessary fields are the name and
description. The following is a valid POST payload:

{
 "name": "KONTACT TYPE",
 "description": "Documentation Example"
}

Towns

The town resource allows us to set up the system’s list of towns.

This API will typically be used by front-ends that need to populate town
selection dropdowns during the creation of facility records.

The town list endpoint is at /api/common/towns/. As with every other
resource in this API, the detail endpoint will be at /api/common/towns/
e.g /api/common/towns/e8f369f1-d115-43a1-a19b-ae40b7b4b19e/ for a town
whose primary key is e8f369f1-d115-43a1-a19b-ae40b7b4b19e.

When creating a new town, the only mandatory parameter is the name. The
following is a valid POST payload:

{
 "name": "Documentation Town"
}

Administrative units

The second generation MFL implements the post 2010 (Kenyan) constitution
administrative structure. This structure has only three levels, after the
national one: counties, constituencies and wards.

There are 47 counties. Each county contains a number of constituencies - all
adding up to 290. Each constituency in turn contains a number of wards - all
adding up to 1450.

The constituencies will sometimes be referred to as “sub-counties”. The wards
often - ut not always - correspond to locations in the previous administrative
structure.

It is unlikely that an API client will need to alter the administrative unit
setup data (it is part of the server’s default data). API support for
editing has still been supplied - as a failsafe mechanism.

Counties

Counties can be listed by visiting /api/common/counties/. Individual county
details can be listed by visiting /api/common/counties/<pk>/ e.g
/api/common/counties/dd999449-d36b-47f2-a958-1f5bb52951d4/ for a county
whose id is dd999449-d36b-47f2-a958-1f5bb52951d4.

Note

The county detail endpoint is atypical.

It embeds a geographic feature (GeoJSON) under the county_boundary
key and the coordinates of all facilities (as a map of GeoJSON points)
in the county under the key facility_coordinates.

This API provides all the raw information that is needed to render a map
of the county and plot the facilities on that map.

Constituencies

Constituencies can be listed by visiting /api/common/constituencies/.
Individual constituency details can be viewed by visiting
/api/common/constituencies/<pk>/ e.g
/api/common/constituencies/16da4d8a-4bff-448b-8fbb-0f64ee82c05a/ for the
constituency with an id 16da4d8a-4bff-448b-8fbb-0f64ee82c05a.

Note

Like the county detail endpoint, the constituency detail endpoint is
atypical. It embeds the same coordinates and boundary information.

Wards

Wards can be listed by visiting /api/common/wards/. Individual ward details
can be retrieved at /api/common/wards/<pk>/ e.g /api/common/wards/41ae635c-5dba-40af-bb74-37d8d0a4c175/ for the ward with an id
41ae635c-5dba-40af-bb74-37d8d0a4c175.

Note

Like the county and constituency detail endpoints, the ward detail
endpoint is atypical because it embeds coordinates and boundary
information.

Facility Types

The purpose of this resource is to populate dropdowns used in facility creation
and edit screens. The API also supports the creation of an administrative
interface that can be used to add new facility types and retire old ones.

Facility types can be listed at /api/facilities/facility_types/. Individual
facility details can be listed at /api/facilities/facility_types/<pk>/ e.g
/api/facilities/facility_types/ccf14e50-2606-40b9-96fd-0dc5b3ed4a15/ for
the facility whose id is ccf14e50-2606-40b9-96fd-0dc5b3ed4a15.

The only required fields when creating a new facility type are name
(which should be set to something meaningful) and sub_division (which
can be null). The following is a minimal but valid POST payload:

{
 "name": "Test facility type for docs",
 "sub_division": null
}

Facility owners and owner types

Facility owner types provide a mechanism by which the owners of facilities
can be classified, arbitrarily. Examples are “Non Governmental Organizations”,
“Faith Based Organizations” and the “Ministry of Health”. These owner types
can be changed at will.

In the MFL 1 era, facility owners were set up in a very general manner e.g
“Private Enterprise (Institution)” and “Private Practice - Unspecified”. There
is no technical reason why these facility owners cannot be more specific e.g
names of specific private sector organizations.

Facility owner types

Facility owner types can be listed at /api/facilities/owner_types/.
Predictably, the detailed representations will be found at
7ce5a7b1-9a5e-476c-a01c-8f52c4233926.

When creating a new facility owner type, the only mandatory field is the
name. For example: the following is a perfectly valid POST payload:

{
 "name": "Owner type for docs"
}

Facility owners

Facility owners can be listed at /api/facilities/owners/. Detail
representations can be obtained from /api/facilities/owners/<pk>/
e.g /api/facilities/owners/f770a132-f62a-418a-96b4-062c3cc7860c/.

When registering a new facility owner, the POST payload should contain
at least the name, description and abbreviation. For example:

{
 "name": "Imaginary BigCorp.",
 "description": "BigCorp owns everything",
 "abbreviation": "BIG",
}

Note

The setup of owners and owner types should be performed with care, because
of the importance of this metadata in analysis / reporting.

Job titles

The job titles that are available to be assigned to facility officers can be
listed at /api/facilities/job_titles/. Individual job title detail
resources will be at /api/facilities/job_titles/<pk> e.g
/api/facilities/job_titles/7ec51365-75b7-45e5-873b-8bb3c97bbe21.

When creating a new job title, the name and description should be sent
as a POST payload to the list endpoint. The example below is a valid
payload:

{
 "name": "Boss",
 "description": "Big Cahunna"
}

Regulating bodies

The regulators that are known to the server can be listed by GET``ting
``/api/facilities/regulating_bodies/. Predictaby, the detail of each can
be retrieved at /api/facilities/regulating_bodies/<pk>/ e.g
/api/facilities/regulating_bodies/07f8302f-042a-4a9c-906b-10d69092b43e/.

When registering a new regulating body, you should set the name,
abbreviation and regulation_verb fields. For example:

{
 "name": "A newly legislated regulator",
 "abbreviation": "ANLR",
 "regulation_verb": "Gazettment"
}

Regulating body contacts

After creating a regulating body, one or more contacts can be associated with
it by POST``ing to ``/api/facilities/regulating_body_contacts/ the id
of the regulating_body (returned by the API after creating the body or
retrieved from the relevant list / detail endpoint) and the id of the
contact (obtained in a similar manner).

Suppose that the id for the newly created regulating body is
5763a053-668e-4ca7-bab4-cda3da396453. Suppose also that we have just
created a contact with id 7dd62ab9-94c2-48d6-a10f-d903bd57acd5.

We can associate that contact and the regulating body by POST``ing to
``/api/facilities/regulating_body_contacts/ the following payload:

{
 "regulating_body": "5763a053-668e-4ca7-bab4-cda3da396453",
 "contact": "7dd62ab9-94c2-48d6-a10f-d903bd57acd5"
}

The regulating body contacts that already exist can be listed by issuing a
GET to /api/facilities/regulating_body_contacts/. If you would like to
filter those that belong to a known regulating body, use a regulating_body
query parameter, with the id of the regulating body as the filter value
e.g /api/facilities/regulating_body_contacts/?regulating_body=5763a053-668e-4ca7-bab4-cda3da396453. You could also filter the regulating body contacts using the id of a
known contact, although the use cases for that are more limited.

Note

This section introduces some patterns that will recur in this API:

	The use of filters: the list APIs are filterable by most of the
fields that they list. You can explore this further in the The API sandbox.

	The use of explicit join tables for many to many relationships.

The regulating_body_contact resource that is the subject of this
section is an example. That is a deliberate choice - we find that, even
though it makes the API clients do a little more work, it leads to more
reliable APIs. In RESTful APIs, nested serialization / deserialization
is a massive pain. We’d rather not deal with it.

Facility Operation Status

Operation Status is what indicates whether a facility is operation or non operational.

Listing Available Operation Status

To list all the available operation status in MFL do a GET to the URL api/facilities/facility_status/

Sample Expected Response data:

{
 "count": 4,
 "next": null,
 "previous": null,
 "page_size": 30,
 "current_page": 1,
 "total_pages": 1,
 "start_index": 1,
 "end_index": 4,
 "results": [
 {
 "id": "7e5cfa76-7564-4263-89d6-c4e30ce64b39",
 "created": "2015-09-28T08:59:03.979532Z",
 "updated": "2015-09-28T08:59:03.979567Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Unknown",
 "description": null,
 "created_by": 1,
 "updated_by": 1
 },
 {
 "id": "c3b2f2f3-2cfa-4203-bc92-476f63069377",
 "created": "2015-09-28T08:59:03.973257Z",
 "updated": "2015-09-28T08:59:03.973276Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Pending Opening",
 "description": null,
 "created_by": 1,
 "updated_by": 1
 },
 {
 "id": "c879932e-4763-420a-9a87-adddb874b662",
 "created": "2015-09-28T08:59:03.967246Z",
 "updated": "2015-09-28T08:59:03.967266Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Not-Operational",
 "description": null,
 "created_by": 1,
 "updated_by": 1
 },
 {
 "id": "d498f6bb-af28-435d-b83c-39e81421a83c",
 "created": "2015-09-28T08:59:03.957568Z",
 "updated": "2015-09-28T08:59:03.957590Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Operational",
 "description": null,
 "created_by": 1,
 "updated_by": 1
 }
]
}

	Expected Response Code:

	HTPP_200_OK

Creating an Operation Status

To add a new operation status POST to the URL api/facilities/facility_status/ a payload similar to the one shown below:

{
 "name": "Test Status",
 "description": "This is just for testing"
}

Sample Expected Response data:

{
 "id": "4a67f0f4-bc3a-461f-ad26-4aad885482f4",
 "created": "2015-10-27T08:19:55.764752Z",
 "updated": "2015-10-27T08:19:55.764767Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Test Status",
 "description": "This is just for testing",
 "created_by": 4,
 "updated_by": 4
}

	Expected Response Code:

	HTTP_201_CREATED

Updating a single Operation Status

To update a single operation status do a PATCH to the URL api/facilities/facility_status/<facility_status_id>/

For example to update operation status we just created we would do a PATCH to the URL api/facilities/facility_status/4a67f0f4-bc3a-461f-ad26-4aad885482f4/ with a payload similar to the one below:

{
 "name": "Test Status edited"
}

Sample Expected Response data

{
 "id": "4a67f0f4-bc3a-461f-ad26-4aad885482f4",
 "created": "2015-10-27T08:19:55.764752Z",
 "updated": "2015-10-27T08:19:55.764767Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Test Status edited",
 "description": "This is just for testing",
 "created_by": 4,
 "updated_by": 4
}

	Expected Response code:

	HTTP_200_OK

The service catalog

This chapter assumes that the reader is familiar with the general
principles explained in the Using the API - basic principles chapter.

In order for the MFL to do its job as the keystone of the Kenyan national
health information system, there needs to be a standard registry of
services.

At the time when this edition of the MFL was built, no such thing existed.
The MFL therefore took on the responsibility of providing that registry.

This chapter concerns itself with the setup of the service catalog.
The service catalog has two primary goals:

	to model healthcare services in a manner that is flexible and future proof

	to standardize service codes

Note

Standardization of service codes is a pre-requisite for interoperability
between the MFL and other systems.

Note

The flexibility will allow the MFL to keep pace with changes in healthcare
and policy.

Service Categories

Service categories are the “broad headings” under which healthcare services are
classified. An example is “Comprehensive Emergency Obstetric Care (CEOC)”, an
umbrella for services that respond to life-threatening emergency complications
and are offered by facilities whose human resources include doctors and whose
infrastructure includes operating theatres and incubators.

Existing service categories can be listed by issuing a GET to
/api/facilities/service_categories/.

To add a new service category, POST to the same URL a payload similar to
this:

{
 "name": "A new service category",
 "description": "What is it really about",
 "abbreviation": "ABBR"
}

Services

Services are the granular “product” delivered to end users. Some examples are
“Provider Initiated Counselling and Testing” and Oral Health Services (Dental Services)”.

Existing services can be listed at /api/facilities/services/.

When creating a new service, POST the name, description,
abbreviation and category. For example:

{
 "name": "A new service",
 "description": "The best new service since bread slicing",
 "abbreviation": "ANS",
 "category": "2bdfd814-5cba-4673-916e-96b6a98cf1c9"
}

Note

Services get auto-assigned code s. A service code is immutable once
issued. The service codes are expected to become a standard identifier for
services.

Options and service options

In order to understand the options API, we’ll take a look at the Facility
Creation Form from the 2010 Master Facility List Implementation Guide
(the guiding document for the previous edition of the MFL).

[image: New Facility Addition Form (from the MFL Implementation Guide, 2010)]

In the form above, many services have Yes and No options. Some services
require a numeric level (levels 1 to 6 from the Kenya Essential
Package for Health [KEPH]), while obstetric services are classified into
Basic or Comp (comprehensive).

That form is far from comprehensive (that was found out in practice). A naive
implementation of that form would hobble the system if a new standard
service catalog emerged.

This API responds to that challenge by creating a mechanism by which a service
can be associated with an arbitrary range of options.

Note

This approach will make
API clients (including the official web front-ends) do a lot more work;
but in this case, we think that it is worthwhile.

Options

“Options” are the possible “choices” in a service questionnare, like the one
shown above.

Using that example: “Yes” and “No” are options for the services under the
“HIV Prevention Services” category, while the numbers “1,2,3,4,5,6” are
options for the KEPH service classification section.

The known service options can be listed and created at /api/facilities/options/. To create a new option, you need to POST a payload that includes the
following fields:

	Field
	Description

	value
	The value that will be stored in the database, and analyzed. This should be a constant that is friendly to analytical tools e.g one that does not have unnecessary punctuation and spacing. This will be a string.

	display_text
	The description that will be displayed to the user wherever the option appears in the user interface. This should be plain text. It cannot be blank.

	is_exclusive_option
	This is a boolean value; if true, only one of the exclusive options can be selected for a specific facility and service. A user interface should intepret this by implementing a control that behaves like radio buttons.

	option_type
	The choices are BOOLEAN, INTEGER, DECIMAL and TEXT. This controls the type of response data that is valid for that option.

Here is an example of a valid POST payload:

{
 "value": "YES",
 "display_text": "Yes",
 "is_exclusive_option": true,
 "option_type": "BOOLEAN"
}

Service Options

The service options resource is used to link services and options. To use an
example from the form above, the service “Home Based Care (HBC)” should be
linked with the options Yes and No. Service options can be viewed and
configured at /api/facilities/service_options/. To create a new link, you
need to know the id of the service and the option.

For example: to link an option with the id 53c3f729-97d1-4c9d-9fff-d2edc797b185 with the service with the id 80613650-f765-4032-a9d3-bb0fc9cc37cc, POST to /api/facilities/options/ the following payload:

{
 "service": "80613650-f765-4032-a9d3-bb0fc9cc37cc",
 "option": "53c3f729-97d1-4c9d-9fff-d2edc797b185"
}

Linking facilities to services

The final step is to link a facility to the services that it offers.
Facilities are linked to services through service options.

If the service option that we created above has the id
f09af53e-5c6f-468d-a41d-df51693e51a3 and we’d like to link it to a
facility whose id is c4169b23-5cbb-4ed8-a556-8a4fc43af17e, POST
to /facilities/facility_services/ the following payload:

{
 "facility": "c4169b23-5cbb-4ed8-a556-8a4fc43af17e",
 "selected_option": "f09af53e-5c6f-468d-a41d-df51693e51a3"
}

Facilities

This chapter assumes that the reader is familiar with the general
principles explained in the Using the API - basic principles chapter.

The MFL is not merely a “list” of facilities; it has rich APIs to manage their
life cycles and to support interaction with other healthcare systems. This
chapter concerns itself with what is arguably the “core” of the MFL system
- the maintenance of facility information. Facilities APIs fall into the
following groups:

	Function
	Resources / APIs

	Facility Information storage
	
	Facility

	Facility Physical Addresses

	Facility Contacts

	Facility Units

	Facility Services

	Facility Workflow / Life cycle
	
	Approval

	Publishing (synchronization)

	Regulation

	Upgrade

	Downgrade

	Facility ratings
	
	Facility service ratings

	Facility ratings report

	Facility downloads
	
	Facility cover letters

	Facility correction templates

	Facility excel exports

	Facility dashboard APIS
	
	Analysis by administrative units

	Analysis by type

	Analysis by owner and owner category

	Analysis by regulator and regulation status

Note

One of the things associated with facilities that are registered on the
Master Facilities List is a Master Facilities List (MFL) Code.

The MFL code is a unique number (integral) that is sequential and
immutable. The immutability is taken seriously - the MFL codes that
were issued under the first generation system will not be re-issued under
the second generation MFL system.

Codes that are issued under MFL 2 will start at 100000.

Facility information storage

Note

These APIs are the “heart” of the MFL system. A well-behaved front-end
should take an integrated approach, presenting output from these APIs
under one set of screens (instead of five sets, one for each resource
type).

Facilities

Listing multiple records

The facilities that are currently registered can be listed at
/api/facilities/facilities/.

Retrieving a single record

Each facility has a UUID id. A facility’s detail record can be listed
at /api/facilities/facilities/<id>/. For example: if a facility
record’s id is 2927d31f-b1a0-4d17-93b0-ea648af7b9f0, the detail
URL for the facility record will be /api/facilities/facilities/2927d31f-b1a0-4d17-93b0-ea648af7b9f0/.

Filtering and search

Facilities - as listed at /api/facilities/facilities/ can be filtered using
the following:

	Filter
	Explanation

	name
	This does a case insensitive partial match but accepts only one name to filter by e.g /api/facilities/facilities/?name=molo.

	code
	Filter by one or more facility codes e.g /api/facilities/facilities/?code=15003,15002. The , is used to separate individual parameters. This does exact matches.

	description
	Similar to name but operating on descriptions e.g /api/facilities/facilities/?name=molo

	facility_type
	Filter by the id``s of one or more facility types e.g ``/api/facilities/facilities/?facility_type=f25ba517-3b8d-4692-ba7b-3524f6ec58e5,b2225473-08f1-4e86-a47a-0a61cf75e731. Facility types can be listed at /api/facilities/facility_types/.

	operation_status
	Filter by the id of one or more operation statuses from /api/facilities/facility_status/

	ward
	Filter by the id of wards (from /api/common/wards/ e.g /api/facilities/facilities/?ward=353404d7-02e6-422f-b64f-b1c7d0f1bcf0)

	county
	Filter by the id of counties (from /api/common/counties/ e.g /api/facilities/facilities/?county=fa47afa2-a78a-421f-ad9f-55e6cbfc280c)

	constituency
	Filter by the id of constituencies (from /api/common/constituencies/ e.g /api/facilities/facilities/?constituencies=93280ce0-670f-4b96-a449-57d65f0dcace)

	owner
	Filter by the id of one or more owners. Owners can be listed at /api/facilities/owners/

	owner_type
	Filter by the id of one or more owner types. Owner types can be listed at /api/facilities/owner_types/

	officer_in_charge
	Filter by the id of one or more officers-in-charge. The officers can be listed at /api/facilities/officers/

	number_of_beds
	Filter by the number of beds, supplying one or more filter parameters e.g /api/facilities/facilities/?number_of_beds=20,21,22,23,24

	number_of_cots
	Filter by the number of cots, supplying one ormore filter parameters e.g /api/facilities/facilities/?number_of_cots=10,11,12

	open_whole_day
	A boolean filter e.g /api/facilities/facilities/?open_whole_day=true

	open_whole_week
	A boolean filter e.g /api/facilities/facilities/?open_whole_week=true

	is_classified
	A boolean filter that determines if a facility’s coordinates should be shown or not. The public front-end should omit classified facilities by default. i.e. publish those that can be listed with /api/facilities/facilities/?is_classified=false

	is_published
	A boolean filter that determines if a facility has been cleared for display on the public site. The public site should only display facilities that can be listed with /api/facilities/facilities/?is_published=true

	is_regulated
	The facilities that are pending action from the regulators can be listed with /api/facilities/facilities/?is_regulated=False

The following filters are common to all list endpoints in this API,
other than /api/users/.

	Filter
	Explanation

	updated_before
	The most recently updated facilities can be listed with a query similar to /api/facilities/facilities/?updated_before=2015-05-09T08:57:48.094112Z. The datetime is in ISO 8601 format.

	created_before
	Similar to updated_before, but operating on creation dates. Creation dates are not “touched” after the initial creation of the resource.

	updated_after
	Similar to updated_before, but returns records newer than the specified datetime

	created_after
	Similar to updated_after, but works with creation dates.

	updated_on
	This is similar to the date filters above but performs exact matches on the update date.

	created_on
	This is also performs exact matches.

	is_active
	For all resources in this server, the preferred way to “retire” records is to mark them as inactive. This allows the API client to request only active or only inactive records.

	search
	Perform a full text search that looks through all fields. e.g /api/facilities/facilities/?search=endebess gives back all facilities that have “endebess” anywhere in their name, description or attributes.

Note

These filters can be combined / chained.

For example: /api/facilities/facilities/?ward=353404d7-02e6-422f-b64f-b1c7d0f1bcf0&open_whole_day=true

Adding a new record

The following are the important fields when adding a new facility:

	Field
	Explanation

	name
	The name of the faciity e.g “Musembe Dispensary (Lugari)”

	abbreviation
	A shortened name

	description
	Free text that supplies any additional detail that is required

	location_desc
	An explanation of the location, in “plain” language e.g “Eldoret - Webuye Highway (at Musembe Mkt junction)”

	number_of_beds
	The number of beds as per the facility’s license

	number_of_cots
	The number of cots as per the facility’s license

	open_whole_day
	true if the facility is a 24 hour operation

	open_whole_week
	true if the facility is a 7 day operation

	facility_type
	An id, obtained by listing /api/facilities/facility_types/

	operation_status
	An id, obtained from /api/facilities/facility_status/. This is the overall state of the facility e.g “Operational” or “Not Operational”

	ward
	An id, obtained from /api/common/wards/. Facilities are attached at the level of the smallest administrative area (the ward).

	owner
	An id, obtained from /api/facilities/owners/.

	officer_in_charge
	An id, obtained from /api/facilities/officers/

	physical_address
	An id, obtained from /api/common/address/

	parent
	Optional. If a facility is a “branch” of a larger facility, the id of the parent facility should be supplied here.

The following example illustrates a valid POST payload:

{
 "name": "Demo Facility",
 "abbreviation": "DEMOFAC",
 "description": "This is an example in the documentation",
 "location_desc": "Planet: Mars",
 "number_of_beds": 20,
 "number_of_cots": 0,
 "open_whole_day": true,
 "open_whole_week": true,
 "facility_type": "db8f93ad-b558-405a-89b5-a0cdb318ee6e",
 "operation_status": "ee194a52-db9d-401c-a2ef-9c8225e501cd",
 "ward": "a64d930d-883e-4b96-ba39-c792a1cd04f2",
 "owner": "f4c7ca47-7ee6-4795-ac1c-a5d219e329ad",
 "officer_in_charge": "972c9c96-fe27-4803-b6f8-c933310e2f44",
 "physical_address": "88dde94b-dc42-4b13-b1cb-05eca047678c",
 "parent": null
}

A successful POST will get back a HTTP 201 Created response. A
representation of the freshly created resource will be returned in the
response.

Updating an existing record

In order to update an existing record, PATCH the appropriate field from
the record’s detail view.

For example, if the facility that we created above got the id set to
e88f0c1a-e1e4-44ff-8db1-8c4135abb080 (this will be returned to the client
in the resource returned after successful creation), we can change its
location_desc from “Planet: Mars” to “Planet: Venus” by sending a
PATCH to /api/facilities/facilities/e88f0c1a-e1e4-44ff-8db1-8c4135abb080/ with the
following payload:

{
 "location_desc": "Planet: Venus"
}

A successful PATCH will get back a HTTP 200 OK response and a
representation of the freshly updated resource will be returned.

Deleting a record

In order to delete the record that we just created, send a DELETE with an
empty payload to the detail URL i.e. to /api/facilities/facilities/e88f0c1a-e1e4-44ff-8db1-8c4135abb080/ in the example above.

A successful DELETE will get back a HTTP 204 NO CONTENT response.

Physical addresses

Listing multiple records

The physical addresses known to the system can be listed at
/api/common/address/.

In addition to the common filters that are already explained above,
physical addresses have the following extra filters:

	Field
	Explanation

	town
	Filter by the id of a town. Towns can be listed at /api/common/towns/ e.g /api/common/address/?town=b2af0361-c924-4ba2-9bc6-82333fc0a26f

	postal_code
	Filter by the postal_code e.g /api/common/address/?postal_code=00100

	address
	Filter by the actual text of the address itself e.g /api/common/address/?address=P.O.%20Box%201

	nearest_landmark
	Filter by the contents of the nearest_landmark field e.g /api/common/address/?nearest_landmark=kicc

	plot_number
	Filter by the plot_number field e.g /api/common/address/?plot_number=940

Retrieving a single record

The detail endpoint is /api/common/address/<id>/ e.g
/api/common/address/20d01a89-f6b5-4a4d-b788-32182d427c18/ for the address
whose id is 20d01a89-f6b5-4a4d-b788-32182d427c18.

Adding a new record

Supply the following fields:

	Field
	Explanation

	postal_code
	A valid postal code e.g “00100”

	address
	An address e.g “No. 11A, Kabarnet Court, off Kabarnet Road” or “P.O. Box 5980”

	nearest_landmark
	Free text, left to the discretion of the person creating the record

	plot_number
	Free text, left to the discretion of the person entering the record

	town
	The id of a town, as listed at /api/common/towns/

{
 "postal_code": "00100",
 "address": "No. 11A, Kabarnet Court, off Kabarnet Road",
 "nearest_landmark": "Kingdom Business Centre",
 "plot_number": "-",
 "town": "b2af0361-c924-4ba2-9bc6-82333fc0a26f"
}

A successful POST will get back a HTTP 201 Created response. A
representation of the freshly created resource will be returned in the
response.

Updating an existing record

PATCH the detail endpoint above e.g to set the plot_number for the
example record above, send the following PATCH payload to
/api/common/address/20d01a89-f6b5-4a4d-b788-32182d427c18/:

{
 "plot_number": "250"
}

A successful PATCH will get back a HTTP 200 OK response. A
representation of the updated resource will be returned in the
response.

Deleting a record

Send a DELETE request to the detail endpoint. In the example above,
the DELETE would be sent to /api/common/address/20d01a89-f6b5-4a4d-b788-32182d427c18/.

A successful DELETE will get back a HTTP 204 NO CONTENT response.

Facility contacts

Listing multiple records

Facility contacts can be listed at /api/facilities/contacts/.

In addition to the common contacts that are already explained above,
facility contacts have the following extra fields:

	Field
	Explanation

	facility
	The id of the relevant facility, as listed at /api/facilities/facilities/ e.g /api/facilities/contacts/?facility=faaefb75-dba4-4564-8acb-6b947685de24

	contact
	The id of a contact, as listed at /api/common/contacts/ e.g /api/facilities/contacts/?contact=2f5fe4c2-0371-4ba0-ba31-79d997d71c6a

Retrieving a single record

The detail endpoint is /api/facilities/contacts/<id>/. For example, the
detail URL for the facility contact whose id is
9641f588-a5c0-4c0d-ad13-cfcf98a2fb7 is
/api/facilities/contacts/9641f588-a5c0-4c0d-ad13-cfcf98a2fb7.

Adding a new record

The only required fields are the facility and contact (as documented
above).

The following example is a valid POST payload:

{
 "facility": "faaefb75-dba4-4564-8acb-6b947685de24",
 "contact": "2f5fe4c2-0371-4ba0-ba31-79d997d71c6a"
}

A successful POST will get back a HTTP 201 Created response. A
representation of the freshly created resource will be returned in the
response.

Updating an existing record

PATCH the detail endpoint with the new values e.g to change the contact in
the record above, a valid PATCH payload could be:

{
 "contact": "516f64b5-a12c-4323-b918-a5512b4baf6a"
}

A successful PATCH will get back a HTTP 200 OK response. A
representation of the updated resource will be returned in the
response.

Deleting a record

Send a DELETE request to the detail endpoint.

A successful DELETE will get back a HTTP 204 NO CONTENT response.

Facility units

A facility may contain within it multiple semi-independent units e.g a
pharmacy, a lab and a radiology unit.

Note

These units may fall under the scope of different regulators. This API
server does not currently handle that.

Listing multiple records

Facility units can be listed via a GET to /api/facilities/facility_units/.

In addition to the common filters, facility units can be filtered by the
following fields:

	Field
	Explanation

	facility
	The id of the facility, as listed at /api/facilities/facilities/ e.g /api/facilities/facility_units/?facility=faaefb75-dba4-4564-8acb-6b947685de24

	name
	The name of the facility unit e.g /api/facilities/facility_units/?facility=faaefb75-dba4-4564-8acb-6b947685de24&name=pharmacy

	description
	The description of the facility unit e.g /api/facilities/facility_units/?facility=faaefb75-dba4-4564-8acb-6b947685de24&description=hospital%20pharmacy

Retrieving a single record

	A single facility unit record can be retrieved at its detail endpoint i.e

	/api/facilities/facility_units/<id>/ e.g
/api/facilities/facility_units/1fcc5c30-9170-4c9d-8d05-9695ba81a08c/.

Adding a new record

When adding a new facility unit, the fields of interest are the name,
description and facility.

The following is a valid POST payload for /api/facilities/facility_units/:

{
 "name": "Pharmacy",
 "description": "Hospital Pharmacy",
 "facility": "faaefb75-dba4-4564-8acb-6b947685de24"
}

A successful POST will get back a HTTP 201 Created response. A
representation of the freshly created resource will be returned in the
response.

Updating an existing record

A PATCH to the detail endpoint will update the relevant field(s):
For example:

{
 "description": "Community Pharmacy"
}

A successful PATCH will get back a HTTP 200 OK response. A
representation of the updated resource will be returned in the
response.

Deleting a record

Send a DELETE request to the detail endpoint.

A successful DELETE will get back a HTTP 204 NO CONTENT response.

Facility services

These APIs link facilities to The service catalog.

Listing multiple records

The currently registered facility services can be listed via GET to
/api/facilities/facility_services/.

In addition to the standard filters, facility services have the following
additional filters:

	Field
	Explanation

	facility
	id of a facility, as obtained from /api/facilities/facilities/

	selected_option
	id of a service catalog service option, as obtained from /api/facilities/service_options/

Retrieving a single record

A facility service record can be retrieved at
/api/facilities/facility_services/<id>/ e.g
/api/facilities/facility_services/df6bc639-1d9b-49f8-8f95-51e6de9c93e2/
for the facility service whose id is df6bc639-1d9b-49f8-8f95-51e6de9c93e2.

Adding a new record

To associate a facility with a service, the required fields are facility
and selected_option.

The following is an example POST payload:

{
 "service": "f465cb89-995c-4004-9f32-1d97fa6d0eb2",
 "option": "f465cb89-995c-4004-9f32-1d97fa6d0eb2"
}

A successful POST will get back a HTTP 201 Created response. A
representation of the freshly created resource will be returned in the
response.

Updating an existing record

Issue a PATCH to the detail endpoint with the new value. For example, to
change the option the example record we created above, the following payload
could be sent via PATCH to
/api/facilities/facility_services/df6bc639-1d9b-49f8-8f95-51e6de9c93e2/:

{
 "option": "7dde4be8-1c1e-43ce-8569-eebb63bcb329"
}

A successful PATCH will get back a HTTP 200 OK response. A
representation of the updated resource will be returned in the
response.

Deleting a record

Issue a DELETE to the detail endpoint.

A successful DELETE will get back a HTTP 204 NO CONTENT response.

Facility workflows

Note

These five workflows are the day-to-day operations performed on the MFL
system. A well behaved front-end should integrate them into the facility
information screens that handle the facility information services mentioned
above, rather than give each of these its own set of screens.

Note

These workflows have multiple interactions with the role based access
control setup.

The facility “publishing” workflow

The first generation MFL system had a notion of “synchronizing” facility
records to the “public site”. This notion arose beceause the “public” MFL
system was a separate system.

This API does away with that notion. All applications - admin or public, web
or mobile - share the same API. Facilities that should be seen in the public
API have is_published set to true and is_classified set to
false.

Note

When is_classified is true, a user accessing the public site will
need to be logged in with an account that has a the
view_classified_facilities permission.

To “publish” a facility, simply PATCH the facility’s detail URL and set
is_published to true. Newly created facilities are not published by
default.

To “classify” a facility, PATCH its detail endpoint with is_classified
set to true. A facility is not classified by default.

Note

The public user interface should add an is_published=true filter to
every request made to the facilities endpoints. For an unauthenticated
user, it should also append is_classified=false to every call to the
facilities list endpoint.

The administration user interface should implement role based access
control, limiting publishing to users with the publish_facilities
permission.

Facility ratings

Ratings are scores given to a facility’s services. One facility service can be rated by multiple users.
One user, can rate multiple facility services.

The scores given to a service range from 1 to 5, with 1 being the lowest score
and 5 being the highest score.

Note

The facility ratings APIs will be used by both the public and
administration user interfaces. The public interface’s concern is to
facilitate ratings by the general public. The admninistration interface
will present read-only summary information.

Facility service ratings

To rate a facility service, simply make a POST to api/facilities/facility_service_ratings/ with the
facility_service’s id and the score given. For example,

{
 "facility_service": "80613650-f765-4032-a9d3-bb0fc9cc37cc",
 "rating": 3
}

Facility rating reports

The rating reports available include:

	number of users with specific rating/score

	sorting of facilities by average score

	sorting of facility services by average score

	sorting of facility services in a facility by average score

Facility downloads

Note

Some of these downloads e.g the facility correction template are there for
historical reasons. A better approach would involve the use of mobile
interfaces (supported by this server’s APIs) to facilitate data
collection and data updates in the field.

Facility cover letters

To download a facilities cover letter:

GET the URL api/facilities/facility_cover_report/<facility_id>/

Facility correction templates

To download a facility’s correction template:

GET the URL api/facilities/facility_correction_template/<id>/

Facilty Inspection Report

To download a facility’s inspection report:
GET the URL api/facilities/facility_inspection_report/<facility_id>/

Facility Excel reports

Note

The authors of this API treated Excel and CSV output as simply one more
format that data can be exported into. Excel and CSV data comes from the
same serializers that produce the standard API JSON and XML output. This
has two positive effects:

	it can use all the available filters

	every list API endpoint (not just the facilities list API endpoint) can produce CSV and Excel

e.g. to get an excel file of facilities:
GET the URL api/facilities/facilities/?format=excel

Facility dashboard APIs

This API is accesbile by administrators at both the county and the National level.
The dashboard API does a high level analysis of different aspects of the facilities.
Currently, it supports analysis of facilities by owners, administrative units,
facility types, facility owner types and analysis by time created.

To get the analyzed data:
GET the URL api/facilities/dashboard/.
The data that the endpoint responds with is dependent upon the priviledges of the user logged in.

For a National user, the following response is expected

{
 "owners_summary": [
 {
 "count": 5,
 "name": "State Coorporation"
 },
 {
 "count": 1203,
 "name": "Private Enterprise (Institution)"
 },
 {
 "count": 0,
 "name": "NOT IN LIST"
 },
 {
 "count": 3,
 "name": "Humanitarian Agencies"
 },
 {
 "count": 179,
 "name": "Private Practice - Unspecified"
 },

],
 "recently_created": 8361,
 "county_summary": [
 {
 "count": 784,
 "name": "NAIROBI"
 },
 {
 "count": 392,
 "name": "MERU"
 },
 {
 "count": 379,
 "name": "NAKURU"
 },
 {
 "count": 363,
 "name": "KITUI"
 },
 {
 "count": 358,
 "name": "NYERI"
 },
 {
 "count": 333,
 "name": "KIAMBU"
 },
 {
 "count": 267,
 "name": "KAJIADO"
 },
 {
 "count": 256,
 "name": "MOMBASA"
 },
 {
 "count": 243,
 "name": "MACHAKOS"
 },
 {
 "count": 233,
 "name": "KILIFI"
 }
],
 "total_facilities": 8361,
 "status_summary": [
 {
 "count": 0,
 "name": "Facility_Gazette_By_ID"
 },
 {
 "count": 0,
 "name": "PENDING"
 },
 {
 "count": 0,
 "name": "Not-Operational"
 },
 {
 "count": 8361,
 "name": "OPERATIONAL"
 },
 {
 "count": 0,
 "name": "Licensing"
 },
 {
 "count": 0,
 "name": "Registration"
 },
 {
 "count": 0,
 "name": "Gazettment"
 }
],
 "owner_types": [
 {
 "count": 0,
 "name": "Other"
 },
 {
 "count": 268,
 "name": "Non-Governmental Organizations"
 },
 {
 "count": 3226,
 "name": "Private Institutions and Private Practice"
 },
 {
 "count": 853,
 "name": "Faith Based Organization"
 },
 {
 "count": 356,
 "name": "Other Public Institution"
 },
 {
 "count": 3658,
 "name": "Ministry of Health"
 }
],
 "constituencies_summary": [],
 "types_summary": [
 {
 "count": 119,
 "name": "District Hospital"
 },
 {
 "count": 901,
 "name": "Health Centre"
 },
 {
 "count": 3808,
 "name": "Dispensary"
 }
]
}

For a County user (Mombasa County in this case), the following response is expected

{
 "owners_summary": [

 {
 "count": 5,
 "name": "Local Authority T Fund"
 },
 {
 "count": 33,
 "name": "Community Development Fund"
 },
 {
 "count": 78,
 "name": "Company Medical Service"
 },
 {
 "count": 265,
 "name": "Non-Governmental Organizations"
 },
 {
 "count": 225,
 "name": "Other Faith Based"
 },
 {
 "count": 10,
 "name": "Supreme Council for Kenya Muslims"
 },

],
 "owner_types": [
 {
 "count": 189,
 "name": "Private Institutions and Private Practice"
 },
 {
 "count": 10,
 "name": "Faith Based Organization"
 },
 {
 "count": 27,
 "name": "Other Public Institution"
 },
 {
 "count": 23,
 "name": "Ministry of Health"
 }
],
 "constituencies_summary": [
 {
 "count": 71,
 "name": "MVITA"
 },
 {
 "count": 49,
 "name": "LIKONI"
 },
 {
 "count": 46,
 "name": "NYALI"
 },
 {
 "count": 44,
 "name": "CHANGAMWE"
 },
 {
 "count": 25,
 "name": "KISAUNI"
 },
 {
 "count": 21,
 "name": "JOMVU"
 }
],
 "types_summary": [
 {
 "count": 2735,
 "name": "Medical Clinic"
 },
 {
 "count": 196,
 "name": "Other Hospital"
 },
 {
 "count": 119,
 "name": "Sub-District Hospital"
 },
 {
 "count": 172,
 "name": "Nursing Home"
 }

]
}

Facility types

There are many types of facilities ranging from health centers,
hospitals, dispensaries, national hospitals etc.

Facility types form the basis of upgrading and downgrading of facilities.

A facility type has five distinct fields:

	Field
	Explanation

	id
	The primary key of the facility type

	name
	The name of the facility type e.g HEALTH_CENTER

	sub-division
	A sub-division of the facility type e.g A hospitla has got
several sub divisions e.g District Hospital of Provincial
Hospital

	preceeding
	A facility type that comes before the type e.g a Provincial
Hospital comes before a National Hospital

Creating A facility type

POST to api/facilities/facility_types/ a payload similar to the one below

{
 "name": "Hospital",
 "sub_division": "Provincial Hospital",
 "preceding": "950047f7-dae4-4803-9818-9886004daaf1"
}

	Expected Response Code:

	HTTP 201 CREATED

Expected sample data:

{
 "id": "11494347-f40c-4fbb-8632-cc1f35fe1fc9",
 "created": "2015-05-21T14:38:03.298142Z",
 "updated": "2015-05-21T14:38:03.298162Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Hospital",
 "sub_division": "Provincial Hospital",
 "created_by": 1,
 "updated_by": 1,
 "preceding": "950047f7-dae4-4803-9818-9886004daaf1"
}

Listing Facillity types

GET the URL api/facilities/facility_types/

Sample Response data:

 {
 "count": 27,
 "next": "http://localhost:8000/api/facilities/facility_types/?page=2",
 "previous": null,
 "results": [
 {
 "id": "11494347-f40c-4fbb-8632-cc1f35fe1fc9",
 "created": "2015-05-21T14:38:03.298142Z",
 "updated": "2015-05-21T14:38:03.298162Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Hospital",
 "sub_division": "Provincial Hospital",
 "created_by": 1,
 "updated_by": 1,
 "preceding": "950047f7-dae4-4803-9818-9886004daaf1"
 },
 {
 "id": "950047f7-dae4-4803-9818-9886004daaf1",
 "created": "2015-05-15T13:45:13.592372Z",
 "updated": "2015-05-15T13:45:13.592404Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "District Hospital",
 "sub_division": null,
 "created_by": 1,
 "updated_by": 1,
 "preceding": null
 }
]
}

	Expected Response code:

	HTTP 200 OK

Retrieving a facility type

GET the URL api/facilities/facility_types/<id>/

For example to get the details of a facility type whose is
950047f7-dae4-4803-9818-9886004daaf1 do a GET to the URL
api/facilities/facility_types/950047f7-dae4-4803-9818-9886004daaf1/

Sample Response data:

{
 "id": "950047f7-dae4-4803-9818-9886004daaf1",
 "created": "2015-05-15T13:45:13.592372Z",
 "updated": "2015-05-15T13:45:13.592404Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "District Hospital",
 "sub_division": null,
 "created_by": 1,
 "updated_by": 1,
 "preceding": null
}

	Expected Response code

	HTTP 200 OK

Updating Facility types

PATCH the URL api/facilities/facility_types/<id>/ with a payload
containing the fields to be edited. For example to update a facility type’s
name whose id is 950047f7-dae4-4803-9818-9886004daaf1 do a PATCH to the URL
api/facilities/facility_types/950047f7-dae4-4803-9818-9886004daaf1/
with a payload similar to the one below

{
 "name": "District Hospital Edited"
}

Sample Expected Response data:

{
 "id": "950047f7-dae4-4803-9818-9886004daaf1",
 "created": "2015-05-15T13:45:13.592372Z",
 "updated": "2015-05-15T13:45:13.592404Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "District Hospital Edited",
 "sub_division": null,
 "created_by": 1,
 "updated_by": 1,
 "preceding": null,
}

	Expected Response Code:

	HTTP 200 OK

Facility Upgrades and Downgrades

Upgrading or downgrading a facility is as easy as changing the
facility type of a facility to another type. The person doing this should
have the sufficient permssions to do so.
This is however a two step process. The First step involves making the upgrade
or the downgrade and the second involves confirming the upgrade or the
downgrade.

Upgrading/Downgrading a Facility (First Step)

POST to api/facilities/facility_upgrade/ a payload similar to the one
shown below

{
 "reason": "A good reason for the upgrade",
 "facility": "cc585b49-dc42-47a3-a08a-7f2c39633393", // id of the facility
 "facility_type": "57a0351b-accd-4ccf-b19f-38920ea78e75" // id of the facility type
}

Sample Response Data:

{
 "id": "70610b2b-ddd8-49b4-8594-52c236a834d2",
 "created": "2015-05-21T15:37:56.240505Z",
 "updated": "2015-05-21T15:37:56.240522Z",
 "deleted": false,
 "active": true,
 "search": null,
 "reason": "A good reason for the upgrade",
 "is_confirmed": false,
 "is_cancelled": false,
 "created_by": 3,
 "updated_by": 3,
 "facility": "cc585b49-dc42-47a3-a08a-7f2c39633393",
 "facility_type": "57a0351b-accd-4ccf-b19f-38920ea78e75"
}

	Expected Response Code:

	HTTP 201 CREATED

Confirming Upgrade or Downgrade (Second Step)

The CHRIO may choose to either to confirm or cancel a facility upgrade
or downgrade.

To confirm a facility upgrade/downgrade PATCH
api/facilities/facility_upgrade/<id>/ where the id identifies a particular
facility upgrade/downgrade.

For example to confirm the facility upgrade done above do a PATCH to
api/facilities/facility_upgrade/70610b2b-ddd8-49b4-8594-52c236a834d2
with the payload below:

{
 "is_confirmed": true
}

Expected Response data:

{
 "id": "70610b2b-ddd8-49b4-8594-52c236a834d2",
 "created": "2015-05-21T15:37:56.240505Z",
 "updated": "2015-05-21T15:37:56.240522Z",
 "deleted": false,
 "active": true,
 "search": null,
 "reason": "A good reason for the upgrade",
 "is_confirmed": true,
 "is_cancelled": false,
 "created_by": 3,
 "updated_by": 3,
 "facility": "cc585b49-dc42-47a3-a08a-7f2c39633393",
 "facility_type": "57a0351b-accd-4ccf-b19f-38920ea78e75"
}

	Expected HTTP Response code

	HTTP 200 OK

Cancelling a facility upgrade/downgrade(Second Step)

Cancelling a facility upgrade or downgrade is very similar to confirming a
facility upgrade with a minor change
in the payload sent.

Do a PATCH to the url api/facilities/facility_upgrade/<id>/
with a payload similar to the one shown below:

{
 "is_cancelled": true
}

Note

It is after the confirmation of a facility upgrade or downgrade that a facility
is deemed to have been upgraded or downgraded and the changes reflected in
the facility.

Listing Facilities that are due for upgrade/downgrade Confirmation

GET the URL /api/facilities/facility_upgrade/?is_confirmed=false

Sample Response data:

 {
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 {
 "id": "70610b2b-ddd8-49b4-8594-52c236a834d2",
 "created": "2015-05-21T15:37:56.240505Z",
 "updated": "2015-05-21T15:37:56.240522Z",
 "deleted": false,
 "active": true,
 "search": null,
 "reason": "A good reason for the upgrade",
 "is_confirmed": false,
 "is_cancelled": false,
 "created_by": 3,
 "updated_by": 3,
 "facility": "cc585b49-dc42-47a3-a08a-7f2c39633393",
 "facility_type": "57a0351b-accd-4ccf-b19f-38920ea78e75"
 }
]
}

	Expected Response code:

	HTTP 200 OK

Listing all the facilties whose upgrades and downgrades have been declined:
GET the URL /api/facilities/facility_upgrade/?is_cacelled=true

The resulting payload and expected response code are similar the ones above

Listing all the the Upgrades/Downgrades of a facility

GET the URL /api/facilities/facility_upgrade/?facility=<id>

For example a get to the URL
api/facilities/facility_upgrade/?facility=cc585b49-dc42-47a3-a08a-7f2c3963339311
results in the data shown below and the a response code of HTTTP 200 OK

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 {
 "id": "70610b2b-ddd8-49b4-8594-52c236a834d2",
 "created": "2015-05-21T15:37:56.240505Z",
 "updated": "2015-05-21T15:37:56.240522Z",
 "deleted": false,
 "active": true,
 "search": null,
 "reason": "A good reason for the upgrade",
 "is_confirmed": true,
 "is_cancelled": true,
 "created_by": 3,
 "updated_by": 3,
 "facility": "cc585b49-dc42-47a3-a08a-7f2c39633393",
 "facility_type": "57a0351b-accd-4ccf-b19f-38920ea78e75"
 }
]
}

Community Health Units

This chapter assumes that the reader is familiar with the general
principles explained in the Using the API - basic principles chapter.

Kenya’s community health strategy relies on community health workers for
outreach at the lowest levels (embedded into communities). These workers are
organized into community health units. The second edition of the Master
Facilities List provides APIs for the management of community health units.

This chapter concerns itself with the resources that model community health
units and link them to facilities.

Note

Community health units are an extension of the Master Facilities List. A
community health unit is a health service delivery structure within a
defined geographic area covering a population of approximately 5,000
people.

Each unit is assigned 2 Community Health Extension Workers (CHEWs) and community health volunteers who offer promotie, preventative and basic
curative services.

Each unit is governed by a Community Health Committee (CHC) and is
linked to a specific health facility.

The role of a community health unit is to bring services closer to the
people that need them. Those services include:

	Water and sanitation hygiene; e.g. Faecal management, Household water treatment and demonstrations on hand washing with soap, etc.

	Advice on maternal and child health e.g. Immunization, Individual birth plan, etc.

	Provision of Family planning commodities.

	Growth monitoring for children under 5 years.

	Deworming of children.

	Provision of Long Lasting Insecticide Treated Nets (LLITNs).

	Management of diarrhea, injuries, wounds, jiggers and other minor illnesses.

	Provision of Information, Education & Communication (IEC) materials

	Defaulter tracing (ART, TB and Immunization)

	Referrals to health facilities

	First Aid Services

The implementation of community health units in this API is semi-independent.
The units connect to the rest of MFL at only one point - their linkage to
facilities.

Community Health Unit Approvers

The community health approvers resource holds the details of entities that are
involved in approval of community health units.

The known approvers can be listed by issuing a GET to /api/chul/approvers/. To register a new approving entity, you need to supply a
name, description and abbreviation. The following example
illustrates that:

{
 "name": "Division of Community Health Services",
 "description": "Division of Community Health Services, Ministry of Health",
 "abbreviation": "DCHS"
}

Community Health Unit Statuses

The community health unit statuses that are known / available can be listed at
/api/chul/statuses/ via GET. These will be used to mark the current
status of a community health unit, and when analysing the status of registered
community health units.

To create a new status, you need to POST a name and a description.
Here is an example payload:

{
 "name": "ACTIVE",
 "description": "Actively Deployed"
}

Note

This reflects the operational status of the Community Health Unit.

Community Health Units

Community health units can be listed via GET to /api/chul/units/.

To add a new community health unit, POST to /api/chul/units/, POST
a payload that has a name, facility and status. For the facility
and status, the id s are sent (foreign keys).

For example:

{
 "name": "Gachie Health Unit",
 "facility": "2927d31f-b1a0-4d17-93b0-ea648af7b9f0",
 "status": "0e2ba3fc-9c81-4c30-b52e-b62664462cb7"
}

Note

The community health unit code is auto-assigned. Immediately after
creating the facility record, the code (and other auto-assigned fields)
will be inserted in the response.

Community Health Unit Contacts

A community health unit may be linked to zero or more contacts. The contacts
will have been created at /api/common/contacts/ using APIs that are
discussed in the Metadata resources chapter.

Community health unit contacts can be listed and created at
/api/common/contacts/. To list a community health unit to a contact,
POST to that endpoint the id of the contact and the id of the
community health unit. The example payload below illustrates that:

{
 "health_unit": "2d425ab7-0002-4b95-9cd1-638972efb75d",
 "contact": "7dd62ab9-94c2-48d6-a10f-d903bd57acd5"
}

Community Health Unit Approvals

The approval status of community health units is listed / maintained at
/api/chul/unit_approvals/.

To record a new approval, you should supply a comment, approval_date,
approver, approval_status and health_unit.

The approver is the id of an approver registered at
/api/chul/approvers/. The approval_status is the id of an
approval status registered at /api/chul/approval_statuses/.
The health_unit is the id of a community health unit registered at
/api/chul/units/. The comment is a free-text explanation, while the
approval_date is an ISO 8601 date (not datetime) string that
represents the date when the approval occured.

The following example is a valid POST payload:

{
 "comment": "For documentation / training purposes",
 "approval_date": "2015-05-09",
 "approver": "02b610c1-067f-4e0c-9bad-31cc029f6ee3",
 "approval_status": "44c2abfd-3944-484f-ae4c-b30778e25398",
 "health_unit": "96645d26-8e4e-4078-9e10-a5176f5432df"
}

Note

This reflects the approval status of the Community Health Unit.

Community Health Workers

Community health workers are attached to community health units. They are
listed and maintained at /api/chul/workers/.

When registering a new community health worker, supply a first_name,
last_name, surname, id_number and health_unit. The
health_unit is the id of the community health unit that the worker
is attached to, and can be retrieved from /api/chul/units/.

{
 "first_name": "Does",
 "last_name": "Not",
 "surname": "Exist",
 "id_number": 545432,
 "health_unit": "96645d26-8e4e-4078-9e10-a5176f5432df"
}

Community Health Workers Contacts

A community health worker can be linked to a contact that has already been
registered at /api/common/contacts/ by POST ing to
/api/chul/workers_contacts/ the id of the worker and the id of the
contact.

For example:

{
 "health_worker": "db04b653-b0f7-434f-a224-3ea4d93b69c1",
 "contact": "2d04afdc-46a8-4b11-85b8-63f5c035366f"
}

Community Health Workers Approvals

The approval status of community health workers is maintained at
/api/chul/worker_approvals/.

The key pieces of information to maintain about each approval are
the approver (an id of an approver registered at
/api/chul/approvers/), approval_status (id of an
approval status registered at /api/chul/approval_statuses/)
and health_worker (id of a health worker registered at
/api/chul/workers/) and a free-form comment.

The example below is a valid POST payload:

{
 "approver": "02b610c1-067f-4e0c-9bad-31cc029f6ee3",
 "approval_status": "44c2abfd-3944-484f-ae4c-b30778e25398",
 "health_worker": "db04b653-b0f7-434f-a224-3ea4d93b69c1",
 "comment": "Documentation example"
}

Regulation

This chapter assumes that the reader is familiar with the general
principles explained in the Using the API - basic principles chapter.

Every healthcare facility falls under the regulatory scope of at least one
regulator. For example - at the time of writing, most healthcare facilities
are licensed by the Kenya Medical Practitioners and Dentists Board.

Regulators have their own information systems. The MFL provides APIs that can
facilitate two way data flow between the regulators’ systems and the Master
Facilities List.

	For regulation of facilities to occur in the system two entities are required:

	
	The regulating body

	The regulation status

Regulatory Bodies

These are the bodies that are in-charge of assessing whether a facility should be licensed, gazetted or registered.
They also determine the KEPH level of operation of a facility.

Creation

POST to /api/facilities/regulating_bodies/ a payload similar to the one shown below:

{
 "name": "Kenya Medical Practitioners Pharmacists and Dentists Board",
 "abbreviation": "KMPPDB",
 "regulation_verb": "license", // e .g gazette license register
 "regulatory_body_type": "d195219b-7b5b-4395-889b-3dbcb7bfccf6" // this is the id of the owner type of facilities they regulate
}

	Expected Response code

	HTTP 201 CREATED

Sample response data:

{
 "id": "fbb96308-454f-4d1d-9ca4-597018d460b7",
 "created": "2015-05-08T16:24:09.552222Z",
 "updated": "2015-05-08T16:24:09.552245Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Kenya Medical Practitioners Pharmacists and Dentists Board",
 "abbreviation": "KMPDB",
 "regulation_verb": "license",
 "created_by": 3,
 "updated_by": 3,
 "regulatory_body_type": null,
 "contacts": []
}

Updating

Do a PATCH to /api/facilities/regulating_bodies/<id> with a payload containing only the fields that are to be modified.

For example:

{
 "name": "Kenya Medical Practitioners Pharmacists and Dentists Board"
}

	Expected HTTP Response code

	HTTP 200 OK

Sample response data:

{
 "id": "fbb96308-454f-4d1d-9ca4-597018d460b7",
 "created": "2015-05-08T16:24:09.552222Z",
 "updated": "2015-05-08T16:24:09.552245Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Kenya Medical Practitioners Pharmacists and Dentists Board edited",
 "abbreviation": "KMPPDB",
 "regulation_verb": "license",
 "created_by": 3,
 "updated_by": 3,
 "regulatory_body_type": null,
 "contacts": []
}

Listing

Do a GET the /api/facilities/regulating_bodies/

Below is a sample response data from the endpoint:

{
 "count": 2,
 "next": null,
 "previous": null,
 "results": [
 {
 "id": "bdc6d243-af73-438f-be01-224f621bf538",
 "created": "2015-05-08T15:58:18.351751Z",
 "updated": "2015-05-08T15:58:18.351772Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Pharmacy & Poisons Board",
 "abbreviation": "Pharmacy & Poisons Board",
 "regulation_verb": "Licensing",
 "created_by": 1,
 "updated_by": 1,
 "regulatory_body_type": null,
 "contacts": []
 },
 {
 "id": "5a797ac9-dbbb-4579-b2c3-dee80c2ae43b",
 "created": "2015-05-08T15:58:18.346141Z",
 "updated": "2015-05-08T15:58:18.346164Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Clinical Officers Council",
 "abbreviation": "COC",
 "regulation_verb": "Licensing",
 "created_by": 1,
 "updated_by": 1,
 "regulatory_body_type": null,
 "contacts": []
 }
]
}

Retrieving

To retrieve a single regulatory body do a GET to the url api/facilities/regulating_bodies/<id>/
Id being the id of the regulatory body. The response data will be similar to the data shown below:

{
 "id": "bdc6d243-af73-438f-be01-224f621bf538",
 "created": "2015-05-08T15:58:18.351751Z",
 "updated": "2015-05-08T15:58:18.351772Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Pharmacy & Poisons Board",
 "abbreviation": "Pharmacy & Poisons Board",
 "regulation_verb": "Licensing",
 "created_by": 1,
 "updated_by": 1,
 "regulatory_body_type": null,
 "contacts": []
}

Regulatory Statuses

A regulation state is a state in which the facility will be after the regulator has assessed a facility’s suitability for that state.

	The default states are as provided in the implementation guide.

	
	PENDING_LICENSING

	LICENSED

	LICENSE_SUSPENDED

	LICENSE_CANCELLED

	PENDING_REGISTRATION

	REGISTERED

	PENDING_GAZETTEMENT

	GAZETTED

Listing

Do a GET to the url api/facilities/regulation_status/
Example response

{
 "count": 2,
 "next": null,
 "previous": null,
 "results": [
 {
 "id": "d195219b-7b5b-4395-889b-3dbcb7bfccf6",
 "next_state_name": "",
 "previous_state_name": "Pending Registration",
 "created": "2015-05-08T10:00:48.608555Z",
 "updated": "2015-05-08T10:00:48.608572Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Registered",
 "description": null,
 "is_initial_state": false,
 "is_final_state": false,
 "created_by": 1,
 "updated_by": 1,
 "previous_status": "1390d5c3-9226-44a0-b464-13d17fed2b41",
 "next_status": null
 },
 {
 "id": "5287dbfc-e2c0-410f-80e3-7ec20ac4dc79",
 "next_state_name": "",
 "previous_state_name": "Pending Gazettment",
 "created": "2015-05-08T10:00:48.601773Z",
 "updated": "2015-05-08T10:00:48.601808Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Gazettment",
 "description": null,
 "is_initial_state": false,
 "is_final_state": true,
 "created_by": 1,
 "updated_by": 1,
 "previous_status": "06d215ec-4a8c-469f-88df-028e597a348d",
 "next_status": null
 }
]
}

Creation

Creating a regulation status requires one to know the entire regulation workflow of a facility from the first state to the last state.
This is so since as one configures a state they have to know whether it is the initial state, the final state or an intermediary state.

This section will be divided into 3 parts.

1. Creating an initial state

To create the very first regulation state. To create it do a POST to the api/facilities/regulation_status/ with the similar to the one shown below.

{
 "name": "PENDING_LICENSING",
 "description": "This is the very first state after a facility has been approved by the CHRIO",
 "is_initial_state": true,

}

	Expected response code.

	HTTP 201 CREATED

Sample Response data:

{
 "id": "698e1e45-0ab7-466f-a449-9091036cfa31",
 "next_state_name": "Pending Licensing",
 "previous_state_name": "Pending Licensing",
 "created": "2015-05-08T16:17:32.016528Z",
 "updated": "2015-05-08T16:17:32.016543Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "PENDING_LICENSING",
 "description": "This is the very first state after a facility has been approved by the CHRIO",
 "is_initial_state": false,
 "is_final_state": true,
 "created_by": 3,
 "updated_by": 3,
 "previous_status": "1938861f-2c34-49c5-808f-caa0ed1c3681",
 "next_status": "1938861f-2c34-49c5-808f-caa0ed1c3681"
}

2. Creating a final State

Creating a final state is very similar to creating an initial state.

POST to /api/facilities/regulation_status/
The only change will be to substitute the is_initial_state with is_final_state and add a previous_state to the sample payload.

{
 "name": "LICENSED",
 "description": "This is the final state after a facility has been given a license by the regulating body",
 "is_final_state": true,
 'previous_state': "1938861f-2c34-49c5-808f-caa0ed1c3681" // id of the preceding state
}

	Expected response code:

	HTTP 201 CREATED

Sample Response data:

{
 "id": "698e1e45-0ab7-466f-a449-9091036cfa31",
 "next_state_name": "Pending Licensing",
 "previous_state_name": "Pending Licensing",
 "created": "2015-05-08T16:17:32.016528Z",
 "updated": "2015-05-08T16:17:32.016543Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "LICENSED",
 "description": "This is the final state after a facility has been given a license by the regulating body",
 "is_initial_state": false,
 "is_final_state": true,
 "created_by": 3,
 "updated_by": 3,
 "previous_status": "1938861f-2c34-49c5-808f-caa0ed1c3681",
 "next_status": "1938861f-2c34-49c5-808f-caa0ed1c3681"
}

3. Creating an intermediary State.

An intermediary should have a preceding and succeeding state.
Here is an example:

POST to /api/facilities/regulation_status/

{
 "name": "INTERMEDIARY_STATE",
 "description": "This is the state in-between state 1 and state 3",
 "previous_status": "1938861f-2c34-49c5-808f-caa0ed1c3681" // id of the preceding state ,
 "next_status": "1938861f-2c34-49c5-808f-caa0ed1c3681" // id of the suceeding state
}

	Expected response

	HTTP 201 CREATED

sample Reponse data:

{
 "id": "698e1e45-0ab7-466f-a449-9091036cfa31",
 "next_state_name": "Pending Licensing",
 "previous_state_name": "Pending Licensing",
 "created": "2015-05-08T16:17:32.016528Z",
 "updated": "2015-05-08T16:17:32.016543Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "INTERMEDIARY_STATE",
 "description": "This is the state in-between state 1 and state 3",
 "is_initial_state": false,
 "is_final_state": false,
 "created_by": 3,
 "updated_by": 3,
 "previous_status": "1938861f-2c34-49c5-808f-caa0ed1c3681",
 "next_status": "1938861f-2c34-49c5-808f-caa0ed1c3681"
}

Retrieving a single regulatory state

Do a GET to the url /api/facilities/regulation_status/<id> where id is the id of the regulatory state.

{
 "id": "d195219b-7b5b-4395-889b-3dbcb7bfccf6",
 "next_state_name": "",
 "previous_state_name": "Pending Registration",
 "created": "2015-05-08T10:00:48.608555Z",
 "updated": "2015-05-08T10:00:48.608572Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Registered",
 "description": null,
 "is_initial_state": false,
 "is_final_state": false,
 "created_by": 1,
 "updated_by": 1,
 "previous_status": "1390d5c3-9226-44a0-b464-13d17fed2b41",
 "next_status": null
}

	Expected Response

	HTTP 200 OK

Updating a regulatory state

Do a PATCH to /api/facilities/regulation_status/<id>/ with the payload being the fields to update.
Here is a sample payload

{

 "name": "Registered Edited"
}

The above payload will update the details of the state whose id is the url.

	Expected Response code:

	HTTP 200 OK

Sample Response data:

{
 "id": "d195219b-7b5b-4395-889b-3dbcb7bfccf6",
 "next_state_name": "",
 "previous_state_name": "Pending Registration",
 "created": "2015-05-08T10:00:48.608555Z",
 "updated": "2015-05-08T10:00:48.608572Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Registered Edited",
 "description": null,
 "is_initial_state": false,
 "is_final_state": false,
 "created_by": 1,
 "updated_by": 1,
 "previous_status": "1390d5c3-9226-44a0-b464-13d17fed2b41",
 "next_status": null
}

Listing Facilities pending regulation

Do a GET to the url /api/facilities/facility_regulation_status/?regulated=False
This will respond with a list of the facilities that have been modified and need to be regulated or the facilities that have been not yet been regulated.
The response data will be similar to the sample response data below:

{
"count": 1,
"next": null,
"previous": null,
"results": [
 {
 "id": "8c0964a1-b733-40e4-b0be-1874749e469b",
 "regulary_status_name": null,
 "facility_type_name": "District Hospital",
 "owner_name": "Ministry of Health",
 "owner_type_name": "Ministry of Health",
 "county": "TRANS NZOIA",
 "constituency": "ENDEBESS",
 "created": "2015-05-08T09:58:36.862227Z",
 "updated": "2015-05-08T09:58:36.862242Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Endebess District Hospital",
 "code": 14455,
 "abbreviation": "",
 "description": "",
 "location_desc": "Kitale Swam Road",
 "number_of_beds": 20,
 "number_of_cots": 8,
 "open_whole_day": true,
 "open_whole_week": true,
 "is_classified": false,
 "is_published": true,
 "is_synchronized": false,
 "created_by": 1,
 "updated_by": 1,
 "facility_type": "1d2e7d02-97e0-470b-9889-549df3ff49f8",
 "operation_status": "e865f01b-8937-40fc-a095-fbbb83c59461",
 "ward": "a4223139-30e4-4253-88fe-405a622aa2f7",
 "owner": "7506421d-7838-4eee-9a44-7c92fd76d0b9",
 "officer_in_charge": null,
 "physical_address": "3c75fb20-619d-4591-8f93-56f7493ee764",
 "parent": null,
 "contacts": []
 },
 {
 "id": "854bb94d-7a87-45c7-9243-4b9d9751a690",
 "regulary_status_name": null,
 "facility_type_name": "Health Centre",
 "owner_name": "Ministry of Health",
 "owner_type_name": "Ministry of Health",
 "county": "TRANS NZOIA",
 "constituency": "ENDEBESS",
 "created": "2015-05-08T09:58:36.849294Z",
 "updated": "2015-05-08T09:58:36.849311Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Kwanza Health Centre",
 "code": 15003,
 "abbreviation": "",
 "description": "",
 "location_desc": "",
 "number_of_beds": 18,
 "number_of_cots": 0,
 "open_whole_day": false,
 "open_whole_week": true,
 "is_classified": false,
 "is_published": true,
 "is_synchronized": false,
 "created_by": 1,
 "updated_by": 1,
 "facility_type": "3c8a65ec-8489-4483-b32b-057098a9fe08",
 "operation_status": "e865f01b-8937-40fc-a095-fbbb83c59461",
 "ward": "4e203a27-8c37-468e-8b39-407193a6d862",
 "owner": "7506421d-7838-4eee-9a44-7c92fd76d0b9",
 "officer_in_charge": null,
 "physical_address": "3c75fb20-619d-4591-8f93-56f7493ee764",
 "parent": null,
 "contacts": []
 }
]
}

Regulate a facility

POST to /api/facilities/facility_regulation_status/ a payload similar to the one shown below:

{

 "reason": "The facility has met all the requirements",
 "license_number": "F135/2015",
 "facility": "d0cf7632-2854-464f-8638-03d1c021f519",
 "regulating_body": "ed3ac8af-c1a7-42f4-9f0d-a9c5e4cf3c13",
 "regulation_status": "5287dbfc-e2c0-410f-80e3-7ec20ac4dc79"
}

	Expected Reponse Code

	HTTP 201 Created

Sample Reponse data:

{
 "id": "594f7bd1-ce6b-4a6d-82c2-523b1710ec31",
 "created": "2015-05-08T16:10:22.604609Z",
 "updated": "2015-05-08T16:10:22.604631Z",
 "deleted": false,
 "active": true,
 "search": null,
 "reason": "The facility has met all the requirements",
 "license_number": "F135/2015",
 "is_confirmed": false,
 "is_cancelled": false,
 "created_by": 3,
 "updated_by": 3,
 "facility": "d0cf7632-2854-464f-8638-03d1c021f519",
 "regulating_body": "ed3ac8af-c1a7-42f4-9f0d-a9c5e4cf3c13",
 "regulation_status": "5287dbfc-e2c0-410f-80e3-7ec20ac4dc79"
}

GIS Support

This chapter assumes that the reader is familiar with the general
principles explained in the Using the API - basic principles chapter.

The MFL 2 API server uses the excellent GeoDjango [https://docs.djangoproject.com/en/dev/ref/contrib/gis/] and PostGIS [http://postgis.net/] to provide
The service catalog that can be used to generate facility maps, perform geographic
queries and validate facility coordinate data. You can read more about this at
the GIS Support page.

What is GIS?

A geographic information system (GIS) lets us visualize, question, analyze, and interpret data to understand relationships, patterns, and trends.

Master Facility List data is inherently geographical - the Master Facility
List should have coordinates for all facilities in Kenya. The GIS APIs provided
by this server support the visualization, interogation and analysis of this
data.

Note

The official front-ends barely scratch the surface when it comes to the
use of GIS data. These APIs are open to third party applications too.

GIS data formats

There are many GIS file formats [http://en.wikipedia.org/wiki/GIS_file_formats] to choose from. We chose to go with
GeoJSON [http://geojson.org/geojson-spec.html] because it fits in with our general preference for JSON. It is easy
to convert from GeoJSON to ESRI Shapefile [http://en.wikipedia.org/wiki/Shapefile] and KML [http://en.wikipedia.org/wiki/Keyhole_Markup_Language] formats.

A brief note about points

In “day to day language”, we might be accustomed to expressing points as
(latitude, longitude) pairs e.g (-1.300462, 36.791533) for the location of
this writer’s office at the time of writing. When expressing that location as
a GeoJSON “point”, we’ll need to “flip” the coordinates, so that the GeoJSON
for this author’s office would be:

{
 type: "Point",
 coordinates: [
 36.791533,
 -1.300462
]
}

How do I move from GeoJSON to a map?

If you are building a web application, take a look at Leaflet [http://leafletjs.com/] and
OpenLayers [http://openlayers.org/].

If you are working on a mobile application, you could take a look at the
Google Maps API [https://developers.google.com/maps/] or its competitors e.g Bing Maps.

If you are working on on a desktop application, we assume that you know what
you are doing and do not need any helpful pointers.

Administrative units

Kenya has a three tier administrative structure: the country has 47
counties. Each county has a number of constituencies, with the total
for the country being 290 constituencies. Each constituency has a number of
wards, with the total for the country being 1450 wards. The GIS enabled APIs
follow this administrative structure.

Note

This server also has resources that contain country boundaries. The
default distribution has data from the World Borders Dataset (from
http://thematicmapping.org/).

We have not documented the country boundary APIs for the following reasons:

	The county, constituency and ward boundary APIs meet all of the Kenyan MFL needs.

	The borders in the World Borders Dataset are inaccurate - sometimes lopping off several square kilometers around the borders.

Note

The default distribution has map (boundary) data for 1482 out of 1450
wards.

The administrative unit data is considered “setup data” - loaded at
server install time, rarely changed afterward. For that reason, the
documentation will focus on retrieval and interpretation. If you need to change
or add, the basic principles explained in the Using the API - basic principles chapter still
apply.

Counties

Counties can be listed by sending a GET to /api/common/counties/.
Every county is identified by a name and code.

An individual county’s detail record is available at
/api/common/counties/<pk>/ e.g
/api/common/counties/dd999449-d36b-47f2-a958-1f5bb52951d4/ for the county
whose id is dd999449-d36b-47f2-a958-1f5bb52951d4.

Note

The county detail view is “rich”. It embeds a facility_coordinates key
that shows the location of every facility in that county.

The facility co-ordinates are a map, with the facility names as keys.
For example:

facility_coordinates: {
 AAR Gwh Health Care Ltd: {
 type: "Point",
 coordinates: [
 36.80897,
 -1.29467
]
 },
 Dr Musili Clinic (Afya Centre-Nairobi): {
 type: "Point",
 coordinates: [
 36.82763,
 -1.28799
]
 },
 // truncated for brevity

The county detail view also embeds within itself the appropriate
county_boundary. The contents of this will be discussed in the next
section.

County Boundaries

County boundaries can be listed at /api/gis/county_boundaries/. The list
view is a GeoJSON “FeatureCollection”, while the detail view is a GeoJSON
“Feature”.

Note

The border (polygon) is under the geometry key for every feature.

Every boundary (feature) serialization has the following fields:

	center - a Point that represents the geometric centre of the area

	facility_count - the number of facilities in that geographic area

	density - a synthetic value (roughly comparable to facilities per square kilometer, although it is not actually facilities / sq.km). This is used by front-end clients to color-code maps.

	constituency_ids - a list of the id s (primary keys) of the constituencies under that county. These can be appended to the /api/common/constituencies/ endpoint i.e /api/constituencies/<id>/ in order to retrieve the details of each constituency in the county.

	constituency_boundary_ids - a list of the id s of the constituency boundary objects for the constituencies under the county in question. These can be used to retrieve the constituency boundaries at /api/gis/constituency_boundaries/<pk>/.

Constituencies

Constituencies can be listed by sending a GET to
/api/common/constituencies/. Every constituency is identified by a
name and a code.

Note

The constituency detail view is, like the county detail view, “rich”.
It embeds facility_coordinates and the relevant
constituency_boundary.

Constituency Boundaries

Constituency boundaries can be listed at /api/gis/constituency_boundaries/.
The output is similar to that of the county boundary endpoints, with the
following differences: it embeds ward_ids instead of constituency_ids
and ward_boundary_ids instead of constituency_boundary_ids.

Wards

Wards can be listed by sending a GET to /api/common/wards/. Every ward
is identified by a name and a code.

Note

The ward detail view is, like the county and constituency detail views,
“rich”. It embeds facility_coordinates and the relevant
ward_boundary.

Ward Boundaries

Ward boundaries can be listed at /api/gis/ward_boundaries/.
The output is similar to that of the county boundary endpoints, with the
following differences: as the smallest administrative unit, a ward does not
embed the coordinates of any other administrative unit.

Lookup administrative units

It is possible to determine the location of a facility using it’s coordinates
by sending a POST to /api/mfl_gis/ikowapi/ with the longitude and latitude.

{
 "longitude": 1.3213,
 "latitude": 4.53434
}

The response, if successful, shall provide the ward, constituency and county ids and names.

{
 "ward": "<ward id>",
 "ward_name": "<ward name>",
 "ward_code": "<ward code>",
 "constituency": "<constituency id>",
 "constituency_name": "<constituency name>",
 "constituency_code": "<constituency code>",
 "county": "<id of the county>",
 "county_name": "<county name>",
 "county_code": "<county code>"
}

Facility Coordinates

The facility coordinates resources can be found at /api/gis/coordinates/.
The example below will be used to explain the format:

{
 id: "1051cac1-b6e1-46c6-8782-a182dd1a9c50",
 type: "Feature",
 geometry: {
 type: "Point",
 coordinates: [
 34.92687,
 0.88226
]
 },
 properties: {
 created: "2015-05-06T17:29:47.710254Z",
 updated: "2015-05-06T17:29:47.710266Z",
 deleted: false,
 active: true,
 search: null,
 collection_date: "2015-05-06T17:29:48.624415Z",
 created_by: 1,
 updated_by: 1,
 facility: "7f91fb27-8fa5-4160-b572-2dc0ad7a554e",
 source: "c027c6fa-19b2-4fcd-83fa-f84705be84ea",
 method: "1a3f3df8-8c18-4cac-89cc-93dc59a0e057"
 }
}

The facility’s location is the geometry Point. The facility in
question is identified by the facility property, which contains a
facility primary key that can be used to retrieve the facilities from
/api/facilities/facilities/<pk>/ e.g.
/api/facilities/facilities/7f91fb27-8fa5-4160-b572-2dc0ad7a554e/ for
the example above.

To set up new facility coordinates, POST to /api/gis/coordinates/
a payload similar to the example below:

{
 "coordinates": {
 "type": "Point",
 "coordinates": [
 34.96962,
 0.45577
]
 },
 "facility": "be6ca131-5767-45b2-8213-104214becdd3",
 "source": "c027c6fa-19b2-4fcd-83fa-f84705be84ea",
 "method": "cd0bbbcf-60fa-4b76-b48c-5dcda414b43d"
}

Every geocode is associated with a geocode source and a geocode method.
The source key in the payload above is for the geocode source while
the method key is for the geocode method.

Geocode sources are viewed/created at /api/gis/geo_code_sources/
while geocode methods are viewed/created at /api/gis/geo_code_methods/.
Both take a name and a description.

Workflow

MFL API v2 is a liberally licensed (MIT [http://choosealicense.com/licenses/mit/] license) project. All development
occurs in the open on the MFL API Github project [https://github.com/MasterFacilityList/mfl_api]. We use the
MFL API Github issue list [https://github.com/MasterFacilityList/mfl_api/issues] to manage bug reports and enhancement requests.

This project uses the GitFlow Workflow [https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow].

In summary:

	all work should occur in feature branches

	the target for pull requests is the develop branch

	the release manager (presently @ngurenyaga [https://github.com/ngurenyaga]) will periodically create release branches that ultimately get merged into master and tagged

	fixes on released versions will occur in hotfix branches

We adhere to semantic versioning - https://semver.org .

In order to deploy a new version, you will need to have a $HOME/.pypirc
that has the correct pypi credentials. The command to deploy is fab deploy.
The credentials are not stored on GitHub - for obvious reasons.

Contributors’ code of conduct

We have an open-door policy when it comes to contributions. At the same time,
we’d like to build a friendly community up around the MFL project, and to be
good citizens of the open source clinical informatics landscape.

This project welcomes input - which could be code, but also documentation,
training, support on adoption, bug reports and feature requests.

Our code of conduct is based on the Django Code of Conduct [https://www.djangoproject.com/conduct/]. The important
parts are reproduced below:

	Be friendly and patient.

	Be welcoming. We strive to be a community that welcomes and supports people of all backgrounds and identities. This includes, but is not limited to members of any race, ethnicity, culture, national origin, colour, immigration status, social and economic class, educational level, sex, sexual orientation, gender identity and expression, age, size, family status, political belief, religion, and mental and physical ability.

	Be considerate. Your work will be used by other people, and you in turn will depend on the work of others. Any decision you take will affect users and colleagues, and you should take those consequences into account when making decisions. Remember that we’re a world-wide community, so you might not be communicating in someone else’s primary language.

	Be respectful. Not all of us will agree all the time, but disagreement is no excuse for poor behavior and poor manners. We might all experience some frustration now and then, but we cannot allow that frustration to turn into a personal attack. It’s important to remember that a community where people feel uncomfortable or threatened is not a productive one. Members of the Django community should be respectful when dealing with other members as well as with people outside the Django community.

	Be careful in the words that you choose. We are a community of professionals, and we conduct ourselves professionally. Be kind to others. Do not insult or put down other participants. Harassment and other exclusionary behavior aren’t acceptable. This includes, but is not limited to:

	Violent threats or language directed against another person.

	Discriminatory jokes and language.

	Posting sexually explicit or violent material.

	Posting (or threatening to post) other people’s personally identifying information (“doxing”).

	Personal insults, especially those using racist or sexist terms.

	Unwelcome sexual attention.

	Advocating for, or encouraging, any of the above behavior.

	Repeated harassment of others. In general, if someone asks you to stop, then stop.

	When we disagree, try to understand why. Disagreements, both social and technical, happen all the time and Django is no exception. It is important that we resolve disagreements and differing views constructively. Remember that we’re different. The strength of Django comes from its varied community, people from a wide range of backgrounds. Different people have different perspectives on issues. Being unable to understand why someone holds a viewpoint doesn’t mean that they’re wrong. Don’t forget that it is human to err and blaming each other doesn’t get us anywhere, rather offer to help resolving issues and to help learn from mistakes.

Regulator Synchronization

	Regulator synchronization is divided into two sections:

	
	Part 1: Attached Facilities Synchronization

	Part 2: Stand Alone Facilities Synchronization

Part 1: Attached Facilities Synchronization

Attached facilities are those facilities that offer specialized health services
such as pharmaceutical services, laboratory services, opthalmology services, physiotherapy
services etc besides offering other general health services.

This is for Attached facilities that are initially created in the RHRIS system and
do not have a master facility code assigned to them.
This endpoint provides a way to enable the regulatory system to notify
the master facility list(MFL) that there are facilities that have
been registered and they are not in the MFL. After which the concerned officer (CHRIO)
can ensure that the facilities are registered with the MFL.

The synchronization process:

The regulator synchronization resource has the following important fields:

	Field
	Required
	Explanation

	Name
	Yes
	This is the name of the facility

	Regisration_number
	Yes
	This the registration number as assigned by the regulator

	County
	Yes
	This is the code of the county where the facility is located

	Owner
	Yes
	The id of the owner as the per the MFL

	Facility_type
	Yes
	The id of the facility type as per the MFL

	Mfl_code
	No
	The mfl code assigned to the facility once it is created in MFL

Obtaining the owner’s ids

The owner’s ids can be obtained by doing a GET to the URL api/facilities/owners/

Sample Expected Result:

{
 "count": 30,
 "next": null,
 "previous": null,
 "page_size": 30,
 "current_page": 1,
 "total_pages": 1,
 "start_index": 1,
 "end_index": 30,
 "results": [
 {
 "id": "aa1aca14-2937-4b49-b1a5-3c1ce05895ae",
 "owner_type_name": "Faith Based Organization",
 "created": "2015-09-23T13:16:13.988038Z",
 "updated": "2015-09-23T13:16:13.988060Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Faith Based",
 "description": null,
 "code": 1013,
 "abbreviation": null,
 "created_by": 1,
 "updated_by": 1,
 "owner_type": "c35677b6-05a4-4233-9dfa-9544476850c4"
 },
 {
 "id": "aa32ee6f-3653-4fb8-bd2e-4e59b61a952c",
 "owner_type_name": "Ministry of Health",
 "created": "2015-09-23T13:16:13.961025Z",
 "updated": "2015-09-23T13:16:13.961049Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Ministry of Health",
 "description": null,
 "code": 1010,
 "abbreviation": null,
 "created_by": 1,
 "updated_by": 1,
 "owner_type": "33ebff77-f5fc-46dd-b675-7abd56d7bfdf"
 }

]
}

	Expected Response code:

	HTTP_200_OK

Obtaining the facility type ids

The facility type’s ids can be obtained by doing a GET to the URL api/facilities/facility_types/
Sample Expected Result

{
 "count": 41,
 "next": "http://localhost:8061/api/facilities/facility_types/?page=2",
 "previous": null,
 "page_size": 30,
 "current_page": 1,
 "total_pages": 2,
 "start_index": 1,
 "end_index": 30,
 "results": [
 {
 "id": "1ce27507-9bd0-43cf-8a6f-4519a018ad27",
 "owner_type_name": null,
 "created": "2015-09-23T13:16:13.438542Z",
 "updated": "2015-09-23T13:16:13.438562Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Laboratory (Stand-alone)",
 "abbreviation": null,
 "sub_division": null,
 "created_by": 1,
 "updated_by": 1,
 "owner_type": null,
 "preceding": null
 },
 {
 "id": "f9f5bd67-b679-4711-8752-d77c2397ddc9",
 "owner_type_name": null,
 "created": "2015-09-23T13:16:13.431970Z",
 "updated": "2015-09-23T13:16:13.431993Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Hospital",
 "abbreviation": null,
 "sub_division": null,
 "created_by": 1,
 "updated_by": 1,
 "owner_type": null,
 "preceding": null
 }
]
}

Step 1

First the regulator system posts to MFL the details of the facilities
that have been created in the RHIS and are not in the MFL.
To do this do a POST to api/facilitiess/regulator_sync/ a payload similar to the one below:

{
 "name": "Mama Lucy Kibaki hospital",
 "registration_number": 100,
 "county": 47,
 "owner": "aa1aca14-2937-4b49-b1a5-3c1ce05895ae",
 "facility_type": "f9f5bd67-b679-4711-8752-d77c2397ddc9"
}

Sample Expected Response:

{
 "id": "817c8a79-a3e5-46b1-aba5-4cb4de78a5da",
 "county_name": "NAIROBI",
 "owner_name": "Other Faith Based",
 "facility_type_name": "Hospital",
 "created": "2015-09-26T09:38:12.801942Z",
 "updated": "2015-09-26T09:38:12.801959Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Mama Lucy Kibaki hospital",
 "registration_number": "100",
 "county": 47,
 "mfl_code": null,
 "created_by": 4,
 "updated_by": 4,
 "facility_type": "f9f5bd67-b679-4711-8752-d77c2397ddc9",
 "owner": "aa1aca14-2937-4b49-b1a5-3c1ce05895ae"
}

Expected Response Code:

HTTP_201_CREATED

Step 2

Once a facility synchronization has been initiated, the request to register a facility will appear on the concerned CHRIO’s dashboard.
On registration of the facility with the MFL the mfl_code will be field and the RHRIS can now pull and get a facility’s mfl_code.

Listing of synchronized facilities

To list the facilities requested do a GET to the URL api/facilities/regulator_sync/

Sample Expected Result:

{
 "count": 3,
 "next": null,
 "previous": null,
 "page_size": 30,
 "current_page": 1,
 "total_pages": 1,
 "start_index": 1,
 "end_index": 3,
 "results": [
 {
 "id": "817c8a79-a3e5-46b1-aba5-4cb4de78a5da",
 "county_name": "NAIROBI",
 "owner_name": "Other Faith Based",
 "facility_type_name": "Hospital",
 "created": "2015-09-26T09:38:12.801942Z",
 "updated": "2015-09-26T09:38:12.801959Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Mama Lucy Kibaki hospital",
 "registration_number": "100",
 "county": 47,
 "mfl_code": null,
 "created_by": 4,
 "updated_by": 4,
 "facility_type": "f9f5bd67-b679-4711-8752-d77c2397ddc9",
 "owner": "aa1aca14-2937-4b49-b1a5-3c1ce05895ae"
 },
 {
 "id": "94e91d84-6f73-48c1-855e-5a9539845971",
 "county_name": "GARISSA",
 "owner_name": "Private Practice - Medical Specialist",
 "facility_type_name": "Sub-District Hospital",
 "created": "2015-09-25T10:08:05.715148Z",
 "updated": "2015-09-25T10:08:05.715194Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Kamau Kiarie",
 "registration_number": "14535",
 "county": 7,
 "mfl_code": null,
 "created_by": 1,
 "updated_by": 1,
 "facility_type": "8b3b71b8-23ae-48a5-b7ee-e5078794c6c7",
 "owner": "a164b5bf-8caa-4558-9ba5-a77c87363b3d"
 },
 {
 "id": "f827f31d-aed0-4d63-90ad-7320769e4638",
 "county_name": "TAITA TAVETA",
 "owner_name": "Private Practice - Medical Specialist",
 "facility_type_name": "Sub-District Hospital",
 "created": "2015-09-25T10:07:54.192779Z",
 "updated": "2015-09-25T10:07:54.192817Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Mama Lucy",
 "registration_number": "14535",
 "county": 6,
 "mfl_code": null,
 "created_by": 1,
 "updated_by": 1,
 "facility_type": "8b3b71b8-23ae-48a5-b7ee-e5078794c6c7",
 "owner": "a164b5bf-8caa-4558-9ba5-a77c87363b3d"
 }
]
}

Part 2: Stand Alone Facilities Synchronization

Stand alone facilities are those facilities that offer only one specialized health care service.
e.g laboratories, pharmacies, blood bank centers etc.

Synchronization process

Stand alone facilities such as pharmacies are registered in the regulator systems and are inspected
and they start operating.
On final inspection, the facilities are pushed to MFL via the API:

Pushing a Facility Basic Details

To push the details to MFL POST to api/facilities/facilities/ a payload similar to the one below:

 {
 "owner": "af7f2be2-3454-4ba8-ae01-d24c05cfb382",
 "name": "Rehema Pharmacy (Bahati)",
 "official_name": "Rehema Pharmacy",
 "registration_number": "PBB 12444",
 "open_whole_day": true,
 "open_public_holidays": false,
 "open_weekends": true,
 "open_late_night": false,
 "plot_number": "LR/14414/KEN",
 "location_desc": "Along Chiefs Road",
 "facility_type": "6bbfc198-23f0-4310-9170-24ac05e2e49e",
 "operation_status": "3f5634c7-5a47-4e1d-b2f5-8e9b2308acf0",
 "ward": "b530b7ed-a110-431f-9a19-847eb706792d",
 "regulatory_body": "e4ae432e-8a0a-402c-ab6c-1c9033102bb5",
 "town": "ee724c13-abfe-44cb-98ce-9ec36a1e97a9"
}

The fields in the payload are explained below:

	Field
	Required
	Explanation

	name
	Yes
	This is the unique name of a facility e.g Agha Khan Medical Centre(Mombasa)

	official_name
	Yes
	This is the name of the facility e.g Agha Khan medical centre

	open_whole_day
	No
	Indicates whether a facility is open 24 hours a day

	open_public_holidays
	No
	Indicates whether a facility is open on public holidays

	open_late_night
	No
	Indicates whether a facility is open late night

	open_weekends
	No
	Indicates whether a facility is open on weekends

	plot_mumber
	No
	The plot number of where the facility is located

	location_desc
	No
	A description on how to access the facility e.g which road to use

	facility_type
	Yes
	This is the type of the facility <id> of the facility type e.f pharmacy

	operation_status
	Yes
	The operation status id e.g Operation Status Id

	ward
	Yes
	The ward ID of where the facility is located

	regulatory_body
	Yes
	The regulatory body ID of the facility e.g Pharmacy and Poisons Board id

	town
	No
	The id of the town or health centre where the facility is located

	registration_number
	Yes
	This the registration number as assigned by the regulator

	owner
	Yes
	The id of the owner as the per the MFL

Sample Expected Response:

{
 "id": "da3c4efe-57df-4d65-aa29-b6eb6719e469",
 "regulatory_status_name": "Pending License",
 "facility_type_name": "Pharmacy",
 "owner_name": "Private Practice - Unspecified",
 "owner_type_name": "Private Institutions and Private Practice",
 "owner_type": "2b8b031e-8d5a-47eb-b89c-a63d11e2b70a",
 "operation_status_name": "Operational",
 "county": "NAIROBI",
 "constituency": "MATHARE",
 "ward_name": "KIAMAIKO",
 "average_rating": 0,
 "facility_services": [],
 "is_approved": null,
 "has_edits": false,
 "latest_update": null,
 "regulatory_body_name": "Pharmacy & Poisons Board",
 "owner": "af7f2be2-3454-4ba8-ae01-d24c05cfb382",
 "date_requested": "2015-11-10T10:27:53.932Z",
 "date_approved": null,
 "latest_approval_or_rejection": null,
 "sub_county_name": null,
 "created": "2015-11-10T10:27:53.932878Z",
 "updated": "2015-11-10T10:27:53.932886Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Rehema Pharmacy (Bahati)",
 "official_name": "Rehema Pharmacy",
 "code": 100000,
 "registration_number": "PBB 12444",
 "abbreviation": null,
 "description": null,
 "number_of_beds": 0,
 "number_of_cots": 0,
 "open_whole_day": true,
 "open_public_holidays": false,
 "open_weekends": true,
 "open_late_night": false,
 "is_classified": false,
 "is_published": false,
 "attributes": null,
 "regulated": false,
 "approved": false,
 "rejected": false,
 "bank_name": null,
 "branch_name": null,
 "bank_account": null,
 "facility_catchment_population": null,
 "nearest_landmark": null,
 "plot_number": "LR/14414/KEN",
 "location_desc": "Along Chiefs Road",
 "closed": false,
 "closed_date": null,
 "closing_reason": null,
 "created_by": 4,
 "updated_by": 4,
 "facility_type": "6bbfc198-23f0-4310-9170-24ac05e2e49e",
 "operation_status": "3f5634c7-5a47-4e1d-b2f5-8e9b2308acf0",
 "ward": "b530b7ed-a110-431f-9a19-847eb706792d",
 "parent": null,
 "regulatory_body": "e4ae432e-8a0a-402c-ab6c-1c9033102bb5",
 "keph_level": null,
 "sub_county": null,
 "town": "ee724c13-abfe-44cb-98ce-9ec36a1e97a9",
 "contacts": []
}

Note

The MFL code assigned to the facility is in the response data (The field is code).

Expected Response Code:

HTTP_201_CREATED

It is clear that there is data that needs to be mapped between MFL and the regulators in order for this work.

	The data includes:

	
	Wards

	Owners

	Operation status

	Facility types

	Regulatory Bodies

	Towns

All the above data is explained under the Metadata resources section of the documentation.

Pushing a Facility Geo-location Details

To push the geo-location details of a facility do a POST to the URL api/gis/facility_coordinates/
with a payload similar to the one
shown below:

{
 "source":"da488b76-2581-40d5-9377-3550e28cfb77", // The id of the source of the geo-code
 "method":"4e1f460f-db3e-4e67-a906-2afc789f8f3a", // The id of the method used to obtain the geo-code
 "collection_date":"2015-10-31T21:00:00.000Z", //Date when the geocode was obtained
 "facility":"da3c4efe-57df-4d65-aa29-b6eb6719e469", // The facility id to which the geo-code belongs

 "coordinates": {
 "type":"Point",
 "coordinates":[

 36.87593521921288, // longitude
 -1.254507474965246 // latitude

]

 }

}

	Expected Response Code

	HTTP_201_CREATED

Sample Expected Response

{
 "id":"c0d862d4-aa86-4cf0-9f10-8ec83b764321",
 "source_name":"DHMT Nakuru","method_name":"Taken with GPS Device",
 "created":"2015-11-10T10:45:01.731129Z",
 "updated":"2015-11-10T10:45:01.731141Z","deleted":false,
 "active":true,"search":null,

 "coordinates":{
 "type":"Point",
 "coordinates":[

 36.87593521921288,
 -1.254507474965246

]

 },

 "collection_date":"2015-10-31T21:00:00Z",
 "created_by":13,
 "updated_by":13,
 "facility":"da3c4efe-57df-4d65-aa29-b6eb6719e469",
 "source":"da488b76-2581-40d5-9377-3550e28cfb77",
 "method":"4e1f460f-db3e-4e67-a906-2afc789f8f3a"

}

After obtaining the id from the response data do a PATCH to the
URL api/facilities/facilities/<facility_id> with a payload similar to the one shown below:

{
 "coordinates": "c0d862d4-aa86-4cf0-9f10-8ec83b764321" // the id obtained from the response data above

}

	Expected Response Code:

	HTTP_204_NO_CONTENT

There is no response data.

Note

	The geo-code methods ids are obtained from the endpoint api/gis/geo_code_methods/

	The geo-code sources ids are obtained from the endpoint api/gis/geo_code_sources/

	Watch out for the order of the coordinates; the longitude comes before the latitude otherwise
the geocodes will not validate.

Pushing a Facility Contacts

To push a facility’s contacts do a PATCH to the URL api/facilities/facilities/<facility_id>
with a payload similar to the one shown below:

{
 "contacts":[
 {
 "contact_type":"17287e65-021f-4319-92fb-e032e2c3de72", // the contact type id
 "contact":"0200046" // the actual contact

 },

 {
 "contact_type":"9417c555-e36f-4502-941e-9a9943c534d5",
 "contact":"1414141241"

 }

]

}

	Expected Response code:

	HTTP_204_NO_CONTENT

There is no response data

Note

The contact types ids can be obtained from the endpoint api/common/contact_types/

Pushing a Facility’s Officer-In-Charge

	To push the details of a facility’s officer-in-charge to a PATCH to the URL

	api/facilities/facilities/<facility_id> with a payload similar to the one shown below:

{
 "officer_in_charge":{
 "name":"Alex Aluoch",
 "reg_no":"P15/3525/5235",

 "contacts":[
 {
 "type":"17287e65-021f-4319-92fb-e032e2c3de72", // the contact type id
 "contact":"020133555" // the actual contact

 },

 {
 "type":"d7c0405c-1f69-4d1d-9895-24e6af997429",
 "contact":"0756456288"

 }

],

 "title":"ba36158a-0d61-4014-aa55-111425b06775" // the job title id

 }

}

	Expected Response code:

	HTTP_204_NO_CONTENT

There is no response data

Note

To obtain the job-titles go to the URL api/facilities/job_titles/

Pushing a Facility’s Services

To push a facility’s services do a PATCH to the URL api/facilities/facilities/<facility_id>
with a payload similar to the one shown below:

{
 "services":[
 {
 "service":"59c4e20e-eb00-427c-8533-61719b0db77d" // the service id

 },

 {
 "service":"78aac8b6-c2d7-4204-b074-8b83fb1ef070", // the service id
 "option":"888c5b48-2334-436d-a806-3a57e1933e8b" // the option id

 },

 {
 "service":"576c9964-ee5a-4a6f-b1fd-32064d76bb77" // the service id

 }

]

}

	Expected Response code:

	HTTP_204_NO_CONTENT

There is no response data

Note

Services in MFL

All the service in MFL can be obtained from the URL api/facilities/services/

It is important to note that there are two types of services in the MFL:

a). Services with options

b). Services without options

For the services that do not have options only the service id is posted and when the service has an option
such as basic or comprehensive the service id is posted together with the option id as the payload above shows.

Each service from the endpoint api/facilities/services/ comes together with its group and from the group object the options can be obtained.

To list all the option groups do a GET to api/facilities/option_groups/
and to get the details of one single option group do a GET to api/facilities/option_groups/<option_group_id>

Once details of a facility have been pushed to MFL, all the facility details can be obtained
through doing a GET to api/facilities/facilities/<facility_id>

For example a GET to api/facilities/facilities/da3c4efe-57df-4d65-aa29-b6eb6719e469/
would result in the details of the facility that was created and updated in the sample payloads above.

{
 "id": "da3c4efe-57df-4d65-aa29-b6eb6719e469",
 "regulatory_status_name": "Pending License",
 "facility_type_name": "Pharmacy",
 "owner_name": "Private Practice - Unspecified",
 "owner_type_name": "Private Institutions and Private Practice",
 "owner_type": "2b8b031e-8d5a-47eb-b89c-a63d11e2b70a",
 "operation_status_name": "Operational",
 "county": "NAIROBI",
 "constituency": "MATHARE",
 "ward_name": "KIAMAIKO",
 "average_rating": 0.0,

 "facility_services": [
 {
 "average_rating": 0.0,
 "category_id": "edd7631d-b2f3-4008-9c76-e3abb68a547d",
 "number_of_ratings": 0,
 "option": null,
 "service_name": "Short Term FP",
 "option_name": "Yes",
 "service_id": "576c9964-ee5a-4a6f-b1fd-32064d76bb77",
 "service_code": 1012,
 "id": "f053976f-3b0a-42ce-8b92-4695cce1bbf0",
 "category_name": "Family Planning"

 },

 {
 "average_rating": 0.0,
 "category_id": "edd7631d-b2f3-4008-9c76-e3abb68a547d",
 "number_of_ratings": 0,
 "option": "888c5b48-2334-436d-a806-3a57e1933e8b",
 "service_name": "Permanent FP",
 "option_name": "Level 3",
 "service_id": "78aac8b6-c2d7-4204-b074-8b83fb1ef070",
 "service_code": 1051,
 "id": "bbb2ce77-5537-43c5-9364-66c307b21c6a",
 "category_name": "Family Planning"

 },

 {
 "average_rating": 0.0,
 "category_id": "edd7631d-b2f3-4008-9c76-e3abb68a547d",
 "number_of_ratings": 0,
 "option": null,
 "service_name": "Long Term FP",
 "option_name": "Yes",
 "service_id": "59c4e20e-eb00-427c-8533-61719b0db77d",
 "service_code": 1013,
 "id": "985d94c3-409b-4a5a-b53d-f9589d338d68",
 "category_name": "Family Planning"

 }

],

 "is_approved": null,
 "has_edits": false,
 "latest_update": null,
 "regulatory_body_name": "Pharmacy & Poisons Board",
 "owner": "af7f2be2-3454-4ba8-ae01-d24c05cfb382",
 "date_requested": "2015-11-10T10:27:53.932Z",
 "date_approved": null,
 "latest_approval_or_rejection": null,
 "sub_county_name": null,

 "facility_contacts": [
 {
 "contact_type_name": "FAX",
 "contact": "1414141241",
 "id": "341c5ea6-9d85-47f2-b635-12ee013c7da7",
 "contact_id": "e729ea90-2dde-4361-95f2-fd94c059f56b"

 },

 {
 "contact_type_name": "LANDLINE",
 "contact": "0200046",
 "id": "e0a85e74-47fa-4112-aa76-fd9dccd2fb89",
 "contact_id": "95395096-0a61-4b5b-88d8-123402eb86ba"

 }

],
 "coordinates": "c0d862d4-aa86-4cf0-9f10-8ec83b764321",
 "latest_approval": null,

 "boundaries": {
 "county_boundary": "d89fad95-0f7d-4044-87ec-f8a7ad9fcac2",
 "ward_boundary": "0f8d1126-d978-4f3e-afe8-e46635ddc0fe",
 "constituency_boundary": "0f0ecac3-fb36-450d-bd93-efb8558a1a1e"

 },

 "service_catalogue_active": true,
 "facility_units": [],

 "officer_in_charge": {
 "name": "Alex Aluoch",

 "contacts": [
 {
 "contact_type_name": "MOBILE",
 "officer_contact_id": "fe69052a-4466-45ce-ab64-80d7f7c1eef8",
 "type": "d7c0405c-1f69-4d1d-9895-24e6af997429",
 "contact_id": "edb51ac8-71e2-477a-852b-f90ff3152973",
 "contact": "0756456288"

 },

 {
 "contact_type_name": "LANDLINE",
 "officer_contact_id": "ae3cbec5-f9e5-4ec0-9465-af5f13773256",
 "type": "17287e65-021f-4319-92fb-e032e2c3de72",
 "contact_id": "d8f51a01-a0a5-49d8-9be9-0ae0a4c604cc",
 "contact": "020133555"

 }

],

 "id_number": null,
 "reg_no": "P15/3525/5235",
 "title": "ba36158a-0d61-4014-aa55-111425b06775",
 "title_name": "Medical Superintendant"

 },

 "town_name": "Bahati",
 "keph_level_name": null,
 "created": "2015-11-10T10:27:53.932878Z",
 "updated": "2015-11-10T10:27:53.932886Z",
 "deleted": false,
 "active": true,
 "search": null,
 "name": "Rehema Pharmacy (Bahati)",
 "official_name": "Rehema Pharmacy",
 "code": 100000,
 "registration_number": "PBB 12444",
 "abbreviation": null,
 "description": null,
 "number_of_beds": 0,
 "number_of_cots": 0,
 "open_whole_day": true,
 "open_public_holidays": false,
 "open_weekends": true,
 "open_late_night": false,
 "is_classified": false,
 "is_published": false,
 "regulated": false,
 "approved": false,
 "rejected": false,
 "bank_name": null,
 "branch_name": null,
 "bank_account": null,
 "facility_catchment_population": null,
 "nearest_landmark": null,
 "plot_number": "LR/14414/KEN",
 "location_desc": "Along Chiefs Road",
 "closed": false,
 "closed_date": null,
 "closing_reason": null,
 "created_by": 4,
 "updated_by": 4,
 "facility_type": "6bbfc198-23f0-4310-9170-24ac05e2e49e",
 "operation_status": "3f5634c7-5a47-4e1d-b2f5-8e9b2308acf0",
 "ward": "b530b7ed-a110-431f-9a19-847eb706792d",
 "parent": null,
 "regulatory_body": "e4ae432e-8a0a-402c-ab6c-1c9033102bb5",
 "keph_level": null,
 "sub_county": null,
 "town": "ee724c13-abfe-44cb-98ce-9ec36a1e97a9",

 "contacts": [
 "e729ea90-2dde-4361-95f2-fd94c059f56b",
 "95395096-0a61-4b5b-88d8-123402eb86ba"

]

}

Index

 _static/comment-bright.png

_images/new_facility_form.png
Checklist for New Health Facility

Facility Code
(assigned by Central system)

Name of Facility |

|Senlices to be Offered |

|Hiv PREVENTION SERVICES

Yes | No | |Rehabilitative Health Services -Occupational health | Yes | No
Condom Promotion and Distribution (CONDOM) Rehabilitative Health Services -Occupational Therapy
IManagement of STIs (STI) Rehabilitative Health Services -Orthopaedic Technology
Voluntary Counselling and Testing (VCT) Blood Transfusion Yes | No
Provider Initiated Counselling and Testing (PICT) Facility Based Blood Collection Service
Diagnostic Counselling and Testing (DCT) Facility Based Blood Transfusion Service
Early Infant Diagnosis (EID) Services for Gender-Based- Violence Survivors Yes | No
PMTCT - ANC (ANC PMTCT) Services for Female Genital Mutilation (FGM) Survivors
PMTCT - MATERNITY(MAT PMTCT) Other Services Yes | No
Voluntary Male Circumcision Port Health Services
Post Exposure Prophylaxis (PEP) Mortuary Services
|HIV/AIDS Services-Treatment and care Yes | No
Paediatric Antiretroviral Therapy (Paed ART) Services - Maximum Level of Service 1 -6 Level
Adult Antiretroviral Therapy (Adult ART) Curative Services
Home Based Care (HBC) Maternity Services
|Family Planning (FP) Yes | No Surgical Services
Short Term FP (STFP) Radiology Services
Long Term FP (LTFP) Laboratory Services
Permanent FP(PERM-FP) Ambulance Services
Comprehensive Youth Friendly Services Yes | No Integrated Management of Childhood llinesses (IMCI)
|Integrated Services (YOUTH-Int) Nutrition Services
Stand Alone Services (YOUTH-StandAlone) Ophthalmic Services
Antenatal (ANC) Yes | No Mental Health Services
Focused Antenatal Care (FANC) Services for Sexual Violence Survivors
Specialized ANC (SP-ANC) Rehabilitative Health Services -Physiotherapy
Jimmunization Yes | No Environmental Health Services
Basic Immunization (IMM - BASIC)
Immunization with additional vaccines (IMM-ADD) Services - Choose Basic or Comprehensive Basic | Comp
Port Immunization services (IMM-PORT) Emergency Obstetric Care (EOC)
Tuberculosis Diagnosis and Treatments Yes | No | |Oral Health Services (Dental services) |
Smear Microscopy (TB-SMEAR) Dental Laboratory Services |
Tuberculosis Culture (TB-CULTURE) ENT Services |
First Line Treatment (TB-1st Line) Emergency Preparedness |
|MDRTB Treatment (TB-MDRTB) |
DHMT Recommendation National Regulato_ry - License / Gazette
; D Recommended Regulation Status H I';i:jeer;eez 0 Gazetted
pproval Status
O Rejected Regulation Date Y Y
Approval Date Reference Number ;
/ /2 (Board or Gazette Notice)
Approved By (Name) Lic / Gaz By (Name)
Approved By (Signature) Lic / Gaz By (Signature)
Entered to MFL by (Signature) Entered to MFL by (Signature)
Date Entered into MFL System / / 2 Date Registered in MFL System / / 2

Page2

Version 1.0 - fune 2010

79

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Master Facility List API server documentation

 		Installing for evaluation

 		Deployment Assumptions

 		Vagrant

 		Installation

 		Installing for development

 		Getting started

 		Installing for production

 		Setting up the environment

 		The pre-deploy checklist

 		Configuring the ansible inventory

 		The big picture

 		Interoperability

 		Standardization

 		Unification

 		Authentication and authorization

 		Authentication

 		Session Authentication

 		OAuth2 Authentication

 		Authorization

 		Understanding the role based access control setup

 		Users and counties

 		Setting up users, permissions and groups

 		Permissions

 		Groups

 		User management

 		User registration (sign up)

 		Linking users to groups

 		Updating user details

 		Password changes

 		Using the API - basic principles

 		HTTP and HTTPS

 		Data Format

 		Content Negotiation using headers

 		Content negotiation using query parameters

 		Common fields

 		Documentation examples

 		URLs

 		URL Parameters

 		URL Query Parameters

 		Dates and times

 		UUIDs

 		HTTP Errors

 		Pagination

 		Audit trail

 		Search

 		The API sandbox

 		Swagger

 		The Browsable API

 		API Metadata support

 		Metadata resources

 		Contact Types

 		Towns

 		Administrative units

 		Counties

 		Constituencies

 		Wards

 		Facility Types

 		Facility owners and owner types

 		Facility owner types

 		Facility owners

 		Job titles

 		Regulating bodies

 		Regulating body contacts

 		Facility Operation Status

 		Listing Available Operation Status

 		Creating an Operation Status

 		Updating a single Operation Status

 		The service catalog

 		Service Categories

 		Services

 		Options and service options

 		Options

 		Service Options

 		Linking facilities to services

 		Facilities

 		Facility information storage

 		Facilities

 		Physical addresses

 		Facility contacts

 		Facility units

 		Facility services

 		Facility workflows

 		The facility “publishing” workflow

 		Facility ratings

 		Facility service ratings

 		Facility rating reports

 		Facility downloads

 		Facility cover letters

 		Facility correction templates

 		Facilty Inspection Report

 		Facility Excel reports

 		Facility dashboard APIs

 		Facility types

 		Creating A facility type

 		Listing Facillity types

 		Retrieving a facility type

 		Updating Facility types

 		Facility Upgrades and Downgrades

 		Upgrading/Downgrading a Facility (First Step)

 		Confirming Upgrade or Downgrade (Second Step)

 		Cancelling a facility upgrade/downgrade(Second Step)

 		Listing Facilities that are due for upgrade/downgrade Confirmation

 		Listing all the the Upgrades/Downgrades of a facility

 		Community Health Units

 		Community Health Unit Approvers

 		Community Health Unit Statuses

 		Community Health Units

 		Community Health Unit Contacts

 		Community Health Unit Approvals

 		Community Health Workers

 		Community Health Workers Contacts

 		Community Health Workers Approvals

 		Regulation

 		Regulatory Bodies

 		Creation

 		Updating

 		Listing

 		Retrieving

 		Regulatory Statuses

 		Listing

 		Creation

 		1. Creating an initial state

 		2. Creating a final State

 		3. Creating an intermediary State.

 		Retrieving a single regulatory state

 		Updating a regulatory state

 		Listing Facilities pending regulation

 		Regulate a facility

 		GIS Support

 		What is GIS?

 		GIS data formats

 		A brief note about points

 		How do I move from GeoJSON to a map?

 		Administrative units

 		Counties

 		County Boundaries

 		Constituencies

 		Constituency Boundaries

 		Wards

 		Ward Boundaries

 		Lookup administrative units

 		Facility Coordinates

 		Workflow

 		Contributors' code of conduct

 		Regulator Synchronization

 		Part 1: Attached Facilities Synchronization

 		The synchronization process:

 		Step 1

 		Step 2

 		Listing of synchronized facilities

 		Part 2: Stand Alone Facilities Synchronization

 		Synchronization process

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

