

 Navigation

 	
 index

 	
 next |

 	mfcloud 0.5.5 documentation

Mfcloud Cloud

Mfcloud is set of tools that use Docker containers to deploy web-applications to production.

Note

Don’t even try to install/use mfcloud until you fill comfortable using docker natively.

Quick Intro

This simple yml file (mfcloud.yml) will spin out a set of docker containers for you:

mysql:
 image: mysql

elasticsearch:
 image: dockerfile/elasticsearch

postfix:
 image: previousnext/postfix

redis:
 image: redis

memcache:
 image: tutum/memcached

app:
 build: .mfcloud/app
 volumes:
 .: /var/app

web:
 build: .mfcloud/nginx
 volumes:
 .: /var/app

As you see there is everything that is needed for big Django-based web-shop: Django application (app), nginx load balancer (web),
set of caching services (redis, memcach, elasticsearch, mysql) and mysql database (mysql).

Every container can reach each other by hostname, and it’s same in Dev and in production. For Django you will hardcode something like:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'mydbname',
 'USER': 'mydbuser',
 'PASSWORD': '123123',
 'HOST': 'mysql',
 'PORT': '3306',
 },
}

After run:

$ mfcloud init myapp
$ mfcloud start myapp

You will get this nice overview:

$ mfcloud list

+------------------+------------------------------+---------+-------+--------+---+
| Application name | Web | status | cpu % | memory | services |
+------------------+------------------------------+---------+-------+--------+---+
myapp	myapp.mfcloud.lh -> [web]	RUNNING	0.01%	5M	mysql.myapp (ON) ip: 172.17.0.2 vol: 49153 (/var/lib/mysql)
			0.09%	235M	elasticsearch.myapp (ON) ip: 172.17.0.4 vol: 49154 (/data)
			0.01%	4M	postfix.myapp (ON) ip: 172.17.0.6 vol: 49155
			0.03%	0M	redis.myapp (ON) ip: 172.17.0.8 vol: 49156 (/data)
			0.00%	0M	memcache.myapp (ON) ip: 172.17.0.10 vol: 49157
			1.82%	26M	app.myapp (ON) ip: 172.17.0.12 vol: 49158 (/var/app)
			0.01%	1M	web.myapp * (ON) ip: 172.17.0.14 vol: 49159 (/var/app, /var/www)
			-----	-----	
			1.96%	271M	
+------------------+------------------------------+---------+-------+--------+---+

And sure it’s available in your browser as myapp.mfcloud.lh

Impressed? It’s not all.

Let’s deploy this to production:

$ mfcloud -h my-remote-mfcloud-server.com init my-remote-app
$ mfcloud -h my-remote-mfcloud-server.com start my-remote-app
$ mfcloud -h my-remote-mfcloud-server.com publish mydomain.com web.my-remote-app

And now your app running in production!

What about update? ... Just push volume with code and restart the server:

$ mfcloud -h my-remote-mfcloud-server.com push my-local-dir-with-code web.my-remote-app:/var/app
$ mfcloud -h my-remote-mfcloud-server.com restart my-remote-app

In this documentation chapters we will see how to install mfcloud localy, prepare production server, how to configure
your applications and do many usefull tricks with mfcloud and docker containers.

Other features

On surface:

	central place where all projects on your machine listed

	displays resource usage (CPU and memory) for every application and container

	easy local-dsn based service discovery

	login into your containers without SSH server inside (mfcloud run command)

	haproxy-based load balancer

	SSL-support for production web-sites

	server-wide environment variables

	Openssl certificate based security for remote mfcloud servers

Under-the-hood:

	python + twisted

	redis, docker, haproxy

	twisted Docker API implementation (mfcloud own solution)

	own DNS server

	websocket-based API, easy to connect from web-browser (Write you own AngularJS based Web-UI ...?)

	plugin-subsystem + event system + dependency injection = easy to extend

Contents

	Installation
	Preparing operating system
	Preparing Mac Os for mfcloud

	Preparing ubuntu Os for mfcloud

	Mfcloud installation

	Package installation

	mfcloud-server
	Running mfcloud-server manualy

	Install dnsmasq server

	Running mfcloud-server with supervisor

	Running mfcloud-server with upstart (recommended)

	Installing haproxy

	Checking installation

	Updating mflcoud

	Uninstalling mflcoud

	Usage
	Basic commands
	List

	Start, stop

	Destroy, Rebuild

	Debugging

	Deploying static website

	Command line utilities
	mfcloud command

	mfcloud-rpc-server command

	mfcloud.yml reference

	Development

[image: _images/mfcloud.png]

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mfcloud 0.5.5 documentation

Installation

Instructions are given for Ubuntu linux, but except some details, like
package names and file-system paths, process is same on all operating systems.

Preparing operating system

To run mfcloud you need linux operating system with docker installed.
boot2docker is not supported, but it’s easy to install mfcloud inside virtualbox
same way as boot2docker does.

There is two options:

	you are working on linux machine: install mfcloud right on your machine

	you are working on mac/windows/other OS: install mfcloud inside virtualbox and map project directories, through nfs/smb

Follow configuration manual of your OS:

	Preparing Mac Os for mfcloud
	NFS directories

	Preparing ubuntu Os for mfcloud

At the end you will get same ubuntu machine and you can easily follow further steps of this manual.
If you are working on other linux distributions, adapt commands and package names accordingly.

Mfcloud installation

Install docker and make sure it’s working:

sudo docker run -i -t ubuntu echo -e "OK";

Update package cache:

sudo apt-get update

Install redis:

sudo apt-get install redis-server

Required packages:

sudo apt-get install python-dev python-virtualenv libffi-dev libssl-dev

Note

If you want to use docker command without sudo as we do in this document, you should
add you user to docker group. For, example:

$ sudo usermod -G docker -a whoami

Then usually it’s enough to login/logout into your terminal,
but in some cases system restart maybe needed.

To test, type (without sudo):

$ docker ps

If, you see no errors, then it works.

NB! This is DANGEROUS settings in production. Adding user to docker group
basically means you give root priveleges to this user.

Package installation

Install mfcloud packages:

$ sudo mkdir /opt # if you don't have it already
$ sudo virtualenv /opt/mfcloud
$ sudo /opt/mfcloud/bin/pip install mfcloud

Link mfcloud executables:

$ sudo ln -s /opt/mfcloud/bin/mfcloud* /usr/local/bin/

Now you can run mfcloud-rpc-server.

mfcloud-server

Running mfcloud-server manualy

Running manualy is simplest way to run mfcloud-server.

Just open separate console and execute:

$ sudo mfcloud-rpc-server

Sudo is required as commands also runs dns server on 53 port,
this action require super-use privileges.

Install dnsmasq server

Note

If you are updating from previous version of mfcloud, stop mfcloud server before installing dnsmasq
(sudo service mfcloud stop)

dnsmasq acts as dns proxy for local machine, we will configure it to proxify all request
to outer dns servers, except mfcloud.lh subdomain.

Install dnamasq:

sudo apt-get install dnsmasq

Replace content of /etc/dnsmasq.conf file with following 3 lines:

interface=lo
interface=docker0
server=/mfcloud.lh/172.17.42.1#7053

Replace ‘172.17.42.1’ with your docker interface ip. You can get it using ifconfig command:

$ ifconfig docker0

Start dnsmasq server:

$ sudo service dnsmasq start

Running mfcloud-server with supervisor

Install supervisor:

$ apt-get install supervisor

Create file /etc/supervisor/conf.d/mfcloud.conf with following contents:

[program:mfcloud]
command=/opt/mfcloud/bin/mfcloud-rpc-server

Start service:

$ sudo supervisorctl start mfcloud

Make sure it’s running:

$ ps ax | grep mfcloud

3920 ? Ssl 0:00 /opt/mfcloud/bin/python /opt/mfcloud/bin/mfcloud-rpc-server
3937 pts/5 S+ 0:00 grep --color=auto mfcloud

Running mfcloud-server with upstart (recommended)

Create file /etc/init/mfcloud.conf with follwing contents:

description "Mfcloud server"
author "Modera"
start on filesystem and started docker
stop on runlevel [!2345]
respawn
script
 /opt/mfcloud/bin/mfcloud-rpc-server >> /var/log/mfcloud.log 2>&1
end script

Start mfcloud service:

$ sudo service mfcloud start

Make sure it’s running:

$ ps ax | grep mfcloud

3920 ? Ssl 0:00 /opt/mfcloud/bin/python /opt/mfcloud/bin/mfcloud-rpc-server
3937 pts/5 S+ 0:00 grep --color=auto mfcloud

Installing haproxy

Haproxy is only needed when you install mfcloud on remote sever or
if you run mfcloud in virtual machine, and want to access applications from
your host machine by domain names like **.mflcoud.lh

Install haproxy:

$ sudo apt-get install haproxy

Then edit /etc/default/haproxy and set ENABLED=1

Then start haproxy service:

$ sudo service haproxy start

Also you need to add –haproxy option to the mfcloud-rpc-server command.
To do this, edit /etc/init/mfcloud.conf and add this option to the end:

exec /opt/mfcloud/bin/mfcloud-rpc-server --haproxy >> /var/log/mfcloud.log 2>&1

And finally restart mfcloud:

$ service mfcloud restart

Note

To use **.mfcloud.lh with mfcloud inside virtual machine, you also need to configure
your local machine to use the virtual machine as dns-server, ex.:
http://stackoverflow.com/questions/138162/wildcards-in-a-hosts-file

Checking installation

Ping dns to make sure it’s there:

$ ping _dns.mfcloud.lh

PING _dns.mfcloud.lh (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_req=1 ttl=64 time=0.020 ms
64 bytes from localhost (127.0.0.1): icmp_req=2 ttl=64 time=0.035 ms
^C
--- dns.mfcloud.lh ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.020/0.027/0.035/0.009 ms

Or use dig utility:

$ dig _dns.mfcloud.lh

; <<>> DiG 9.9.2-P1 <<>> _dns.mfcloud.lh
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47330
;; flags: qr ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;_dns.mfcloud.lh. IN A

;; ANSWER SECTION:
_dns.mfcloud.lh. 10 IN A 127.0.0.1

;; Query time: 0 msec
;; SERVER: 172.17.42.1#53(172.17.42.1)
;; WHEN: Sat Jun 28 16:21:54 2014
;; MSG SIZE rcvd: 49

If dns is working, then _dns.mfcloud.lh is resolved to 127.0.0.1

Check that API is up:

$ mfcloud list

+------------------+-------------------------+---------+---+
| Application name | Web | status | services |
+------------------+-------------------------+---------+---+

Updating mflcoud

Update is easy:

$ sudo /opt/mfcloud/bin/pip install -U mfcloud

And restart service:

$ sudo service mfcloud restart

Uninstalling mflcoud

	Remove upstart/supervisor script

	If, you used mfcloud with supervisor, you may need to uninstall supervisor as well

	Remove mfcloud commands: sudo rm /usr/local/bin/mfcloud*

	Remove mfcloud home: sudo rm -rf /opt/mfcloud

	Remove mflcoud-dns

 Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mfcloud 0.5.5 documentation

 	Installation

Preparing Mac Os for mfcloud

Install virtualbox (or any other virtualization of your choice).

Install ubuntu on virtual machine.

Then mount your directory with dev-projects into virtual machine using NFS.

NFS directories

Here is one easy manual how to mount folders in MacOS using NFS:
http://technology.trapeze.com/journal/working-files-ubuntu-virtual-machine-your-mac/

 Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mfcloud 0.5.5 documentation

 	Installation

Preparing ubuntu Os for mfcloud

Everything is ready! No actions needed :)

 Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mfcloud 0.5.5 documentation

Usage

Basic commands

List

The most useful command of mfcloud is list. It gives you an overview of status of your small cloud:

$ mfcloud list

+------------------+------------------------------------+--------+---+
| Application name | Web | status | services |
+------------------+------------------------------------+--------+---+
| ok1 | ok1.mfcloud.lh -> [No web] | | web.ok1 (OFF) |
| | https://ok1.mfcloud.lh -> [No web] | | |
+------------------+------------------------------------+--------+---+
| ok2 | ok2.mfcloud.lh -> [No web] | | web.ok2 (OFF) |
| | sok2.mfcloud.lh -> [No web] | | |
+------------------+------------------------------------+--------+---+
mfcm	mfcm.mfcloud.lh -> [No web]		elastic.mfcm (OFF)
			mysql.mfcm (OFF)
			php.mfcm (OFF)
			nginx.mfcm (OFF)
+------------------+------------------------------------+--------+---+			
1.test	1.test.mfcloud.lh -> [No web]		web.1.test (NOT CREATED)
			another.1.test (NOT CREATED)
+------------------+------------------------------------+--------+---+

list command is command you will use many times a day, so it will be easier if you give it some short name:

$ alias mf='mfcloud list'

Then you can use it as:

$ mf

Start, stop

You can start/stop applications:

$ mfcloud start ok1
$ mfcloud stop ok1
$ mfcloud restart ok1

restart executes stop, start sequentialy.

stop command will not remove your container and data inside.

Destroy, Rebuild

Another useful command is destroy, and it’s pairing command redbuild.

$ mfcloud destroy ok1
$ mfcloud rebuild ok1

NB! destroy will remove your container with all the data inside, including volumes.

restart executes destroy, start sequentialy.

Debugging

It happens pretty often that application may not start inside mfcloud.
Good news is that everything mfcloud does with docker containers can be done by hands as well.

mfcloud generates names for containers that are in formtat: [service].[application].
Container names are visible in right column when you execute mfcloud list command.

If you know container name you can do a lot of things with it.

See logs of container:

$ docker logs -f web.ok1

Restart single container:

$ docker restart web.ok1

Inspect the container:

$ docker inspect web.ok1

And many other things. Remeber, it’s just a docker container!

 Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mfcloud 0.5.5 documentation

Deploying static website

assume we have a static web-page, that we want to deploy
as mfcloud application:

<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>
 Hello, mfcloud!
</body>
</html>

To deploy this we need the following mfcloud.yml configuration:

web:
 image: orchardup/nginx

 volumes:
 public: /var/www

This will create one service called “web”.
We use “orchardup/nginx” image that contains nginx that serve everything inside /var/www directory.

In mfcloud.yml we specify, that we will mount current directory to /var/www volume inside container.
So, our public directory will be accessible from web.

Application structure is following:

- public
 - index.html
- mflcoud.yml

Now we can init our application with “init” command:

$ mfcloud init static ./docs/source/samples/source/static

+------------------+-----+--------+--------------------------+
| Application name | Web | status | services |
+------------------+-----+--------+--------------------------+
| static | | | web.static (NOT CREATED) |
+------------------+-----+--------+--------------------------+

Here you see application list that are running on your machine.
Same listing you may get by calling mfcloud list command.

In listing above you see that we have “static” application that have one service “web.static”.
That have no containers created yet.

You can make it sure by typing:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

You see empty line, that means there is no containers running.

Now, lets start our application:

$ mfcloud start static

+------------------+----------------------------+---------+--+
| Application name | Web | status | services |
+------------------+----------------------------+---------+--+
| static | static.mfcloud.lh -> [web] | RUNNING | web.static* (ON) ip: 172.17.0.10 vol: 49153 (/var/www) |
+------------------+----------------------------+---------+--+

Now, there is a lot more information.

First, the status column shows “RUNNING” status for our application.

Services column also shows that our “web.static” service is running now, it’s ip is 172.17.0.10
(also there is volumes information, but it’s not important right now).

Web column shows that mfcloud has detected that container exposes port 80, so it’s assigned special internal domain
“static.mfcloud.lh” to web.static service port 80.

Let’s check what docker shows now:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
07281278f924 ribozz/rsync:latest /sbin/my_init 4 minutes ago Up 4 minutes 0.0.0.0:49153->22/tcp _volumes_web.static
a4fb7033d27f orchardup/nginx:latest nginx 4 minutes ago Up 4 minutes 80/tcp web.static

Note

Docker containers have same name as your service, so we see here a container with name “web.static”. This
container naming conventions simplify debugging, you can use standard docker tools, to understand what’s up
if something wrog happens with your container.

We have two containers running: one is our service, another is pairing container that allows to upload and download
docker volumes. Read volumes section of this documentation for details.

Now, if we open service ip in browser, it will show us index.html contents:

$ curl 172.17.0.10

<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>
 Hello, mfcloud!
</body>
</html>

Same thing happens if we open url assigned by mfcloud:

$ curl static.mfcloud.lh

<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>
 Hello, mfcloud!
</body>
</html>

Url “static.mfcloud.lh” is composed of two parts: [service.appname].[suffix],
suffix in our case is “mfcloud.lh” and “static” is application name.

You can also open same page by specifying direct url that is assigned to service:

$ curl web.static.mfcloud.lh

<!DOCTYPE html>
<html>
<head>
 <title></title>
</head>
<body>
 Hello, mfcloud!
</body>
</html>

Now, we can stop the application:

$ mfcloud stop static

+------------------+-----+--------+------------------+
| Application name | Web | status | services |
+------------------+-----+--------+------------------+
| static | | | web.static (OFF) |
+------------------+-----+--------+------------------+

Now we see that web.service is OFF, it means that there is container created, but it’s not running.
When application is stoped, it preserves all the data that was in container.

If you need to remove it completely:

$ mfcloud destroy static

+------------------+-----+--------+--------------------------+
| Application name | Web | status | services |
+------------------+-----+--------+--------------------------+
| static | | | web.static (NOT CREATED) |
+------------------+-----+--------+--------------------------+

And now you can remove not needed application completely:

$ mfcloud remove static

+------------------+-----+--------+----------+
| Application name | Web | status | services |
+------------------+-----+--------+----------+

 Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mfcloud 0.5.5 documentation

Command line utilities

mfcloud command

mfcloud-rpc-server command

Mfcloud rpc server

usage: mfcloud-rpc-server [-h] [--port PORT] [--file-port FILE_PORT]
 [--haproxy] [--dns-server-ip DNS_SERVER_IP]
 [--dns-search-suffix DNS_SEARCH_SUFFIX]
 [--host-ip HOST_IP] [--interface INTERFACE]

	Options:

	

	
--port=7080
	port number

	
--file-port=7081

		File transfer port number

	
--haproxy=False

		Update haproxy config

	
--dns-server-ip

		Dns server to use in containers

	
--dns-search-suffix=mfcloud.lh

		Dns suffix to use

	
--host-ip
	Proxy destination for non-local traffic

	
--interface=0.0.0.0

		ip address

 Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mfcloud 0.5.5 documentation

mfcloud.yml reference

Example:

nginx:
 image: nginx

memcache:
 image: jacksoncage/memcache

app:
 build: local/dir
 volumes:
 local/dir/somedir: /var/data

First level key is service name. In example above we have
three services: nginx, memcache and app.

On second level one of image or build is required.

	image

	docker container will be build from docker image found in docker registry by name

	build

	docker container will be build from docker image build using command like:
docker build local/dir

volumes is set of subdirectories that will be monted as subdirectories into docker container.
local relative path on left side, path inside container on right side.

 Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	mfcloud 0.5.5 documentation

Development

Install mfcloud as usual.

Clone repository from github (or use your own url from fork on github):

git clone git@github.com:modera/mfcloud.git

Install package in “editable” mode:

sudo /opt/mfcloud/bin/pip install -e /path/to/cloned/dir

Now you have system-wide installed mfcloud executalbles that are pointing to your cloned version.

To revert to public version from pypi:

sudo /opt/mfcloud/bin/pip uninstall mfcloud
sudo /opt/mfcloud/bin/pip install mfcloud

 Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	mfcloud 0.5.5 documentation

Index

 Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/mfcloud_simpleapp.png

_static/down-pressed.png

tutor/flask-redis.html

 Navigation

 		
 index

 		mfcloud 0.5.5 documentation »

Python flask application + redis

Note

We will not repeat here some easy things from the “static example”, so read it before reading this tutorial.

 © Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

_static/down.png

_static/file.png

_static/up-pressed.png

tutor/symfony2.html

 Navigation

 		
 index

 		mfcloud 0.5.5 documentation »

Symfony2 application example

Let’s assume our example application uses the following application configuration:

[image: ../_images/symfony2.png]
mfcloud runs every service in separate docker container. For this application
we need four:

		php-fpm itself

		mysql

		memcache

		nginx

 © Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

tutor/django.html

 Navigation

 		
 index

 		mfcloud 0.5.5 documentation »

 © Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

tutor/django-cratis.html

 Navigation

 		
 index

 		mfcloud 0.5.5 documentation »

 © Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

_images/mfcloud.png
redis

Micloud-fhe-server

Firewall Mifcloud DNS Server

Docker dontainer Docker Jontainer

Docker Virtual
netwok

Docker Container Docker Container Docker Container

_images/symfony2.png

search.html

 Navigation

 		
 index

 		mfcloud 0.5.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

issues.html

 Navigation

 		
 index

 		mfcloud 0.5.5 documentation »

Known issues and solutions

mfcloud.lh domain names are not resolved after wifi network change

restart mfcloud:

$ sudo service mfcloud restart

Also after any network changes it may be helpfull to restart application:

$ mfcloud restart myapp

 © Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment.png

local.html

 Navigation

 		
 index

 		mfcloud 0.5.5 documentation »

Install mcflcoud locally

docker run -d modera/mfcloud-local

 © Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

tutor.html

 Navigation

 		
 index

 		mfcloud 0.5.5 documentation »

Examples

		Deploying static website

		Python flask application + redis

 © Copyright 2013 Alex Rudakov.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/mfcloud.png
redis

Micloud-fhe-server

Firewall Mifcloud DNS Server

Docker dontainer Docker Jontainer

Docker Virtual
netwok

Docker Container Docker Container Docker Container

_static/plus.png

