

Welcome to MetQuest’s documentation!

MetQuest is a dynamic programming based algorithm for identifying all possible
pathways from metabolic networks between the source and the target metabolites.
MetQuest requires the genome-scale metabolic reconstructions,
set of seed, source and target metabolites and the pathway length cut-off.
MetQuest is compatible with Python 3 and is OS-independent.

Authors

	Aarthi Ravikrishnan [https://github.com/aarthi31]

	Meghana Nasre

	Karthik Raman [https://github.com/ramanlab]

Acknowledgments

This work was supported by the Indian Institute of Technology Madras grant ERP/1314/004/RESF/KARH to KR and the INSPIRE fellowship, Department of Science and Technology, Government of India to AR.

Installation

Use pip3 to install metquest from PyPI: [https://pypi.python.org/pypi/metquest]

Via Python Package

pip3 install metquest

Direct installation

	Install Python 3.4 or higher [https://www.python.org/downloads/]

	Clone this repository to your computer using git or download the
repository [https://github.com/aarthi31/MetQuest/] and decompress
it.

	Navigate to the folder where metquest is downloaded and type

python setup.py install

(Elevated sudo rights may be required depending on the platform. Replace python with python3 when multiple python distributions are found.)

Required python packages

	cobra >= 0.11.3

	numpy >= 1.14.3

	scipy

	python-libsbml

	networkx >= 2.1

Input

Folder whose structure is as shown:

mainfolder/
|-Example1/
| |-- SBML model(s) of metabolic networks # XML files of the metabolic networks(COBRA-compatible)
| |-- seed_mets.txt # Text file containing the seed metabolites separated by a newline
| │-- source_mets.txt # Text file containing the source metabolites separated by a newline
| |-- target_mets.txt # Text file containing the target metabolites separated by a newline
| |-- cutoff.txt # Text file containing the size cut-offs separated by a newline
|-Example2/
| ...

Kindly ensure that the SBML model has the field <model id> and the metabolites
are prefixed with the model identifiers, for instance, if the model identifier is
‘ecoli_core_model’, and the seed metabolite is ‘fum_c’, the input text file
should contain ecoli_core_model fum_c

Running MetQuest

From command line

MetQuest can be directly run from the terminal as

metquest.sh <path containing the input folder>

Navigate to the folder where metquest is installed and type

python execute_metquest.py <path containing the input folder>

(Replace python with python3 when multiple python distributions are found.)

From python console

>>> import metquest
>>> metquest.execute_all_codes()

When prompted, enter the path containing the folder with all the data files

Running examples

In the python console, type the following

>>> import metquest
>>> metquest.example.run_this_example()

This will run the example files.

metquest

	metquest package
	Subpackages
	metquest.example package
	Submodules

	metquest.example.run_this_example module

	Module contents

	Submodules

	metquest.construct_graph module

	metquest.execute_metquest module

	metquest.fetch_reactions module

	metquest.generate_partitions module

	metquest.get_reaction_types module

	metquest.guided_bfs module

	metquest.package_data module

	metquest.pathway_assembler module

	Module contents

metquest package

Subpackages

	metquest.example package
	Submodules

	metquest.example.run_this_example module

	Module contents

Submodules

metquest.construct_graph module

	
create_graph(path_name_with_models, no_of_orgs)

	This function creates bipartite graph of the organisms based on the
path provided and the number of organsisms. For instance, if a folder
has 3 model files, and the number of organisms is 2, 3 (3C2) different
bipartite graphs are created. The graph objects and the dictionary
are saved as gpickle and pickle files respectively.

	Parameters

	
	path_name_with_models (str [https://docs.python.org/3/library/stdtypes.html#str]) – Absolute path name of the folder containing the models.

	no_of_orgs (int [https://docs.python.org/3/library/functions.html#int]) – Number of organisms to be used for creating the DiGraph.

	Returns

	
	H (NetworkX DiGraph Object) – Bipartite graph consisting of internal and exchange reactions in organisms

	full_name_map (dict) – Dictionary mapping the adhoc reaction names to reaction names in
the model

metquest.execute_metquest module

	
execute_all_codes()

	This function executes all the codes including constructing graphs and executing metquest.

	Parameters

	None –

	Returns

	

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
find_important_reactions(all_reactions_involved, currenttarmet, seed_metabolites, namemap, G)

	This function determines the important reactions based on the pathways
generated for the target metabolite.

	Parameters

	
	all_reactions_involved (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of all reactions found in all the pathways from source to target

	currenttarmet (str [https://docs.python.org/3/library/stdtypes.html#str]) – Current target metabolite

	seed_metabolites (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set of seed metabolites including the source

	namemap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary mapping the adhoc reaction names to reaction names in
the model

	G (NetworkX DiGraph Object) – Bipartite graph of the metabolic network

	Returns

	

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Notes

We define important reactions as those reactions which occur in almost all
the pathways producing the target metabolite (apart from the reactions that
are involved in the production of target metabolite and the uptake of seed
metabolite)

	
find_jaccard_between_paths(only_source_to_target)

	This function determines the jaccard values between the pathways generated
from the source to the target.

	Parameters

	only_source_to_target (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of lists consisting of all pathways producing the target
metabolite from the source

	Returns

	
	jaccard_values (list) – list of all jaccard values (float) for all the pathway combinations

	path_combinations (list) – list of all pathway combinations corresponding to the jaccard values

Notes

Jaccard value J = (set(A).intersection(set(B)))/(set(A).union(set(B)))
J = 1 indicates two sets are the same
J = 0 indicates two sets are different

	
find_pathways_involving_exchange_mets(number_of_xml, pathway_table, currenttarmet, seed_metabolites, namemap, G)

	This function identifies the pathways producing the target metabolites,
which involve exchange metabolites. This function prints output only when
a community of organisms is considered, i.e., when more than one metabolic
network is used.

	Parameters

	
	number_of_xml (int [https://docs.python.org/3/library/functions.html#int]) – Number of xml files in the folder

	pathway_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of dictionary containing the pathways of different sizes
identified for every metabolite. This will have only the acyclic/
branched pathways.

	currenttarmet (str [https://docs.python.org/3/library/stdtypes.html#str]) – Current target metabolite

	seed_metabolites (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set of seed metabolites including the source

	namemap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary mapping the adhoc reaction names to reaction names in
the model

	G (NetworkX DiGraph Object) – Bipartite graph of the metabolic network

	Returns

	exchange_candidates_inverted_dict – Dictionary containing the number of times an exchange reaction is
repeated

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
find_pathways_starting_from_source(source_metabolites, pathway_table, currenttarmet, cutoff, G)

	This function finds all pathways starting from the source metabolites

	Parameters

	
	source_metabolites (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of source metabolites

	pathway_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of dictionary containing the pathways of different sizes
identified for every metabolite. This will have only the acyclic/
branched pathways.

	currenttarmet (str [https://docs.python.org/3/library/stdtypes.html#str]) – Current target metabolite

	cutoff (int [https://docs.python.org/3/library/functions.html#int]) – Maximum pathway length cutoff

	G (NetworkX DiGraph Object) – Bipartite graph of the metabolic network

	Returns

	
	most_different_paths (dict) – For the given source metabolite, a combination of two most different pathways
based on minimum Jaccard value is returned.

	only_source_to_target (list) – list of list containing all pathways starting from source metabolite

	
print_summary(scope, currenttarmet, pathway_table, cutoff, cyclic_pathways, namemap, source_metabolites, seed_metabolites, number_of_xml, G)

	This function prints the results summary obtained from the pathways, i.e.,
1. Number of metabolites in scope
2. Target metabolite
3. Pathway size cutoff
4. Number of all branched pathways found from seed
5. Number of all branched pathways from seed whose size <= Pathway size cutoff
6. Minimum number of steps to produce target metabolite
7. Number of branched pathways from source whose size <= Pathway size cutoff
8. Target metabolite can be produced using cyclic pathway
9. Number of cyclic pathways whose size <= Pathway size cutoff
10. One of the combination of most different pathways producing target metabolite
11. Important reactions based on the frequency of occurrences

	Parameters

	
	scope (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set of metabolites that can be produced from the given set of
seed metabolites

	currenttarmet (str [https://docs.python.org/3/library/stdtypes.html#str]) – Current target metabolite

	pathway_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of dictionary containing the pathways of different sizes
identified for every metabolite. This will have only the acyclic/
branched pathways.

	cutoff (int [https://docs.python.org/3/library/functions.html#int]) – Maximum pathway length cutoff

	cyclic_pathways (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of dictionary containing cyclic pathways of different sizes
identified for every metabolite.

	namemap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary mapping the adhoc reaction names to reaction names in
the model

	source_metabolites (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of source metabolites

	seed_metabolites (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set of seed metabolites including the source

	number_of_xml (int [https://docs.python.org/3/library/functions.html#int]) – Number of xml files in the folder

	G (NetworkX DiGraph Object) – Bipartite graph of the metabolic network

	Returns

	

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
write_output_to_file(pathway_table, currenttarmet, cutoff, cyclic_pathways, folder_to_create, namemap, source_metabolites, G)

	This function writes the pathways of sizes less than or equal to the
cutoff from source to the target and seed metabolites to target.
This function also writes cyclic pathways of sizes less than or equal to
cutoff from the source to target.

	Parameters

	
	pathway_table (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of dictionary containing the pathways of different sizes
identified for every metabolite. This will have only the acyclic/
branched pathways.

	currenttarmet (str [https://docs.python.org/3/library/stdtypes.html#str]) – Current target metabolite

	cutoff (int [https://docs.python.org/3/library/functions.html#int]) – Maximum pathway length cutoff

	cyclic_pathways (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of dictionary containing cyclic pathways of different sizes
identified for every metabolite.

	folder_to_create (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the folder where results have to be written

	namemap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary mapping the adhoc reaction names to reaction names in
the model

	source_metabolites (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of source metabolites

	G (NetworkX DiGraph Object) – Bipartite graph of the metabolic network

	Returns

	

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

metquest.fetch_reactions module

	
segregate_reactions_from_models(path_name)

	This function gets the data pertaining to the reactions and the
metabolites from the models of multiple organisms.
This requires as input the pathname where the ‘.xml’ files are located.
From this path, this function reads all the files using the functions
in the COBRA toolbox and generates the stoichiometric model for these
SBML models.

	Parameters

	path_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – full path name where the model files are

	Returns

	
	all_organisms_info (dict) – Dictionary of all model data (reaction information about all the
organisms)

	namemap (dict) – Dictionary mapping the adhoc reaction names to reaction names in
the model

metquest.generate_partitions module

	
generate_partitions(maximumvalue, lbnumlist, columnvalue)

	This code takes as input the columnvalue (j), values of the shortest path
of each of the metabolites (given as a list) and the sum that has to be
obtained using these combination of numbers.

	Parameters

	
	maximumvalue (int [https://docs.python.org/3/library/functions.html#int]) – Maximum values which the numbers can take

	lbnumlist (list [https://docs.python.org/3/library/stdtypes.html#list]) – a list of values pertaining to the length of shortest paths of
every metabolite

	columnvalue (int [https://docs.python.org/3/library/functions.html#int]) – Desired sum to be obtained
All the partitions of numbers which will generate the desired sum
whose values are between the values for shortest paths and the
maximum values.

	Returns

	all_partitions

	Return type

	List of tuples

Notes

For instance, if the column value is 7, the number of imputs is 2,
and the shortest path of the metabolites is 4,3 respectively, and the
maximum sum that has to be obtained is 8, then

>>> generate_partitions(7,[4,3],8)
[(4, 4), (5, 3)]

>>> generate_partitions(4, [2,1,1], 5)
[(2, 1, 2), (2, 2, 1), (3, 1, 1)]

metquest.get_reaction_types module

	
find_different_reaction_types(stoi_matrix, model, current_model_name)

	This function finds the exchange, irreversible and the reversible reactions
from the model.

	Parameters

	
	stoi_matrix (numpy array) – full path name where the model files are

	model (COBRA model object) – COBRA model object created from SBML models

	current_model_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name which is to be prefixed against every
reaction/metabolite (to differentiate the entries in multiple organisms,
when a community model is built)

	Returns

	
	exchange_met_ids (list) – Metabolite identifiers of exchange metabolites

	irrev_lhs_nodes (list) – Metabolite identifiers of reactants of irreversible reactions

	irrev_rhs_nodes (list) – Metabolite identifiers of products of irreversible reactions

	rev_lhs_nodes (list) – Metabolite identifiers of reactants of reversible reactions

	rev_rhs_nodes (list) – Metabolite identifiers of products of reversible reactions

	exchange_rxn_ids (list) – Reaction identifers of exchange reactions

	irrev_rxn_ids (list) – Reaction identifiers of irreversible reactions

	rev_rxn_ids (list) – Reaction identifiers of reversible reactions

metquest.guided_bfs module

	
forward_pass(graph_object, seedmets)

	This function carries out the Guided Breadth First Search on a directed
bipartite graph starting from the entries in seed metabolite set.

	Parameters

	
	graph_object (NetworkX DiGraph Object) – Bipartite graph of the metabolic network

	seedmets (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set of seed metabolites including the source

	Returns

	
	lower_bound_metabolite (defaultdict) – Minimum number of steps required to reach a metabolite

	status_dict (defaultdict) – Dictionary pertaining to the status of every reaction - whether it
has been visited or not

	scope (set) – Set of metabolites that can be produced from the given set of
seed metabolites

Notes

Starting with the set of seed metabolites S, the algorithm first finds
all the reactions from the set R, whose precursor metabolites are in S.
Such reactions are marked visited and added to the visited reaction set.
Metabolites produced by these reactions are checked. The reactions where
these metabolites participate are then checked for the presence of all its
predecessors and are added to the queue. This traversal continues in a
breadth-first manner and stops when there are no further reactions to
be visited.

metquest.package_data module

metquest.pathway_assembler module

	
find_pathways(G, seed_mets_input, path_len_cutoff, *args)

	This function tries to identify pathways between a set of seed and
target metabolites of a given size cut-off.

	Parameters

	
	G (NetworkX DiGraph Object) – Bipartite graph of the metabolic network

	seed_mets_input (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set of seed metabolites including the source

	path_len_cutoff (int [https://docs.python.org/3/library/functions.html#int]) – Maximum size of the pathways

	*args – Used to decide if a particular combination has to be evaluated or not.
i.e., if the number of pathways produced for two different metabolites
are higher, for instance, if in the reaction A + B -> C,
A has 2000 pathways and B has 5 pathways, then C will have 10000 pathways
at the maximum. If this pathway cutoff (maxnumpath) is 1000,
this combination will not be evaluated, provided C has been
already found.
By default, it is set to 1000

	Returns

	
	pathway_table (dict) – Dictionary of dictionary containing the pathways of different sizes
identified for every metabolite. This will have only the acyclic/
branched pathways.

	cyclic_pathways (dict) – Dictionary of dictionary containing cyclic pathways of different sizes
identified for every metabolite.

	scope (set) – Set of metabolites which can be synthesised

Module contents

metquest.example package

Submodules

metquest.example.run_this_example module

	
run_this_example()

	This function runs the example with E. coli iJO1366 model with the
seed, source and target metabolite input provided.

	Parameters

	None –

	Returns

	

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Module contents

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 metquest	

 	
 	
 metquest.construct_graph	

 	
 	
 metquest.example	

 	
 	
 metquest.example.run_this_example	

 	
 	
 metquest.execute_metquest	

 	
 	
 metquest.fetch_reactions	

 	
 	
 metquest.generate_partitions	

 	
 	
 metquest.get_reaction_types	

 	
 	
 metquest.guided_bfs	

 	
 	
 metquest.package_data	

 	
 	
 metquest.pathway_assembler	

Index

 C
 | E
 | F
 | G
 | M
 | P
 | R
 | S
 | W

C

 	
 	create_graph() (in module metquest.construct_graph)

E

 	
 	execute_all_codes() (in module metquest.execute_metquest)

F

 	
 	find_different_reaction_types() (in module metquest.get_reaction_types)

 	find_important_reactions() (in module metquest.execute_metquest)

 	find_jaccard_between_paths() (in module metquest.execute_metquest)

 	
 	find_pathways() (in module metquest.pathway_assembler)

 	find_pathways_involving_exchange_mets() (in module metquest.execute_metquest)

 	find_pathways_starting_from_source() (in module metquest.execute_metquest)

 	forward_pass() (in module metquest.guided_bfs)

G

 	
 	generate_partitions() (in module metquest.generate_partitions)

M

 	
 	metquest (module)

 	metquest.construct_graph (module)

 	metquest.example (module)

 	metquest.example.run_this_example (module)

 	metquest.execute_metquest (module)

 	
 	metquest.fetch_reactions (module)

 	metquest.generate_partitions (module)

 	metquest.get_reaction_types (module)

 	metquest.guided_bfs (module)

 	metquest.package_data (module)

 	metquest.pathway_assembler (module)

P

 	
 	print_summary() (in module metquest.execute_metquest)

R

 	
 	run_this_example() (in module metquest.example.run_this_example)

S

 	
 	segregate_reactions_from_models() (in module metquest.fetch_reactions)

W

 	
 	write_output_to_file() (in module metquest.execute_metquest)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to MetQuest’s documentation!

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

