
MetaModels Documentation
Release 2.0.0

Team MetaModels

Oct 25, 2020

Contents

1 Manual 2
1.1 Introduction to MetaModels . 2
1.2 Install and update MetaModels . 3
1.3 The first MetaModel . 5

2 Cookbook 11
2.1 MetaModels “cookbook” . 11

3 Reference 17
3.1 MetaModels API . 17
3.2 MetaModels reference . 17

4 Indices and tables 18

i

MetaModels Documentation, Release 2.0.0

This is the official documentation of MetaModels, an extension for the Contao Content Management System.

This documentation is split into three sections:

In the Manual you find general documentation about MetaModels.

In the Cookbook you find specific solutions for specific needs.

In the Reference you find reference information like a list of events.

If you want to contribute, too, please click the „Edit on GitHub“ link in the upper right corner or visit our GitHub
project page.

Contents 1

https://contao.org
https://github.com/MetaModels/docs
https://github.com/MetaModels/docs

CHAPTER 1

Manual

1.1 Introduction to MetaModels

1.1.1 What are MetaModels?

MetaModels is an extension for the Contao CMS. This extension enables you to input a large variety of structured
data and display it on your website following different criteria such as list and detail views, filtering, sorting,
pagination, multilingualism and many more..

“Structured data” means content, which is usually stored in a database scheme with different tables and relations.
MetaModels supports different types of field types (attributes) as for example text, selects, check boxes, radio
buttons, integers/decimal, yes/no fields, file selection etc.

Possible applications for such data content are in the fields of product catalogues, events, menues, adress or
employee lists, houses and rental properties, picture galleries or multilingual text/image content.

With MetaModels, the data models can be created completely in the Contao backend. There is no need for you to
code, as for a specific extension. Both the creation of the input masks for the backend as well as the output for the
frontend with optional filters belongs to the creation of a MetaModel.

The MetaModels extension features a high flexibility for data input and output and thereby covers a lot of specific
needs. You can find more details in rst_features. Also have a look at some MetaModels show cases or check the
Contao forum for further show cases introduced in the german forum.

1.1.2 History of MetaModels

Metamodels started out as the next generation of the famous Catalog extension.

Over time ‘Catalog’ developed into a complex extension and offered many possibilities combined with Contao.
But unfortunately it became more and more difficult to maintain the code and to implement new functions.

From the experiences we gained with the development of Catalog 1 and Catalog 2, it became clear to us, that we
needed to start from scratch.

That’s why we developed “MetaModels”: a totally new extension influenced by many modern programming
paradigms. Our goal was to develop an extension with a flexible and extensible code base.

The current Metamodels version 2.0 is the result of many hours of discussion about what is “the best solution”
and hard programming work.

2

https://now.metamodel.me/en/showcase
https://community.contao.org/de/showthread.php?40208-Stellt-eure-MetaModel-Websites-vor/

MetaModels Documentation, Release 2.0.0

1.1.3 MetaModels in comparison with other tools

MetaModels works well with the division of labour between administrator and editor which means: the adminis-
trator or developer creates one or multiple MetaModels with input masks and output functions and the editor(s)
can add the content as they are already used to from other areas of the Contao backend.

The input masks allow you to accurately specify which data has to be entered (or can be entered) and how.
The extensions “[dma_elementgenerator]” or “[rocksolid-custom-elements]” also provide similar functions. The
difference is that MetaModels will allow you to even display complex data structures and additionally provides
you with various functions for output and filtering.

Before starting a new project you might wonder whether it is better to develop your own extension instead of
using MetaModels. But there is no general answer to this question, because both solutions will enable you to
solve various problems. The following aspects might help you to make your decision:

Pro developing own extension: Is it required to develop a product which can be marketed, as for example a
commercial extension which can be made available to other Contao users at the push of a button? Then you
should consider developing your own specific extension. The basic requirements to do so are appropriate skills in
PHP programming and knowledge of the Contao API.

Pro MetaModels: In case that you want to implement a very individual solution which can be quickly customised
in the Contao backend, MetaModels is certainly a good choice. If you also need specific functions e.g. supporting
multilingualism, MetaModels can play fully on its strengths. MetaModels supports users to develop a solution
without programming. But it should be noted that only with some basic knowledge in PHP, HTML, and SQL
databases, you will be able to make fully use of the opportunities provided by MetaModels.

1.1.4 Resources

• MetaModels project website

• MetaModels on Github

• MetaModels manual on Github

• MetaModels Contao Wiki

• MetaModels Contao community subforum

• MetaModels IRC Channel on freenode #contao.mm

1.2 Install and update MetaModels

The current MetaModels 2.1 is extensively tested and approved for LTS 4.4.

MetaModels 2.2 for Contao 4.9 (new LTS) is in progress - but can be installed immediately. For more information
see Installing MM 2.2

The installation of MM 2.1 requires PHP version 7.1 or higher - PHP 7.2 is recommended.

MetaModels 2.1 can be installed via the Contao-Manager or via the console via Composer. see the following
section.

See also:

For a re-financing of the extensive work, the MM team asks for financial Gift. The scope of the project to be
realised should be taken as a guideline. and about 10% will be taken into account - based on the experience of the
last grants, are the amounts between 100? and 500? (net) - an invoice incl. VAT will of course always be is on
display. More. . .

1.2. Install and update MetaModels 3

https://now.metamodel.me
https://github.com/MetaModels
https://github.com/MetaModels/docs
http://en.contaowiki.org/MetaModels
https://community.contao.org/en/forumdisplay.php?184-MetaModels
irc://chat.freenode.net/#contao.mm
https://now.metamodel.me/de/unterstuetzer/spenden

MetaModels Documentation, Release 2.0.0

1.2.1 Installation of MM 2.2

MetaModels 2.2 brings full compatibility with Contao 4.9 and several features and Optimizations. For example,
MM 2.2 is compatible with the strict mode of higher MySQL versions or current MariaDB or manual file sorting.

The installation requirements for MetaModels 2.2 are

• a running Contao 4.9.x (LTS) and

• PHP 7.2/7.3

• MySQL from 5.5.5 (InnoDB), MariaDB

MetaModels 2.2 is now ready for use and can be started via the Composer (console) or the Contao Manager can
be installed. get access to the currently protected repository about our “eary adopter program” - more about this
under Fundrasing on the MM website.

Further features of MM 2.2 (will be added continuously):

• compatible with the strict mode of MySQL and MariaDB

• manual file sorting (including translated files)

1.2.2 Installing MM 2.1

The installation requirements for MetaModels 2.1 are:

• a running Contao 4.4.x (LTS) and

• PHP 7.1/7.2

• MySQL from 5.5.5 (InnoDB), MariaDB (without strict mode)

Higher versions of Contao and/or PHP are possible, but not officially supported.

In the Contao manager you can enter metamodels/ to get all available packages are listed. The basic package
metamodels/core has to be installed - and in addition additional attributes and filters can be added depending on
the task.

In addition to the individual packages, there are bundles which contain different packages for a simplified instal-
lation.

For an introduction to MetaModels we recommend the bundle metamodels/bundle_start - herewith the core as well
as the most important attributes and filters are defined without e.g. the packages for multilingualism installed.

As in MetaModesls 2.0, there is also the metamodels/bundle_all bundle, which is installed next to the bundle_start
will also install the multilanguage packages (note: the translatedselect packages are also installed). translated tags
are no longer included here, as they are only to be used for special cases).

Further modules like “Register filter”, “Radius search”, “Rating” etc. are available as separate packages to add.

In addition to the Contao Manager, the installation of packages and bundles can be done directly via the console
via Composer possible - e.g. with

php web/contao-manager.phar.php composer require metamodels/core

or

php web/contao-manager.phar.php composer require metamodels/bundle_start

Instead of php you may have to specify the path to the corresponding PHP binary.

After the installation a update of the database is not possible via the install tool of Contao. to forget!

With a conversion (2.0 -> 2.1) or a new installation it is a good opportunity to only use the attributes and filters
which are necessary for the project. Was previously e.g. metamodels/bundle_all in use, you can query the really
used attributes and filters with the following SQL commands:

1.2. Install and update MetaModels 4

https://now.metamodel.me/en/supporters/fundraising#metamodels_2-2

MetaModels Documentation, Release 2.0.0

1 -- Attribute
2 SELECT type FROM `tl_metamodel_attribute` GROUP BY type ORDER BY type
3

4 -- Filter
5 SELECT type FROM `tl_metamodel_filtersetting` GROUP BY type ORDER BY type

1.2.3 Testing of special packages via Composer

The bundle ‘bundle_all’ contains all currently available and released MetaModels packages. Additionally there
are packages with bugfixes or brandnew functions that have to be tested. For the MetaModels core this could be
e.g. a package called “dev-hotfix-xyz”. You can see those packages inter alia on Github within the corresponding
repository (e.g. MetaModels/core) in the ‘branches’ tab.

In case that you want to test a package like this, you’ll have to separately select and install it in the package
management. For the selection in the package management, check the checkbox “dependencies i nstalled” and
then click on the corresponding package, e.g. ‘metamodels/core’ and aditionally in the following options click on
e.g. ‘dev-hotfix-xyz’.

After “Reserve package for installation” you’ll have to make some small changes to Composer-JSON. To do this
go to the package manager to “settings” and there click onto “expert mode”. The displayed JSON file has to be
extended with the entry “as 2.0.0” within the node “require”. If you happen to have several extra packages you
have to do this for every entry.

for example: "metamodels/core": "^2.1" modify to "metamodels/core": "dev-hotfix/
2.1.25 as 2.1.25"

After the installation via “update packages” you should delete the Composer cache in the “settings” of the package
management.

As MetaModels is closely interlinked with the DC_general (DCG), you will frequently need to update to a newer
version here as well for testing. The procedure is the same as for MetaModels including the adjustment of the
JSON entry with the “as 2.0.0”.

To come back to the initial version , just delete the package in the package management.

Please never forget to provide the MetaModels developer team with your valuable feedback after your test on
Github.

1.3 The first MetaModel

1.3.1 Install with composer

You’ll need the MetaModels core and some attributes / filter to get MetaModels running. In you composer search
metamodels/core an metamodels/bundle_all to install the core and all bundles and filters. Don’t
forget to run composer install through „Update packages“. When installed, run the database update and your
MetaModels installation is done.

Note: If you know that you don’t need all attributes and/or filter you can install every single package by it’s own.

1.3.2 Create MetaModels

To get started with MetaModels we need at least one MetaModel, jai! We will build a small MetaModel, non
translated, MetaModel for real estate references.

In our example we need two MetaModels:

reference (the MetaModel which contain the real estate objects)

1.3. The first MetaModel 5

https://github.com/MetaModels/core/branches
https://github.com/MetaModels

MetaModels Documentation, Release 2.0.0

category (the MetaModel to define categories for references)

Create reference and category metamodels.

1.3.3 Create attributes

An (empty) MetaModel is just a container for your data objects. But before you can store data in your MetaModel,
you need to define some types of data which you like to store.

In MetaModels there are several „attributes“ to store different kind of data. Most of the time you need at least a
text attribute (e.g. to store a name).

mm_reference

Our reference will contain these attributes:

• Name (text)

• Alias (alias)

• Published (checkbox)

• Description (longtext)

• Keyfacts (tabletext)

• Category (multiple select)

• Highlight-Picture (file)

• Picture Gallery (file, multiselect)

Name

Attribute Type text

Column Name name

Name Name

Description Name of reference

Alias

The alias is an (optional) unique Name / identifier for the data record.

Attribute Type alias

Column Name alias

Name Alias

Unique Yes

Description Alias of reference

Alias-Fields Name [text]

Published

Attribute Type checkbox

Column Name published

Name Published

Published yes

Description

Attribute Type longtext

1.3. The first MetaModel 6

MetaModels Documentation, Release 2.0.0

Column Name description

Name Description

Description Description of reference

Keyfacts

Attribute Type tabletext

Column Name keyfacts

Name Keyfacts

Label Entry

Width 500

Category

Attribute Type multi select

Column Name category

Name Category

Description Select a category for the reference

Database table mm_category

Currently, we haven’t added attributes to our mm_category MetaModel. So for the moment leave the other
selects blank, we’ll get back later.

Highlight picture

Attribute type file

column name picture_highlight

Name Highlight picture

Customize filetree (optional) select a „content“ folder where the reference pictures are stored

Gallery

Attribute type file

column name picture_gallery

Name Gallery

Customize filetree (optional) select a „content“ folder where the reference gallery pictures are
stored

multiselect yes

mm_category

For our category MetaModel we just need four attributes:

• name (text; „name“)

• alias (alias; „alias“)

• published (checkbox; „published“)

• description (longtext; „description“)

Create the attributes as you have just learned in the reference MetaModel.

1.3. The first MetaModel 7

MetaModels Documentation, Release 2.0.0

Select configuration

Early, we introduced in our „reference“ MetaModel a select attribute but leaved it’s configuration nearly blank.

The real power of MetaModel now gets obvious here. With a simple select attribute you can easily connect
MetaModels (or any other sql-table) and optional filter the objects. Filter. . . ? We’ll talk about this later.

Edit the „multi select“ attribute in your „References“.

Choose:

table mm_category

Name name - text

Alias alias - alias

Sorting sorting

1.3.4 Create Rendersettings

For now, we have two MetaModel with some attributes and a link between booth. But we didn’t want just to store
some data, we also like to display them.

A render setting contains some global settings, attributes you like to display and there settings. No matter if you
like to display data in the backend or fronted you need at least one render setting. But we recommend to create at
least one setting for the backend and one for the frontend.

Note: Prefix your render setting name with BE / FE for easy relocating*.

Basic-settings

Note: MetaModels provides a set of well organized, solid templates. There are templates for each render setting
(e.g. metamodel_prerendered). You can create your own templates the contao why (Backend > Templates > Create
> select the template you like to overwrite > Save (maybe with a new / name addition) > Edit > Choose)

-metamodel_prerendered All attributes are rendered with there template and settings (if available) -
metamodel_unrendered All attributes are rendered in „raw“ to the frontend (the settings of the child attributes
are

ignored)

Output Format:

-HTML 5 Renders as HTML5 content (This is the default format in Contao and therefore suggested). -XHTML
Renders as xhtml (this format is deprecated in Contao and therefore not suggested). -Text Renders the „content“
as plaintext.

Jump-to-Page

The jump-to-page comes into the game when we like to display our references as list with a detail link to one item.
So you need to define a jump-to-page where the user gets redirected if he clicks on a „detail“ link of one of our
reference objects.

The filter setting define the rules for the target, your detail page.

Expert-settings

hide empty entries yes

hide labels yes

1.3. The first MetaModel 8

MetaModels Documentation, Release 2.0.0

Create a rendersetting (backend)

Go to the „render settings“ of „reference“.

• Create a render setting called „BE: references“

• Add „all attributes“

• After adding, activate „name“ and „category“

Note: When you (later) add attributes to your MetaModel you need to add them also in your render setting.*

Create a rendersetting (frontend list)

Go to the „render settings“ of „reference“.

• Create a render setting called „FE: references list“

• Add „all attributes“

• After adding, activate „name“, „category“, „picture_highlight“

Create a rendersetting (frontend detail)

Go to the „render settings“ of „reference“.

• Create a render setting called „FE: reference detail“

• Add „all attributes“

• After adding, activate „name“, „description“, „category“, „picture_highlight“, „picture_gallery“

1.3.5 Input Screens

For now there are two MetaModels with some Attributes and Rendersetting. But how do we get data in our
MetaModels? With input screens!

Input Screens could hold a collection of these attributes which are necessary to grep some data. Most times you
just add all attributes in one Input Screen, but with the power of different input screen you can create different edit
masks for different kind of user(groups).

But in our tutorial we just need one input screen for our users.

Basic-settings

So create a Input Screen with the following settings:

Name BE: References

Standard yes

Panel-Layout -leave this empty-

Integration standalone

Backend-Section Content

Render mode Flat

Data manipulation permission We want to allow editing, creating and deleting items - so choose
all three.

1.3. The first MetaModel 9

MetaModels Documentation, Release 2.0.0

Select configuration

Okay. Now we got the empty Input Screen container with a few settings. But to get things working, we need
(remember the render setting!) some attributes in it.

Switch to the „settings“ of your currently created Input Screen and choose „add all“.

Define Attribute settings

Our input screen is ready. But we need tweak the attributes a little bit. For example we always want a name,
description and Highlight Picture.

To get this done, we choose in these attribute settings the „mandatory“.

Grouping and sorting settings

In the grouping & sorting section you need to create at least one object to sort & maybe group your entries.

For example: “Enable manual sorting” without grouping.

1.3.6 View conditions

View conditions are the easy part in MetaModels. But, you might guess that you also need here at least one to get
things work.

The view conditions define who could see and use which render setting and input screen.

Define a view condition

Define one view condition with following settings:

member-group -leave this empty-

user-group administrator

input screen BE: Referenz

Rendersetting BE: Referenz

1.3.7 We are ready to enter Data

Some time ago, we started with just a MetaModels package and already arrived to create data. Easy, hm?

Continue to the new „Referenz“ entry in your „content“ navigation and add a first item.

1.3.8 Filter Setting

(Todo)

1.3. The first MetaModel 10

CHAPTER 2

Cookbook

2.1 MetaModels “cookbook”

Our MetaModels “cookbook” provides you with numerous snippets, tips and tricks on how to best use MetaMod-
els.

We are happy to include interesting and creative solutions to our list - please send your “receipts” or links to the
forum or other websites to the following email:

2.1.1 MetaModels checklists

Short checklists for you to review if s.th. doesn’t work as expected.

Start with MetaModels

You should consider some basic things when you start with MetaModels.

The MetaModels project is running quite stable - nevertheless it is in constant development. In interaction with
other components, such as the DC_general (DCG) or the Contao core, there may be a data loss. That’s why it is
highly recommended to set up a regular backup.

Checklist:

Did you install the current version of MetaModels and DCG (preferably via Composer)?

In Contao “System settings” activate the checkboxes “Bypass the internal cache” in the section
“Global configuration” and also “Display error messages” in the section “Security settings”. Sub-
sequently purge all the caches.

Set up a regular backup

For known bugs and errors take a look on our forum or on Github

Filter is not displayed

A desired filter is not displayed on the website.

Checklist:

11

https://community.contao.org/en/forumdisplay.php?184-MetaModels
https://github.com/issues?user=MetaModels

MetaModels Documentation, Release 2.0.0

Did you create the filter setting?

Did you enable the filter setting?

Is the filter setting selected in your FE or CE module (“Filter settings to apply”)?

Is the filter rule activated in your FE or CE module (attributes)?

Is the FE or CE module set to activated/visible?

An attribute isn’t displayed following a modification

After the modification of an attribute (e.g. attribute type) it isn’t displayed (anymore) on the website.

Checklist:

Check the attribute listings in the render settings and input screens

Delete the respective attribute in the render settings and add it as new again

If necessary, enter the values again into the input mask after the modification.

Check the debug output whether the attribute is output in the template

2.1.2 Input mask: populate fields with pre-defined values

The input fields in the input masks can be already filled in with pre-defined standard values. This can greatly
facilitate data entry for the user, when creating new data records.

The metamodels input fields can be (almost) used in the same way as the input fields of the Contao core or common
Contao extensions which have been created with a DCA array. There are some differences because MetaModels
generates fields dynamically by the dc-general.

You can create pre-defined values with the key “default” added to the dc-array. The dc-array can be amended
either by an entry in the file “dcaconfig.php” in the folder “/system/config/” or if there is an own module folder in
the file “config.php”.

Appropriate entries are already set up in the module “Metamodels-Boilerplate” in the file “config.php”.

To enter a pre-defined value, you need to know the (internal) name of the MetaModel and the column name of the
attribute. This informations may be given with an array entry in the following general form:

1 <?php
2 $GLOBALS['TL_DCA']['<MM-Table-Name>']['fields']['<Field-Column-Name>']['default']

→˓= <Value>;

E.g. for an email field ([text]) from mm_first_index the default value could be set up like this:

1 <?php
2 $GLOBALS['TL_DCA']['mm_employeelist']['fields']['email']['default'] = '@mmtest.com

→˓';

There are specifications for individual attribute types. Here is in which form the values are expected:

• Text: Text in inverted commas e.g. ‘@mmtest.com’ ...['default'] = '@mmtest.com';

• Timestamp: Integer for the timestamp e.g. 1463657005 or PHP function time() ...['default'] =
1463657005; or ...['default'] = time();

• Select: Integer of the ID of the value in inverted commas ...['default'] = '2';

• Multiple selection: Array with alias values from the selected alias column ...['default'] =
array('purchase', 'marketing');

• Checkbox: true ...['default'] = true;

2.1. MetaModels “cookbook” 12

https://github.com/MetaModels/boilerplate
mailto:'@mmtest.com

MetaModels Documentation, Release 2.0.0

As you can see from the attribute “Timestamp”, dynamic specifications are feasible. It would be possible to use
existing values from MetaModels and to output them - if necessary with a calculation - as default. The methods
of the API (ref_api_interf_mm) are available to you in order to access MetaModels.

2.1.3 Input screens: custom RegEx test

You can implement your own RegEx validation for a text input field in an input screen with the following event
listener.

To implement it, respectively to activate it for the field in the input screen, this validation must be made available
for Contao on-board functionality.

In order to do so, we’ll create the following hook “addCustomRegex” as follows - see API: addCustomRegex

• create a folder for your custom module in /system/modules - e.g. “/metamodels_mycustoms”

• in the folder metamodels_mycustoms add two more folders named “/config” and “/classes”

• in the folder /classes add the file “MyClass.php” as described in Contao API

• in the folder /config add the file “config.php” as described in Contao API

• additionally in the folder /config the file “event_listeners.php” - the key of the array $options must be the
same as the value obtained from testing of $strRegexp in /MyClass (‘zip’)

• after you have created all the files and filled them with code, you can create the autoload.php by using
“Autoload creator” under “developer tools” in the Contao back end.

The entry “ZIP” should now be available in the settings of an input field of an attribute of type “text” when the
Regex test is selected. If not, purge all the caches in the back end and check the data if necessary.

Source codes

You’ll find the following source code in the files:

File /system/modules/metamodels_mycustoms/classes/MyClass.php

1 <?php
2 class MyClass
3 {
4 public function myAddCustomRegexp($strRegexp, $varValue, Widget $objWidget)
5 {
6 if ($strRegexp == 'plz')
7 {
8 if (!preg_match('/^[0-9]{4,6}$/', $varValue))
9 {

10 $objWidget->addError('Feld ' . $objWidget->label . ' should
→˓contain a valid ZIP postcode.');

(continues on next page)

2.1. MetaModels “cookbook” 13

https://docs.contao.org/books/api/extensions/hooks/addCustomRegexp.html

MetaModels Documentation, Release 2.0.0

(continued from previous page)

11 }
12

13 return true;
14 }
15

16 return false;
17 }
18 }

File /system/modules/metamodels_mycustoms/config/config.php

1 <?php
2 $GLOBALS['TL_HOOKS']['addCustomRegexp'][] = array('MyClass', 'myAddCustomRegexp');

File /system/modules/metamodels_mycustoms/config/event_listeners.php

1 <?php
2 use

→˓ContaoCommunityAlliance\DcGeneral\Contao\View\Contao2BackendView\Event\GetPropertyOptionsEvent;
→˓

3

4 // Event Listener with priority "-1"
5 return array
6 (
7 GetPropertyOptionsEvent::NAME => array(
8 array(
9 function (GetPropertyOptionsEvent $event) {

10 if (($event->getEnvironment()->getDataDefinition()->getName() !==
→˓'tl_metamodel_dcasetting')

11 || ($event->getPropertyName() !== 'rgxp')) {
12 return;
13 }
14

15 $options = $event->getOptions();
16

17 // Key "zip" equals $strRegexp test in myAddCustomRegexp
18 $options['zip'] = 'ZIP';
19

20 $event->setOptions($options);
21 },
22 -1
23)
24)
25);

The file autoload.php in /system/modules/metamodels_mycustoms/config should look as follows after its genera-
tion:

1 <?php
2 ClassLoader::addClasses(array
3 (
4 // Classes
5 'MyClass' => 'system/modules/metamodels_mycustoms/classes/MyClass.php',
6));

Notice: the RegEx validation was taken from the Contao manual und represents just a simple test method for
german ZIP codes. You can find more accurate RegEx checks online or you could also implement a check against
a list with assigned zip code numbers.

2.1. MetaModels “cookbook” 14

MetaModels Documentation, Release 2.0.0

2.1.4 View condition: Display s.th., if the checkbox is not activated

If you want to create a view condition, which enables you to dispay a field, if a checkbox is not checked, this will
be not possible with a trigger on the “inactive” value of the checkbox.

This is due to the fact that MetaModels treats the value “unchecked” differently from the Contao core - the Contao
core will store nothing ‘’ for “unchecked” instead of a null(0). This can not be processed by MetaModels or the
DCG at the moment.

This problem can be fixed with a workaround: The visibility is triggered by “checked”, but the test is inverted
with NOT. To achieve that, a condition NOT has to be created in the view conditions and inside this condition the
test whether the checkbox is “active” (see screenshot).

_img/screenshots/cookbook/panels/checkbox-negation_01.jpg

The following two screenshots show the hiding of an email input mask with the checkbox set.

Email shown

_img/screenshots/cookbook/panels/checkbox-negation_02.jpg

Email hidden

_img/screenshots/cookbook/panels/checkbox-negation_03.jpg

2.1.5 Debug templates

If you need a custom template - e.g for displaying a frontend list - or if you want to find out which attribute values
are sent to the template, you can print those attribute values out to the HTML source code. An easy way to do this
is the output of the item array with “print_r” .

The default template is “metamodel_prerendered” or respectively the template, which was selected in the output
render settings.

In case that there is no custom template in use yet, you will have to create a copy of “metamodel_prerendered”
within the Contao folder named “Templates”.

The following code is added to the respective template:

1 <?php
2 echo "<!-- DEBUG START \n";
3 echo "<pre>\n";
4 print_r($this->items->parseAll($this->getFormat(), $this->view));
5 echo "</pre>\n";
6 echo "\n DEBUG END -->";
7 ?>

Subsequently the template should start with the code as follows:

2.1. MetaModels “cookbook” 15

MetaModels Documentation, Release 2.0.0

1 <?php
2 echo "<!-- DEBUG START \n";
3 echo "<pre>\n";
4 print_r($this->items->parseAll($this->getFormat(), $this->view));
5 echo "</pre>\n";
6 echo "\n DEBUG END -->";
7 ?>
8

9 <?php $strRendersettings = isset($this->settings)? 'settings' : 'view'; ?>
10 <?php if (count($this->data)): ?>
11

12 <div class="layout_full">
13

14 <?php foreach ($this->data as $arrItem): ?>
15 <div class="item <?php echo $arrItem['class']; ?>">
16

17 <?php foreach ($arrItem['attributes'] as $field => $strName): ?>
18 //...

If the website with this listing is called in a browser, you should find the debug output in the source code.

Browser rendering can become very slow in case that the output is very extensive. It might then be helpful to
output only one item node.

1 <?php
2 echo "<!-- DEBUG START \n";
3 echo "<pre>\n";
4 // only first node
5 print_r($this->items->parseAll($this->getFormat(), $this->view)[0]);
6 echo "</pre>\n";
7 echo "\n DEBUG END -->";
8 ?>

You can remove the output by commenting out the output block, by deleting it or by switching to another template.

2.1. MetaModels “cookbook” 16

CHAPTER 3

Reference

3.1 MetaModels API

The MetaModels API consists of serveral interfaces which are the only API that should be considered immutable.
Classes of the core and their private, protected and even public methods should generally NOT be considered
immutable and may be changed over minor versions and patch releases.

During the alpha and beta phase of a new MetaModels major release, there may be changes to interfaces as well.
Therefore the API should not be considered immutable during major development cycles.

An deprecation phase will be provided during minor cycles, denoting that a certain feature of the API will get
dropped in the next major release. We will try to put the replacement already in place but for bigger breaks this
will not be possible. The breaks will however be announced in an draft, along with an upgrade guide, prior to
release as soon as the new interfaces are defined.

3.1.1 Core Interfaces

3.2 MetaModels reference

This reference is mainly intended for developers that want to enhance MetaModels with own attributes and/or
filters etc.

17

CHAPTER 4

Indices and tables

• genindex

18

	Manual
	Introduction to MetaModels
	Install and update MetaModels
	The first MetaModel

	Cookbook
	MetaModels “cookbook”

	Reference
	MetaModels API
	MetaModels reference

	Indices and tables

