| 2| METALKSS

MetalK8s Documentation
Release 2.4.0

Scality

Oct 29, 2019

I Quickstart Guide

1 Introduction

2 Setup of the environment

3 Deployment of the Bootstrap node
4 Cluster expansion

5 Accessing cluster services

II Installation Guide

6 Sizing recommendations

III Operational Guide

7 Bootstrap Node Backup and Restoration Procedure

8 Enable IP-in-IP encapsulation

9 1ISO Preparation

10 Upgrade Guide

11 Downgrade Guide

12 Changing the hostname of a MetalK8s node
13 Volume Management

14 Account Administration

IV Developer Guide

15 Architecture Documents

16 Design Documents

17 How to build MetalK8s

18 How to run components locally

19 Development Best Practices

CONTENTS:

11
15

21

23

25

27
31
33
35
37
39
41
43

49

51
53
63
71
75

79

20 Integrating with MetalK8s

V Glossary

Index

89

97

101

Part 1

Quickstart Guide

MetalK8s Documentation, Release 2.4.0

This guide describes how to set up a MetalK8s cluster for experimentation. For production installations,
refer to the Installation Guide. It offers general requirements and describes sizing, configuration, and
deployment. It also explains major concepts central to MetalK8s architecture, and will show how to
access various services after completing the setup.

https://github.com/scality/metalk8s/

MetalK8s Documentation, Release 2.4.0

CHAPTER
ONE

INTRODUCTION

1.1 Concepts

Although being familiar with Kubernetes concepts is recommended, the necessary concepts to grasp
before installing a MetalK8s cluster are presented here.

1.1.1 Nodes

Nodes are Kubernetes worker machines, which allow running containers and can be managed by the
cluster (control-plane services, described below).

1.1.2 Control-plane and workload-plane

This dichotomy is central to MetalK8s, and often referred to in other Kubernetes concepts.

The control-plane is the set of machines (called nodes) and the services running there that make up
the essential Kubernetes functionality for running containerized applications, managing declarative ob-
jects, and providing authentication/authorization to end-users as well as services. The main components
making up a Kubernetes control-plane are:

e API Server
e Scheduler
* Controller Manager

The workload-plane indicates the set of nodes where applications will be deployed via Kubernetes
objects, managed by services provided by the control-plane.

Note: Nodes may belong to both planes, so that one can run applications alongside the control-plane
services.

Control-plane nodes often are responsible for providing storage for API Server, by running etcd. This
responsibility may be offloaded to other nodes from the workload-plane (without the etcd taint).

1.1.3 Node roles

Determining a Node responsibilities is achieved using roles. Roles are stored in Node manifests using
labels, of the form node-role.kubernetes.io/<role-name>: ''.

MetalK8s uses five different roles, that may be combined freely:

node-role.kubernetes.io/master The master role marks a control-plane member. Control-plane ser-
vices (see above) can only be scheduled on master nodes.

node-role.kubernetes.io/etcd The etcd role marks a node running etcd for storage of API Server.

https://kubernetes.io/docs/concepts/

MetalK8s Documentation, Release 2.4.0

node-role.kubernetes.io/node This role marks a workload-plane node. It is included implicitly by all
other roles.

node-role.kubernetes.io/infra The infra role is specific to MetalK8s. It serves for marking nodes
where non-critical services provided by the cluster (monitoring stack, Uls, etc.) are running.

node-role.kubernetes.io/bootstrap This marks the Bootstrap node. This node is unique in the cluster,
and is solely responsible for the following services:

* An RPM package repository used by cluster members
* An OCI registry for Pods images
* A Salt Master and its associated SaltAPI

In practice, this role will be used in conjunction with the master and etcd roles for bootstrapping
the control-plane.

1.1.4 Node taints

Taints are complementary to roles. When a taint, or a set of taints, are applied to a Node, only Pods with
the corresponding tolerations can be scheduled on that Node.

Taints allow dedicating Nodes to specific use-cases, such as having Nodes dedicated to running control-
plane services.

1.1.5 Networks

A MetalK8s cluster requires a physical network for both the control-plane and the workload-plane Nodes.
Although these may be the same network, the distinction will still be made in further references to these
networks, and when referring to a Node IP address. Each Node in the cluster must belong to these two
networks.

The control-plane network will serve for cluster services to communicate with each other. The workload-
plane network will serve for exposing applications, including the ones in infra Nodes, to the outside
world.

Todo: Reference Ingress

MetalK8s also allows one to configure virtual networks used for internal communications:
* A network for Pods, defaulting to 10.233.0.0/16
* A network for Services, defaulting to 10.96.0.0/12

In case of conflicts with the existing infrastructure, make sure to choose other ranges during the Bootstrap
configuration.

1.2 Installation plan

In this guide, the depicted installation procedure is for a medium sized cluster, using three control-plane
nodes and two worker nodes. Refer to the Installation Guide for extensive explanations of possible cluster
architectures.

Note: This image depicts the architecture deployed with this Quickstart guide.

6 Chapter 1. Introduction

MetalK8s Documentation, Release 2.4.0

Control plane Workload plane

bootstrap

infra infra

ezl

sys pkgs | [sys pkgs J [sys phgs J | sys phas . | svs pkgs]
Kubect|]

bootstrap
s salt-master
s repositories
s coredns
master
infra api-server
¢ kube-prometheus controller-manager
L] metalkBs-ui scheduler

. coredns

sys pkgs
. kubelet
e containerd
e salt-minion
e calico-cni

Todo:
* describe architecture schema, include legend

* improve architecture explanation and presentation

The installation process can be broken down into the following steps:
1. Setup of the environment (with requirements and example OpenStack deployment)
2. Deployment of the Bootstrap node

3. Expansion of the cluster from the Bootstrap node

Todo: Include a link to example Solution deployment?

1.2. Installation plan 7

MetalK8s Documentation, Release 2.4.0

8 Chapter 1. Introduction

CHAPTER
TWO

SETUP OF THE ENVIRONMENT

2.1 General requirements

MetalK8s clusters require machines running CentOS / RHEL 7.6 or higher as their operating system.
These machines may be virtual or physical, with no difference in setup procedure.

For this quickstart, we will need 5 machines (or 3, if running workload applications on your control-plane
nodes).

2.1.1 Sizing

Each machine should have at least 2 CPU cores, 4 GB of RAM, and a root partition larger than 40 GB.

For sizing recommendations depending on sample use cases, see the Installation guide.

2.1.2 Proxies

For nodes operating behind a proxy, add the following lines to each cluster member’s /etc/environment
file:

http_proxy=http://user;pass@HTTP proxy IP address>:<port>
https_proxy=http://user;pass@<HTTPS proxy IP address>:<port>
no_proxy=localhost,127.0.0.1,<local IP of each node>

2.1.3 SSH provisioning

Each machine should be accessible through SSH from your host. As part of the Deployment of the Boot-
strap node, a new SSH identity for the Bootstrap node will be generated and shared to other nodes in the
cluster. It is also possible to do it beforehand.

2.1.4 Network provisioning

Each machine needs to be a member of both the control-plane and workload-plane networks, as de-
scribed in Networks. However, these networks can overlap, and nodes need not have distinct IPs for each
plane.

In order to reach the cluster-provided Uls from your host, the host needs to be able to connect to
workload-plane IPs of the machines.

https://github.com/scality/metalk8s
https://www.centos.org
https://access.redhat.com/products/red-hat-enterprise-linux

MetalK8s Documentation, Release 2.4.0

2.1.5 Repositories provisioning
Each machine needs to have repositories properly configured and having access to basic repository pack-
ages (depending on the operating systems).
CentOS:
* base
* extras
* updates
RHEL:
* rhel-7-server-rpms
* rhel-7-server-extras-rpms

* rhel-7-server-optional-rpms

Note: For RHEL you should have a system properly registered.

Note: The repository names and configurations do not necessarily need to be the same as the official
ones but all packages must be made available.

Enable an existing repository:

CentOS:

’yum—config—manager --enable <repo_name> ‘

RHEL:

’subscription—manager repos --enable=<repo_name> ‘

Add a new repository:

’yum—config—manager --add-repo <repo_url> ‘

Note: repo_url can be remote url using prefix http://, https://, ftp://, ... or a local path
using file://.

For more detail(s), refer to the official documentation:
* Enable Optional repositories with RHSM
* Configure repositories with YUM

* Advanced repositories configuration

2.2 Example OpenStack deployment

Todo: Extract the Terraform tooling used in CI for ease of use.

10 Chapter 2. Setup of the environment

https://www.centos.org
https://access.redhat.com/products/red-hat-enterprise-linux
https://access.redhat.com/products/red-hat-enterprise-linux
https://access.redhat.com/solutions/253273
https://www.centos.org
https://access.redhat.com/products/red-hat-enterprise-linux
https://access.redhat.com/solutions/392003
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-configuring_yum_and_yum_repositories#sec-Managing_Yum_Repositories
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-configuring_yum_and_yum_repositories#sec-Setting_repository_Options

CHAPTER
THREE

DEPLOYMENT OF THE BOOTSTRAP NODE

3.1 Preparation

3.1.1 MetalK8s ISO

On your bootstrap node, download the MetalK8s ISO file. Mount this ISO file at the specific following
path:

root@bootstrap $ mkdir -p /srv/scality/metalk8s-2.4.0
root@ootstrap $ mount <path-to-iso> /srv/scality/metalk8s-2.4.0

3.2 Configuration

1. Create the MetalK8s configuration directory.

’root@bootstrap $ mkdir /etc/metalk8s

2. Create the /etc/metalk8s/bootstrap.yaml file. Change the networks, IP address, and hostname
to conform to your infrastructure.

apiVersion: metalk8s.scality.com/v1alpha2
kind: BootstrapConfiguration
networks:
controlPlane: <CIDR-notation>
workloadPlane: <CIDR-notation>
ca:
minion: <hostname-of-the-bootstrap-node>
apiServer:
host: <IP-of-the-bootstrap-node>
archives:
- <path-to-metalk8s-iso>

The archives field is a list of absolute paths to MetalK8s ISO files. When the bootstrap script is executed,
those ISOs are automatically mounted and the system is configured to re-mount them automatically after
a reboot.

Todo:
* Explain the role of this config file and its values

* Add a note about setting HA for apiServer

11

mailto:root@bootstrap
mailto:root@bootstrap

MetalK8s Documentation, Release 2.4.0

3.2.1 SSH provisioning

1. Prepare the MetalK8s PKI directory.

’root@bootstrap $ mkdir -p /etc/metalk8s/pki

2. Generate a passwordless SSH key that will be used for authentication to future new nodes.

’root@bootstrap $ ssh-keygen -t rsa -b 4096 -N '' -f /etc/metalk8s/pki/salt-bootstrap

Warning: Although the key name is not critical (will be re-used afterwards, so make sure
to replace occurences of salt-bootstrap where relevant), this key must exist in the /etc/
metalk8s/pki directory.

3. Accept the new identity on future new nodes (run from your host). First, retrieve the public key
from the Bootstrap node.

user@host $ scp root@bootstrap:/etc/metalk8s/pki/salt-bootstrap.pub /tmp/salt-bootstrap.pub

Then, authorize this public key on each new node (this command assumes a functional SSH ac-
cess from your host to the target node). Repeat until all nodes accept SSH connections from the
Bootstrap node.

’user@host $ ssh-copy-id -i /tmp/salt-bootstrap.pub root@<node_hostname>

3.3 Installation

3.3.1 Run the install

Run the bootstrap script to install binaries and services required on the Bootstrap node.

root@ootstrap $ /srv/scality/metalk8s-2.4.0/bootstrap.sh

Warning: In case of virtual network (or any network which enforces source and destination fields of
IP packets to correspond to the MAC address(es)) IP-in-IP needs to be enabled.

3.3.2 Provision storage for Prometheus services

After bootstrapping the cluster, the Prometheus and AlertManager services used to monitor the sys-
tem will not be running (the respective Pods will remain in Pending state), because they require persis-
tent storage to be available. You can either provision these storage volumes on the bootstrap node, or
later on other nodes joining the cluster. Templates for the required volumes are available in examples/
prometheus-sparse.yaml. Note, however, these templates use the sparseLoopDevice Volume type, which
is not suitable for production installations. Refer to Volume Management for more information on how to
provision persistent storage.

Note: When deploying using Vagrant, persistent volumes for Prometheus and AlertManager are already
provisioned.

12 Chapter 3. Deployment of the Bootstrap node

mailto:root@bootstrap

MetalK8s Documentation, Release 2.4.0

3.3.3 Validate the install

Check if all Pods on the Bootstrap node are in the Running state.

Note: On all subsequent kubectl commands, you may omit the --kubeconfig argument if you have
exported the KUBECONFIG environment variable set to the path of the administrator kubeconfig file for the
cluster.

By default, this path is /etc/kubernetes/admin. conf.

root@bootstrap $ export KUBECONFIG=/etc/kubernetes/admin.conf

root@bootstrap $ kubectl get nodes --kubeconfig /etc/kubernetes/admin.conf
NAME STATUS ROLES AGE VERSION
bootstrap Ready bootstrap,etcd,infra,master 17m vl1.11.7

root@ootstrap $ kubectl get pods --all-namespaces -o wide --kubeconfig /etc/kubernetes/admin.conf

NAMESPACE NAME READY STATUS RESTARTS.
< AGE IP NODE NOMINATED NODE

kube-system calico-kube-controllers-b7bc4449f-6rh2q 1/1 Running 0 =
— 4m 10.233.132.65 bootstrap <none>

kube-system calico-node-r2qgxs 1/1 Running 0 =
— 4m 172.21.254.12 bootstrap <none>

kube-system coredns-7475f8d796-8h41t 1/1 Running 0 =
— 4m 10.233.132.67 bootstrap <none>

kube-system coredns-7475f8d796-m5zz9 1/1 Running 0 =
< 4m 10.233.132.66 bootstrap <none>

kube-system etcd-bootstrap 1/1 Running 0 =
— 4m 172.21.254.12 bootstrap <none>

kube-system kube-apiserver-bootstrap 2/2 Running @ =
— 4m 172.21.254.12 bootstrap <none>

kube-system kube-controller-manager-bootstrap 1/1 Running 0 =
< 4m 172.21.254.12 bootstrap <none>

kube-system kube-proxy-vb74b 1/1 Running 0 -
— 4m 172.21.254.12 bootstrap <none>

kube-system kube-scheduler-bootstrap 1/1 Running 0 o
— 4m 172.21.254.12 bootstrap <none>

kube-system repositories-bootstrap 1/1 Running 0 -
< 4m 172.21.254.12 bootstrap <none>

kube-system salt-master-bootstrap 2/2 Running 0 -
— 4m 172.21.254.12 bootstrap <none>

metalk8s-ingress nginx-ingress-controller-461xd 1/1 Running 0 =
— 4m 10.233.132.73 bootstrap <none>

metalk8s-ingress nginx-ingress-default-backend-5449d5b699-8bkbr 1/1 Running 0 _
— 4m 10.233.132.74 bootstrap <none>

metalk8s-monitoring alertmanager-main-0 2/2 Running 0 -
< 4m 10.233.132.70 bootstrap <none>

metalk8s-monitoring alertmanager-main-1 2/2 Running 0 =
— 3m 10.233.132.76 bootstrap <none>

metalk8s-monitoring alertmanager-main-2 2/2 Running 0 _
— 3m 10.233.132.77 bootstrap <none>

metalk8s-monitoring grafana-5cb4945b7b-1tdrz 1/1 Running 0 =
< 4m 10.233.132.71 bootstrap <none>

metalk8s-monitoring kube-state-metrics-588d699b56-d6crn 4/4 Running 0 o
— 3m 10.233.132.75 bootstrap <none>

metalk8s-monitoring node-exporter-4jdgv 2/2 Running 0 =
< 4m 172.21.254.12 bootstrap <none>

metalk8s-monitoring prometheus-k8s-0 3/3 Running 1 =
< 4m 10.233.132.72 bootstrap <none>

metalk8s-monitoring prometheus-k8s-1 3/3 Running 1 =
— 3m 10.233.132.78 bootstrap <none>

(continues on next page)

3.3. Installation

13

MetalK8s Documentation, Release 2.4.0

(continued from previous page)

metalk8s-monitoring prometheus-operator-64477d4bff-xxjw2 1/1 Running 0 =
— 4m 10.233.132.68 bootstrap <none>

Check that you can access the MetalK8s GUI, following this procedure.

3.3.4 Troubleshooting

Todo:
* Mention /var/log/metalk8s-bootstrap.log and the command-line options for verbosity.
* Add Salt master/minion logs, and explain how to run a specific state from the Salt master.

* Then refer to a troubleshooting section in the installation guide.

14 Chapter 3. Deployment of the Bootstrap node

CHAPTER
FOUR

CLUSTER EXPANSION

Once the Bootstrap node has been installed (see Deployment of the Bootstrap node), the cluster can be
expanded. Unlike the kubeadm join approach which relies on bootstrap tokens and manual operations
on each node, MetalK8s uses Salt SSH to setup new Nodes through declarative configuration, from a
single entrypoint. This operation can be done either through the MetalK8s GUI or the command-line.

4.1 Defining an architecture

See the schema defined in the introduction.

The Bootstrap being already deployed, the deployment of other Nodes will need to happen four times,
twice for control-plane Nodes (bringing up the control-plane to a total of three members), and twice for
workload-plane Nodes.

Todo:
* explain architecture: 3 control-plane + etcd, 2 workers (one being dedicated for infra)

e remind roles and taints from intro

4.2 Adding a node with the MetalK8s GUI

To reach the Ul, refer to this procedure.

4.2.1 Creating a Node object

The first step to adding a Node to a cluster is to declare it in the API. The MetalK8s GUI provides a simple
form for that purpose.

1. Navigate to the Node list page, by clicking the button in the sidebar:

15

https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-join/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/

MetalK8s Documentation, Release 2.4.0

Cluster Status : Everything is up and running

Alerts
Name % Severity ~ Messag
CPUThrottlingHigh 74% thrc
CPUThrottlingHigh 27% thre
DeadMansSwitch @ This is a
KubeControllerManagerDown 9o KubeCol

2. From the Node list (the Bootstrap node should be visible there), click the button labeled “Create a
New Node”:

<4 Create a New Node

Name = Status =

bootstrap Ready

3. Fill the form with relevant information (make sure the SSH provisioning for the Bootstrap node is
done first):

* Name: the hostname of the new Node

* MetalK8s Version: use “2.4.0”

* SSH User: the user for which the Bootstrap has SSH access

* Hostname or IP: the address to use for SSH from the Bootstrap
* SSH Port: the port to use for SSH from the Bootstrap

* SSH Key Path: the path to the private key generated in this procedure

16 Chapter 4. Cluster expansion

MetalK8s Documentation, Release 2.4.0

* Sudo required: whether the SSH deployment will need sudo access

* Roles/Workload Plane: check this box if the new Node should receive workload applications
* Roles/Control Plane: check this box if the new Node should run control-plane services

* Roles/Infra: check this box if the new Node should run infra services

4. Click “Create”. You will be redirected to the Node list page, and will be shown a notification to
confirm the Node creation:

Node Creation x
Node node1 has been created successfully.

MetalK8s Version =

4.2.2 Deploying the Node

After the desired state has been declared, it can be applied to the machine. The MetalK8s GUI uses
SaltAPI to orchestrate the deployment.

1. From the Node list page, any yet-to-be-deployed Node will have a “Deploy” button. Click it to begin
the deployment:

Name < Status ~ Deployment =+

bootstrap Ready

node’ Unknown Deploy

2. Once clicked, the button will change to “Deploying”. Click it again to open the deployment status
page:

€ Back to nodes list

Node Deployment

’ } "20190612071130203596" : [...]
° Node registered

|
o Deployment started
|

o Deploying

~
8y

Detailed events are shown on the right of this page, for advanced users to debug in case of errors.

4.2. Adding a node with the MetalK8s GUI 17

MetalK8s Documentation, Release 2.4.0

Todo:
* UI should parse these events further

¢ Events should be documented

3. When complete, click on “Back to nodes list”. The new Node should have a Ready status.

Todo:

* troubleshooting (example errors)

4.3 Adding a node from the command-line

4.3.1 Creating a manifest

Adding a node requires the creation of a manifest file, following the template below:

apiVersion: vl
kind: Node
metadata:
name: <node_name>
annotations:
metalk8s.scality.com/ssh-key-path: /etc/metalk8s/pki/salt-bootstrap
metalk8s.scality.com/ssh-host: <node control-plane IP>
metalk8s.scality.com/ssh-sudo: 'false'’
labels:
metalk8s.scality.com/version: '2.4.0'
<role labels>
spec:
taints: <taints>

The combination of <role labels> and <taints> will determine what is installed and deployed on the
Node.

A node exclusively in the control-plane with etcd storage will have:

[...1]

metadata:
[...1

labels:
node-role.kubernetes.io/master:
node-role.kubernetes.io/etcd: '’

[. .. (other labels except roles)]
spec:
[...1]
taints:

- effect: NoSchedule

key: node-role.kubernetes.io/master
- effect: NoSchedule

key: node-role.kubernetes.io/etcd

A worker node dedicated to infra services (see Introduction) will use:

[...1
metadata:

L...1

(continues on next page)

18 Chapter 4. Cluster expansion

MetalK8s Documentation, Release 2.4.0

(continued from previous page)

labels:
node-role.kubernetes.io/infra: ''
[. .. (other labels except roles)]
spec:
L...1]
taints:

- effect: NoSchedule
key: node-role.kubernetes.io/infra

A simple worker still accepting infra services would use the same role label without the taint.

4.3.2 Creating the Node object

Use kubectl to send the manifest file created before to Kubernetes API.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf apply -f <path-to-node-manifest>
node/<node-name> created

Check that it is available in the API and has the expected roles.

root@bootstrap $ kubectl --kubeconfig /etc/kubernetes/admin.conf get nodes

NAME STATUS ROLES AGE VERSION
bootstrap Ready bootstrap,etcd,infra,master 12d vl.11.7
<node-name> Unknown <expected node roles> 29s

4.3.3 Deploying the node

Open a terminal in the Salt Master container using this procedure.

Check that SSH access from the Salt Master to the new node is properly configured (see SSH provision-
ing).

root@salt-master-bootstrap $ salt-ssh --roster kubernetes <node-name> test.ping
<node-name>:
True

Start the node deployment.

root@salt-master-bootstrap $ salt-run state.orchestrate metalk8s.orchestrate.deploy_node \
saltenv=metalk8s-2.4.0 \
pillar="'{"orchestrate”: {"node_name”: "<node-name>"}}'

. lots of output ...
Summary for bootstrap_master
Succeeded: 7 (changed=7)
Failed: 0
Total states run: 7
Total run time: 121.468 s

4.3.4 Troubleshooting

Todo:

* explain orchestrate output and how to find errors

4.3. Adding a node from the command-line 19

mailto:root@salt-master-bootstrap

MetalK8s Documentation, Release 2.4.0

* point to log files

4.4 Checking the cluster health

During the expansion, it is recommended to check the cluster state between each node addition.

When expanding the control-plane, one can check the etcd cluster health:

root@bootstrap $ kubectl -n kube-system exec -ti etcd-bootstrap sh --kubeconfig /etc/kubernetes/

—admin.conf

root@etcd-bootstrap $ etcdctl --endpoints=https://[127.0.0.11:2379 \
--ca-file=/etc/kubernetes/pki/etcd/ca.crt \
--cert-file=/etc/kubernetes/pki/etcd/healthcheck-client.crt \
--key-file=/etc/kubernetes/pki/etcd/healthcheck-client.key \
cluster-health

member 46af28cad4af6c465 is healthy: got healthy result from https://172.21.254.6:2379
member 81de403db853107e is healthy: got healthy result from https://172.21.254.7:2379
member 8878627efedf46be is healthy: got healthy result from https://172.21.254.8:2379
cluster is healthy

Todo:

* add sanity checks for Pods lists (also in the relevant sections in services)

20 Chapter 4. Cluster expansion

CHAPTER
FIVE

ACCESSING CLUSTER SERVICES

5.1 MetalK8s GUI

This GUI is deployed during the Bootstrap installation, and can be used for operating, extending and
upgrading a MetalK8s cluster.

5.1.1 Gather required information

1. Get the control plane IP of the bootstrap node.

root@bootstrap $ salt-call grains.get metalk8s:control_plane_ip
local:
<the control plane IP>

5.1.2 Use MetalK8s Ul

Once you have gathered the IP address and the port number, open your web browser and navigate to the
URL https://<ip>:8443, replacing placeholders with the values retrieved before.

The login page is loaded, and should resemble the following:

¢» SCALITY

21

MetalK8s Documentation, Release 2.4.0

Log in with the default login / password (admin / admin).

The landing page should look like this:

¢3 SCALITY META LATFORM

Cluster Status : Everything is up and running

Alerts

Name % Severity = Message + Active Since =

CPUThrottlingHigh 74% throttling of CPU in namespace monitoring for node-exporter. 6/12/2019 1:05:17 AM
CPUThrottlingHigh 27% throttling of CPU in namespace monitoring for prometheus-config-reloader. 6/12/2019 9:03:47 AM
DeadMansSwitch @ This is a DeadMansSwitch meant to ensure that the entire alerting pipeline is functional. 6/12/2019 1:03:45 AM
KubeControllerManagerDown [] KubeControllerManager has disappeared from Prometheus target discovery. 6/12/2019 1:03:47 AM
KubeSchedulerDown [] KubeScheduler has disappeared from Prometheus target discovery. 6/12/2019 1:03:47 AM
KubeStateMetricsDown [] KubeStateMetrics has disappeared from Prometheus target discovery. 6/12/2019 8:49:47 AM
TargetDown 100% of the kube-scheduler targets are down. 6/12/2019 1:04:45 AM
TargetDown 100% of the kube-controller-manager targets are down. 6/12/2019 1:04:15 AM

This page displays two monitoring indicators:
1. the Cluster Status, which evaluates if control-plane services are all up and running

2. the list of alerts stored in Alertmanager

5.2 Grafana

Grafana is available on the same host as the MetalkK8s UI, under /grafana. Log in with the default
credentials: admin / admin.

5.3 Salt

MetalK8s uses SaltStack to manage the cluster. The Salt Master runs in a Pod on the Bootstrap node.

The Pod name is salt-master-<bootstrap hostname>, and it contains two containers: salt-master and
salt-api.

To interact with the Salt Master with the usual CLIs, open a terminal in the salt-master container (we
assume the Bootstrap hostname to be bootstrap):

root@ootstrap $ kubectl exec -it -n kube-system -c salt-master --kubeconfig /etc/kubernetes/admin.
—conf salt-master-bootstrap bash

Todo:
* how to access / use SaltAPI

* how to get logs from these containers

22 Chapter 5. Accessing cluster services

https://www.saltstack.com/

Part 11

Installation Guide

23

CHAPTER
SIX

SIZING RECOMMENDATIONS

Todo: Evaluate requirements for various architectures

25

MetalK8s Documentation, Release 2.4.0

26 Chapter 6. Sizing recommendations

Part I11

Operational Guide

27

MetalK8s Documentation, Release 2.4.0

This guide describes MetalK8s ISO preparation steps, upgrade and downgrade guidelines, supported
versions and best practices required for operating MetalK8s. Refer to the Installation Guide if you do not
have a working MetalK8s setup.

29

https://github.com/scality/metalk8s/
https://github.com/scality/metalk8s/

MetalK8s Documentation, Release 2.4.0

30

CHAPTER
SEVEN

BOOTSTRAP NODE BACKUP AND RESTORATION PROCEDURE

This section describes how to backup a MetalK8s bootstrap node and how to restore a bootstrap node
from such backup.

7.1 Backup procedure

A backup file is generated at the end of the bootstrap.

To create a new backup file you can run the following command:

’/srv/scality/meta1k8s—X.X.X/backup.sh

Backup archives are stored in /var/lib/metalk8s/.

7.2 Restoration procedure

Warning: You cannot use the restore script if you do not have High Availability apiserver because
some information required to reconfigure the others nodes are stored in the apiserver.

Warning: In case of a 3-node eted cluster (2 nodes + unreachable old bootstrap node) you need to
remove the old bootstrap node from the etcd cluster before running the restore script.

To restore a bootstrap node you need a backup archive and MetalK8s ISOs.

All the ISOs referenced in the bootstrap configuration file (located at /etc/metalk8s/bootstrap.yaml) must
be present.

First mount the ISO and then run the restore script:

/srv/scality/metalk8s-X.X.X/restore.sh --backup-file <backup_archive>

Note: Replace <backup_archive> with the path to the backup archive you want to use.

31

MetalK8s Documentation, Release 2.4.0

32 Chapter 7. Bootstrap Node Backup and Restoration Procedure

CHAPTER
EIGHT

ENABLE IP-IN-IP ENCAPSULATION

By default Calico in MetalK8s is configured to use IP-in-IP encapsulation only for cross-subnet communi-
cation.

[P-in-IP is needed for any network which enforces source and destination fields of IP packets to corre-
spond to the MAC address(es).

To always use IP-in-IP encapsulation run the following command:

$ kubectl --kubeconfig /etc/kubernetes/admin.conf \
patch ippool default-ipv4-ippool --type=merge \
--patch '{"spec”: {"ipipMode"”: "Always"}}'

For more details refer to IP-in-IP Calico configuration.

33

https://docs.projectcalico.org/
https://en.wikipedia.org/wiki/IP_in_IP
https://en.wikipedia.org/wiki/IP_in_IP
https://en.wikipedia.org/wiki/IP_in_IP
https://docs.projectcalico.org/v3.7/networking/vxlan-ipip

MetalK8s Documentation, Release 2.4.0

34 Chapter 8. Enable IP-in-IP encapsulation

CHAPTER
NINE

ISO PREPARATION

This section describes a reliable way for provisioning a new MetalK8s ISO for upgrade or downgrade.

To provision a new Metalk8s ISO you need to run the utility script shipped with the current installation:

/srv/scality/metalk8s-X.X.X/iso-manager.sh -a <path_to_iso>

35

MetalK8s Documentation, Release 2.4.0

36 Chapter 9. 1SO Preparation

CHAPTER
TEN

UPGRADE GUIDE

This section describes a reliable upgrade path for MetalK8s including all the components that make up
the stack.

10.1 Supported Versions

Note: MetalK8 supports upgrade strictly from one supported minor version to another. For example:
* Upgrade from 2.0.x to 2.0.x
* Upgrade from 2.0.x to 2.1.x

Please refer to the release notes for more information.

10.2 Upgrade Pre-requisites

Prior to beginning the upgrade steps listed below, make sure to complete the pre-requisites listed in ISO
Preparation.

10.3 Upgrade Steps

Ensure that the pre-requisites above have been met before you make any step further.

* From the Bootstrap node, launch the upgrade.

/srv/scality/metalk8s-X.X.X/upgrade.sh --destination-version <destination_version>

37

MetalK8s Documentation, Release 2.4.0

38 Chapter 10. Upgrade Guide

CHAPTER
ELEVEN

DOWNGRADE GUIDE

This section describes the logical steps for downgrading MetalK8s.

To downgrade your cluster you need to run the utility script shipped with the current installation provid-
ing it with the destination version:

/srv/scality/metalk8s-X.X.X/downgrade.sh --destination-version <version>

39

MetalK8s Documentation, Release 2.4.0

40

Chapter 11. Downgrade Guide

CHAPTER
TWELVE

CHANGING THE HOSTNAME OF A METALKS8S NODE

1. On the node, change the hostname:

$ hostnamectl set-hostname <New hostname>
$ systemctl restart systemd-hostnamed

2. Check that the change is taken into account.

$ hostnamectl status

Static hostname: <New hostname>

Pretty hostname: <New hostname>
Icon name: computer-vm
Chassis: vm

Machine ID: 5003025f93c1a84914ea5ae66519c100
Boot ID: f28d5c64f06c48a3a775e24c4f03d00c
Virtualization: kvm

Oerating System: CentOS Linux 7 (Core)
CPE 0OS Name: cpe:/o:centos:centos:7

Kernel: Linux 3.10.0-957.12.2.el7.x86_64

Architecture: x86-64

3. On the bootstrap node, check the hostname edition incurred a change of status on the bootstrap.
The edited node must be in a NotReady status.

$ kubectl get <node_name>
<node_name> NotReady etcd,master 19h vl.11.7

4. Change the name of the node in the yaml file used to create it. Refer to Creating a manifest for
more information.

apiVersion: vi
kind: Node
metadata:
name: <New_node_name>
annotations:
metalk8s.scality.com/ssh-key-path: /etc/metalk8s/pki/salt-bootstrap
metalk8s.scality.com/ssh-host: <node control-plane IP>
metalk8s.scality.com/ssh-sudo: 'false'
labels:
metalk8s.scality.com/version: '2.4.0'
<role labels>
spec:
taints: <taints>

Then apply the configuration:

$ kubectl apply -f <path to edited manifest>

5. Delete the old node (here <node_name>):

41

MetalK8s Documentation, Release 2.4.0

’$ kubectl delete node <node_name>

6. Open a terminal into the Salt master container:

’$ kubectl -it exec salt-master-<bootstrap_node_name> -n kube-system -c salt-master bash

7. Delete the now obsolete Salt minion key for the changed Node:

’$ salt-key -d <node_name>

8. Re-run the deployment for the edited Node:

$ salt-run state.orchestrate metalk8s.orchestrate.deploy_node saltenv=metalk8s-2.4.
—~0 pillar="{"orchestrate”: {"node_name”: "<new-node-name>"}}'

Summary for bootstrap_master
Succeeded: 11 (changed=9)
Failed: 0

Total states run: 11
Total run time: 132.435 s

9. On the edited node, restart the kubelet service:

$ systemctl restart kubelet

42 Chapter 12. Changing the hostname of a MetalK8s node

CHAPTER
THIRTEEN

VOLUME MANAGEMENT

This section highlights MetalK8s Volume Management which covers volume creation and volume dele-
tion neccessary for use in persistent data storage within a MetalK8s Cluster.

13.1 StorageClass Creation

MetalK8s uses StorageClass objects to describe how Volumes are formatted and mounted. This section
hightlights how to create a Storageclass using the CLI.

1. Create a StorageClass manifest.

You can define a new StorageClass using the following template:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: <storageclass_name>
provisioner: kubernetes.io/no-provisioner
reclaimPolicy: Retain
volumeBindingMode: WaitForFirstConsumer
mountOptions:
-rw
parameters:
fsType: <filesystem_type>
mkfsOptions: <mkfs_options>

Set the following fields:

* mountOptions: specifies how the volume should be mounted. For example rw (read/write),
ro (read-only).

» fsType: specifies the filesystem to use on the volume. xfs and ext4 are the only currently
supported file system types.

» mkfsOptions: specifies how the volume should be formatted. This field is optional (note that
the options are passed as a JSON-encoded string). For example ‘[“-m”, “0”]’ could be used
as mkfsOptions for an ext4 volume.

* Set volumeBindingMode as WaitForFirstConsumer in order to delay the binding and provi-
sioning of a Pod until a Pod using the PersistentVolumeClaim is created.

2. Create the StorageClass.

root@ootstrap $ kubectl apply -f storageclass.yml

3. Check that the StorageClass has been created.

root@ootstrap $ kubectl get storageclass <storageclass_name>
NAME PROVISIONER AGE
<storageclass_name> kubernetes.io/no-provisioner 2s

43

MetalK8s Documentation, Release 2.4.0

13.2 Volume Management using the CLI

To use persistent storage in a MetalK8s cluster, one needs to create Volume objects. In order to create
Volumes you need to have StorageClass objects registered in your cluster. See StorageClass Creation

13.2.1 Volume Creation

This section describes how to create a Volume from the CLI.
1. Create a Volume manifest

You can define a new Volume using the following template:

apiVersion: storage.metalk8s.scality.com/vialpha1
kind: Volume
metadata:
name: <volume_name>
spec:
nodeName: <node_name>
storageClassName: <storageclass_name>
rawBlockDevice:
devicePath: <device_path>

Set the following fields:
* name: the name of your volume, must be unique
* nodeName: the name of the node where the volume will be located.
* storageClassName: the StorageClass to use
* devicePath: path to the block device (for example, /dev/sdal).

2. Create the Volume

root@bootstrap $ kubectl apply -f volume.yml

3. Verify that the Volume was created

root@bootstrap $ kubectl get volume <volume_name>
NAME NODE STORAGECLASS
<volume_name> bootstrap metalk8s-demo-storageclass

13.2.2 Volume Deletion

This section highlights how to delete a Volume in a MetalK8s cluster using the CLI

1. Delete a Volume

root@ootstrap $ kubectl delete volume <volume_name>
volume.storage.metalk8s.scality.com <volume_name> deleted

2. Check that the Volume has been deleted

Note: The command below returns a list of all volumes. The deleted volume entry should not be
found in the list.

44 Chapter 13. Volume Management

MetalK8s Documentation, Release 2.4.0

’root@bootstrap $ kubectl get volume

13.3 Volume Management using the Ul

This section describes the creation and deletion of MetalK8s Volume using the MetalK8s UI. In order
to create Volumes you need to have StorageClass objects registered in your cluster. See StorageClass
Creation

13.3.1 Volume Creation

To access the Ul, refer to this procedure

1. Navigate to the Nodes list page, by clicking the button in the sidebar:

sy SCALITY METALKSS PLATFORM

Cluster Status : Everythingis up and running @

Alerts
Name % Severity + Message =
Watchdog L] This is an alert meant to ensure that the entire alerting pipeline is functional. This alertis a

2. From the Node list, select the node you would like to create a volume on

13.3. Volume Management using the Ul 45

MetalK8s Documentation, Release 2.4.0

= #3 SCALITY METALK8S PLATFORM

Name * Status Deployment Roles =

bootstrap Ready Bootstrap

3. Navigate to the Volumes tab

+3 SCALITY METALK8S PLATFORM

Volumes Pods

Name bootstrap
Status Ready
Roles Bootstrap

MetalK8s Version ~ 2.4.0-dev

4. Click the + button to create a volume

Name Staws + Bound * Storage Capacity ¢ Storage Class * Creation Time Action

5. Fill out the respective fields

46 Chapter 13. Volume Management

MetalK8s Documentation, Release 2.4.0

¢y SCALITY METALK8S PLATFORM

Nodes bootstrap

Name ‘ |
Storage Class ‘ metalk8s-prometheus |
Type ‘ RawBlockDevice - |
Device path ‘ |

Name: Denotes the volume name.

Storage Class: Refer to the storage class creation page listed here: StorageClass
Creation

» Type: Metalk8s currently only supports RawBlockDevice and SparseLoopDevice.
* Device path: Refers to the path of an existing storage device.

6. Finally, click the Create button

Nodes bootstrap

Name ‘ test-volume ‘

Storage Class ‘ metalk8s-prometheus ‘
Type ‘ RawBlockDevice - ‘

7. You should have a new volume listed in the Volume list

Status ¢ Storage Capacity ¢ Storage Class Creation Time Action

Pending Unknown metakds prometheus 9/1/201982729PM W

13.3.2 Volume Deletion

1. To delete a volume from the MetalK8s UI, from the volume listing, click the delete button

13.3. Volume Management using the Ul 47

MetalK8s Documentation, Release 2.4.0

Nodes bootstrap

Details Vomes Pods

Name + status ¢ Storage Capacity ¢ Storage Class * Creation Time Action

testuolume pending Unkaown metsaspomatess onmosaraaom [@ |

2. Confirm the volume deletion request by clicking the Delete button

Delete a volume x

Deleting this volume will permanently delete the data it contains.
Do you want to delete test-volume?

48 Chapter 13. Volume Management

CHAPTER
FOURTEEN

ACCOUNT ADMINISTRATION

This section highlights MetalK8s Account Administration which covers changing the default username
and password for some MetalK8s services.

14.1 Administering Grafana

A fresh install of MetalK8s has a Grafana service instance with default credentials: admin / admin. For
more information on how to access Grafana, please refer to this procedure

14.1.1 Changing Grafana username and password

To change the default username and password for Grafana on a MetalK8s cluster, perform the following
procedures:

1. Create a file named patch-secret.yaml that has the following content:

stringData:
admin-user: <username-in-clear>
admin-password: <password-in-clear>

2. Apply the patch file by running:

$ kubectl --kubeconfig /etc/kubernetes/admin.conf patch secrets prometheus-operator-grafana --
—patch "$(cat patch-secret.yaml)” -n metalk8s-monitoring

3. Now, roll out the new updates for Grafana:

$ kubectl --kubeconfig /etc/kubernetes/admin.conf rollout restart deploy prometheus-operator-
—grafana -n metalk8s-monitoring

4. Access the Grafana instance and authenticate yourself using the new Account credentials.

14.2 Administering MetalK8s GUI, Kubernetes API and Salt API

During installation, MetalK8s configures the Kubernetes API to accept Basic authentication, with default
credentials admin / admin.

Services exposed by MetalK8s, such as its GUI or Salt API, rely on the Kubernetes API for authenticating
their users. As such, changing the credentials of a Kubernetes API user will also change the credentials
required to connect to either one of these services.

49

MetalK8s Documentation, Release 2.4.0

14.2.1 Managing Kubernetes APl username and password

Warning: The procedures mentioned below must be carried out on every control-plane
Node, or more specifically, any Node bearing the node-role.kubernetes.io/master label.

1. Edit the credentials file located at /etc/kubernetes/htpasswd, replacing the username and/or pass-
word fields as below:

<password-in-clear>,<username-in-clear>,123,"system:masters”

2. Force a restart of the Kubernetes API server:

$ crictl stop \
$(crictl ps -q --label io.kubernetes.pod.namespace=kube-system \
--label io.kubernetes.container.name=kube-apiserver \
--state Running)

3. Access a service (for example, Metalk8s GUI) and authenticate yourself using the new Account
credentials.

Note: Upon changing the username and/or password, a fresh logout then login is required for
accessing the MetalK8s GUI.

50 Chapter 14. Account Administration

Part IV

Developer Guide

51

CHAPTER
FIFTEEN

ARCHITECTURE DOCUMENTS

15.1 Deployment

Here is a diagram representing how MetalK8s orchestrates deployment on a set of machines:

53

MetalK8s Documentation, Release 2.4.0

user bootstrap

i i ——

i i 1 nitialization |-

! Upload installer :

LUpload installer

| Run installer !

LRuninstaller |

| | Unpack installer static files and install script

| U Run

| | installer

. . | rrm——
P F

Run pre-minion local checks (e.g. OS release)

Disable salt-minion service || true

! Stop salt-minion service || true

i Install salt-minion and dependencies from unpacked RPMs

'_ Create salt-minion file to run ‘local’

| Run bootstrap node pre-checks (salt-call --local)

‘e CRI/CNI/Kubelet environment
Run CRI/CNI role using salt-call -local

Install container-selinux, runc, containerd, cri-tools

il

Create Jetccrictl.conf

'

Enable and start containerd

e

1 install ebtables, socat, kubernetes-cni, kubelet

f

Create initial kubelet configuration file

1l

-

Create kubelet systemd drop-in to set CRI endpoint and config file, enable CPU/memory accounting
| Enable and start kubelet
| Done

Set up Kubernetes control plane HA/failover '
TODO running in container using static kubelet mamfesh !

i Set up salt-master) j

| |_ Deploy salt-master using salt-call --local |

| | Create salt-master static pod manifest !

! [can we do an upgrade of salt-master here? What about nodes with older minion versiond?) !

| | Wait to be ready |

| | | saltmaster

| | Ready | |

| | Done] i

! | Remove salt-minion 'local' config | !

' | Enable salt-minion service | '

| |_ Start salt-minion service : !

| ! ! | Hello Q

| | | I saltminion

| | — : i

Deploy node |-

| |] install bootstrap node, !

| | ' ' 1 Inject OCI registry image

| | | [[alt__J" Tif newer oCi registry version]

| | | | | Remove OCI registry manifest

| | |) | Wait for OCI registry to be down

' ' | Sound to 127.0.0.1 only™) | Create OC! registry manifest TODO CA

| | | ' | Wait for OCI registry to be up

' ' | | ! Inject images in OCI registry

H H ! | | Drop nginx manifest in place

1 Done

1 |At this point, the bootstrap node hosts | ' '

I |- saltmaster 1 ' :

| |- an nginx service serving a yum repository | | |

i |- an octimage registry (proxied by ngin<) ' ' '

H H e r— ' '

Deploy control plane |-

| | ! Deploy control plane on bootstrap unless one exists_ | |

| | ! | Go]

| | ! Deploy UI | I

| | | | Go |

! ! ! _—

| | ! |_ Done |

I I | < 1l

i | | Done ! :

! | Done ' : !

| Ulready at... '

: : Extend control plane_|: : :

! Add control-plane node__ ! I ! !

> ' | 1

| | salt-ssh install salt-minion ' | | 9

' ' | ! ! leader

' | Done ' ' ']

: : Extend worker plane_|: : :

| Add worker node ' | ' : I

> ' | 1 !

' | salt-ssh install salt-minion : ! ! :

' |_ Done ' ' ']
user bootstrap installer saltmaster saltminion leader node

54

Chapter 15. Architecture Documents

MetalK8s Documentation, Release 2.4.0

15.1.1 Some notes

* The intent is for this installer to deploy a system which looks exactly like one deployed using
kubeadm, i.e. using the same (or at least highly similar) static manifests, cluster ConfigMaps, RBAC
roles and bindings, ...

The rationale: at some point in time, once kubeadm gets easier to embed in larger deployment mecha-
nisms, we want to be able to switch over without too much hassle.

Also, kubeadm applies best-practices so why not follow them anyway.

Configuration
To launch the bootstrap process, some input from the end-user is required, which can vary from one
installation to another:

* CIDR (i.e. x.y.z.w/n) of the control plane networks to use

Given these CIDR, we can find the address on which to bind services like etcd, kube-apiserver,
kubelet, salt-master and others.

These should be existing networks in the infrastructure to which all hosts are connected.

This is a list of CIDRs, which will be tried one after another, to find a matching local interface (i.e.
hosts comprising the cluster may reside in different subnets, e.g. control plane in VMs, workload
plane on physical infrastructure).

* CIDRs (i.e. x.y.z.w/n) of the workload plane networks to use

Given these CIDRs, we can find the address to be used by the CNI overlay network (i.e. Calico) for
inter-Pod routing.

This can be the same as the control plane network.
* CIDR (i.e. x.y.z.w/n) of the Pod overlay network
Used to configure the Calico IPPool. This must be a non-existing network in the infrastructure.
Default: 10.233.0.0/16
e CIDR (i.e. x.y.z.w/n) of the Service network
Default: 10.96.0.0/12
* VIP for the kube-apiserver and keepalived toggle

Used as the address of kube-apiserver where required. This can either be a VIP managed by
custom load-balancing/high-availability infrastructure, in which case the keepalived toggle must
be off, or one which our platform will manage using keepalived.

If keepalived is enabled, this VIP must sit in a control plane CIDR shared by all control plane
nodes.

Note: we run keepalived in unicast mode, which is an extension of classic VRRP, but removes the
need for multicast support on the network.

Firewall
We assume a host-based firewall is used, based on firewalld. As such, for any service we deploy which
must be accessible from the outside, we must set up an appropriate rule.
We assume SSH access is not blocked by the host-based firewall.
These services include:
* VRRP if keepalived is enabled on control-plane nodes

* HTTPS on the bootstrap node, for nginx fronting the OCI registry and serving the yum repository

15.1. Deployment 55

MetalK8s Documentation, Release 2.4.0

* salt-master on the bootstrap node
* etcd on control-plane / etcd nodes
* kube-apiserver on control-plane nodes

e kubelet on all cluster nodes

15.2 Monitoring

This document describes the monitoring features included in MetalK8s.

Todo: Describe the monitoring stack (#1075), include quick explanation in quickstart guide.

15.3 Requirements

15.3.1 Deployment
Mimick Kubeadm
A deployment based on this solution must be as close to a kubeadm-managed deployment as possible

(though with some changes, e.g. non-root services). This should, over time, allow to actually integrate
kubeadm and its ‘business-logic’ in the solution.

Fully Offline
It should be possible to install the solution in a fully offline environment, starting from a set of ‘packages’

(format to be defined), which can be brought into the environment using e.g. a DVD image. It must be
possible to validate the provenance and integrity of such image.

Fully Idempotent

After deployment of a specific version of the solution in a specific configuration / environment, it shall
be possible to re-run this deployment, which should cause no changes to the system(s) involved.

Single-Server

It must be possible to deploy the solution on a single server (without any expectations w.r.t. availability,
of course).

Scale-Up from Single-Server Deployment

Given a single-server deployment, it must be possible to scale up to multiple nodes, including control
plane as well as workload plane.

Installation == Upgrade

There shall be no difference between ‘installation’ of the solution vs. upgrading a deployment, from a
logical point of view. Of course, where required, particular steps in the implementation may cause other
actions to be performed, or specific steps to be skipped.

56 Chapter 15. Architecture Documents

https://github.com/scality/metalk8s/issues/1075

MetalK8s Documentation, Release 2.4.0

Rolling Upgrade

When upgrading an environment, this shall happen in ‘rolling’ fashion, always cordoning, draining,
upgrading and uncordoning nodes.

Handle CentOS Kernel Memory Accounting

The solution must provide versions of runc and kubelet which are built to include the fixes for the kmem
leak issues found on CentOS/RHEL systems.

See:
* https://github.com/kubernetes/kubernetes/issues/61937
*» https://github.com/kubernetes/kubernetes/pull/72114#issuecomment-454953077
* https://github.com/kubernetes/kubernetes/pull/72998+#issuecomment-455512443

At-Rest Encryption

Data stored by Kubernetes must be encrypted at-rest (TBD which kind of objects).

Node Labels

Nodes in the cluster can be properly labeled, e.g. including availability zone information.

Vagrant

For evaluation purposes, it should be possible to set up a cluster in a Vagrant environment, in a fully
automated fashion.

15.3.2 Runtime
No Root

All services, including those managed by kubelet, must run as a non-root user, if possible. This user must
be provisioned as a system user/group. E.g., for the etcd service, despite being managed by kubelet using
a static Pod manifest, a suitable etcd user and group should be created on the system, /var/lib/etcd (or
similar) must be owned by this user/group, and the Pod manifest shall specify the etcd process must run
as said UID/GID.

SELinux

The solution may not require SELinux to be disabled or put in permissive mode.

It must, however, be possible to configure workload-plane nodes to be put in SELinux disabled or per-
missive mode, if applications running in the cluster can’t support SELinux.

Read-Only Containers

All containers as deployed by the solution must be fully immutable, i.e. read-only, with EmptyDir volumes
as temporary directories where required.

15.3. Requirements 57

https://github.com/kubernetes/kubernetes/issues/61937
https://github.com/kubernetes/kubernetes/pull/72114#issuecomment-454953077
https://github.com/kubernetes/kubernetes/pull/72998#issuecomment-455512443

MetalK8s Documentation, Release 2.4.0

Environment

The solution must support CentOS 7.6.

CRI

The solution shall not depend on Docker to be available on the systems, and instead rely on either
containerd or cri-o. TBD which one.

OIDC

For ‘human’ authentication, the solution must integrate with external systems like Active Directory. This
may be achieved using OIDC.

For environments in which an external directory service is not available, static users can be configured.

15.3.3 Distribution

No Random Binaries

Any binary installed on a host system must be installed by a system package (e.g. RPM) through the
system package manager (e.g. yum).

Tagged Generated Files

Any file generated during deployment (e.g. configuration files) which are not required to be part of a
system package (i.e. they are installation-specific) should, if possible, contain a line (as a comment, a
preamble, ...) describing the file was generated by this project, including project version (TBD, given
idempotency) and timestamp (TBD, given idempotency).

Container Images

All container (OCI) images must be built from a well-known base image (e.g. upstream CentOS images),
which shall be based on a digest and parametrized during build (which allows for easy upgrades of all
images when required).

During build, only ‘system’ packages (e.g. RPM) can be installed in the container, using the system
package manager (e.g. CentOS), to ensure the ability to validate provenance and integrity of all files
part of said image.

All containers should be properly labeled (TODO), and define suitable PORT and ENTRYPOINT directives.

15.3.4 Networking

Zero-Trust Networking: Transport

All over-the-wire communication must be encrypted using TLS.

Zero-Trust Networking: Identity

All over-the-wire communication must be validated by checking server identity and, where sensible,
validating client/peer identity.

58 Chapter 15. Architecture Documents

MetalK8s Documentation, Release 2.4.0

Zero-Trust Networking: Certificate Scope

Certificates for different ‘realms’ must come from different CA chains, and can’t be shared across multiple
hosts.

Zero-Trust Networking: Certificate TTL

All issued certificates must have a reasonably short time-to-live and, where required, be automatically
rotated.

Zero-Trust Networking: Offline Root CAs
All root CAs must be kept offline, or be password-protected. For automatic certificate creation, inter-

mediate CAs (online, short/medium-lived, without password protection) can be used. These need to be
rotated on a regular basis.

Zero-Trust Networking: Host Firewall

The solution shall deploy a host firewall (e.g., using firewalld) and configure it accordingly (i.e., open
service ports where applicable).

Furthermore, if possible, access to services including etcd and kubelet should be limited, e.g. to etcd peers
or control-plane nodes in the case of kubelet.

Zero-Trust Networking: No Insecure Ports

Several Kubernetes services can be configured to expose an unauthenticated endpoint (sometimes for
read-only purposes only). These should always be disabled.

Zero-Trust Networking: Overlay VPN (Optional)
Encryption and mutual identity validation across nodes for the CNI overlay, bringing over-the-wire en-

cryption for workloads running inside Kubernetes without requiring a service mesh or per-application
TLS or similar, if required.

DNS

Network addressing must, primarily, be based on DNS instead of IP addresses. As such, certificate SANs
should not contain IP addresses.

Server Address Changes

When a server receives a different IP address after a reboot (but can still be discovered through an
updated DNS entry), it must be possible to reconfigure the deployment accordingly, with as little impact
as possible (i.e., requiring as little changes as possible). This related to the DNS section above.

For some services, e.g. keepalived configuration, IP addresses are mandatory, so these are permitted.
Multi-Homed Servers

A deployment can specify subnet CIDRs for various purposes, e.g. control-plane, workload-plane, etcd,
... A service part of a specific ‘plane’ must be bound to an address in said ‘plane’ only.

15.3. Requirements 59

MetalK8s Documentation, Release 2.4.0

Availability of kube-apiserver
kube-apiserver must be highly-available, potentially using failover, and (optionally) made load-balanced.

L.e., in a deployment we either run a service like keepalived (with VRRP and a VIP for HA, and IPVS for
LB), or there’s a site-local HA/LB solution available which can be configured out-of-band.

E.g. for kube-apiserver, its /healthz endpoint can be used to validate liveness and readiness.
Provide LoadBalancer Services

The solution brings an optional controller for LoadBalancer services, e.g. MetalLB. This can be used to
e.g. front the built-in Ingress controller.

In environments where an external load-balancer is available, this can be omitted and the external load-
balancer can be integrated in the Kubernetes infrastructure (if supported), or configured out-of-band.

Network Configuration: MTU

Care shall be taken to set networking configuration, e.g. MTU sizes, properly across the cluster and the
services relying on it (e.g. the CNI).

Network Configuration: IPIP

Unless required, ‘plain’ networking must be used instead of tunnels, i.e., when using Calico, IPIP should
only be used in cross-subnet networking.

Network Configuration: BGP

In environments where routing configuration using BGP can be achieved, this should be feasible for
MetalL.B-managed services, as well as Calico routing, in turn removing the need for IPIP usage.

IPvé

TODO

15.3.5 Storage

TODO

15.3.6 Batteries-Included

Similar to MetalK8s 1.x, the solution comes ‘batteries included’. Some aspects of this, including optional
HA/LB for kube-apiserver and LoadBalancer Services using MetalLB have been discussed before.

Metrics and Alerting: Prometheus

The solution comes with prometheus-operator, including ServiceMonitor objects for provisioned services,
using exporters where required.

Node Monitoring: node_exporter

The solution comes with node_exporter running on the hosts (or a DaemonSet, if the volume usage
restriction can be fixed).

60 Chapter 15. Architecture Documents

MetalK8s Documentation, Release 2.4.0

Node Monitoring: Platform

The solution integrates with specific platforms, e.g. it deploys an HPE iLO exporter to capture these
metrics.

Node Monitoring: Dashboards

Dashboards for collected metrics must be deployed, ideally using some grafana-operator for extensibility
sake.

Logging
The solution comes with log aggregation services, e.g. fluent-bit and fluentd. Either a storage system
for said logs is deployed as part of the cluster (e.g. ElasticSearch with Kibana, Curator, Cerebro), or

the aggregation system is configured to ingest into an environment-specific aggregation solution, e.g.
Splunk.

Container Registry

To support fully-offline environments, this is required.

System Package Repository

See above.

Tracing Infrastructure (Optional)

The solution can deploy an OpenTracing-compatible aggregation and inspection service.

Backups

The solution ensures backups of core data (e.g. etcd) are made, at regular intervals as well as before a
cluster upgrade. These can be stored on the cluster node(s), or on a remote storage system (e.g. NFS
volume).

15.3. Requirements 61

MetalK8s Documentation, Release 2.4.0

62 Chapter 15. Architecture Documents

CHAPTER
SIXTEEN

DESIGN DOCUMENTS

16.1 Volume Management v1.0

* MetalK8s-Version: 2.4
* Replaces:

* Superseded-By:

16.1.1 Absract

To be able to run stateful services (such as Prometheus, Zenko or Hyperdrive), MetalK8s needs the ability
to provide and manage persistent storage resources.

To do so we introduce the concept of MetalkK8s Volume, using a Custom Resource Definition (CRD),
built on top of the existing concept of Persistent Volume from Kubernetes. Those Custom Resources
(CR) will be managed by a dedicated Kubernetes operator which will be responsible for the storage
preparation (using Salt states) and lifetime management of the backing Persistent Volume.

Volume management will be available from the Platform UI (through a dedicated tab under the Node
page). There, users will be able to create, monitor and delete MetalK8s volumes.

16.1.2 Scope

The scope of this first version of Volume Management will be minimalist but still functionally useful.

Goals

* support two kinds of Volume:
- sparseLoopDevice (backed by a sparse file)
- rawBlockDevice (using whole disk)
* add support for volume creation (one by one) in the Platform UI
* add support for volume deletion (one by one) in the Platform UI
* add support for volume listing/monitoring (show status, size, ...) in the Platform Ul
* document how to create a volume
* document how to create a StorageClass object

e automated tests on volume workflow (creation, deletion, ...)

63

MetalK8s Documentation, Release 2.4.0

Non-Goals

* RAID support

* IVM support

* expose raw block device (unformated) as Volume

* use an Admission Controller for semantic validation
* auto-discovery of the disks

* batch provisioning from the Platform Ul

16.1.3 Proposal

To implement this feature we need to:
* define and deploy a new CRD describing a MetalK8s Volume
* develop and deploy a new Kubernetes operator to manage the MetalK8s volumes
* develop new Salt states to prepare and cleanup underlying storage on the nodes

* update the Platform UI to allow volume management

User Stories

Volume Creation

As a user I need to be able to create MetalK8s volume from the Platform UI.

At creation time I can specify the type of volume I want, and then either its size (for sparseLoopDevice)
or the backing device (for rawBlockDevice).

I should be able monitor the progress of the volume creation from the Platform UI and see when the
volume is ready to use (or if an error occured).

Volume Monitoring

As a user I should be able to see all the volumes existing on a specified node as well as their states.

Volume Deletion

As a user I need to be able to delete a MetalK8s volume from the Platform UI when I no longer need it.
The Platform Ul should prevent me from deleting Volumes in use.

I should be able monitor the progress of the volume deletion from the Platform UL

Component Interactions

User will create Metalk8s volumes through the Platform UI.
The Platform UI will create and delete Volume CRs from the API server.

The operator will watch events related to Volume CRs and PersistentVolume CRs owned by a Volume
and react in order to update the state of the cluster to meet the desired state (prepare storage when a
new Volume CR is created, clean up resources when a Volume CR is deleted). It will also be responsible
for updating the states of the volumes.

64 Chapter 16. Design Documents

MetalK8s Documentation, Release 2.4.0

To do its job, the operator will rely on Salt states that will be called asynchronously (to avoid blocking
the reconciliation loop and keep a reactive system) through the Salt API. Authentication to the Salt API
will be done though a dedicated Salt account (with limited privileges) using credentials from a dedicated

ge Operatorl

| Salt API|

cluster Service Account.
% | Platform UI| | API Serverl | Stora
User

Create a volume

Create a Volume CR

The Volume now appears as Unknown in the UIH

200 OK

Notify: NewVolume CR

The Volume now appears as Pending in the Ullﬁ

Set Volume status to Pending

Call PrepareVolume

Send order to Salt minion

loo|

Poll Salt job status

Job still in progress...

Create backing PersistentVolume

Poll Salt job status

Storage ready

Job done

‘The Volume now appears as Available in the Ullﬁ

Set Volume status to Available

User

Delete a volume

User Stora

| Platform UI| | APl Serverl

ge Operatorl

| Salt API|

Volume Deletion

| Platform UI| ‘ API Serverl

Delete a Volume CR

The Volume is now marked for deletiorH

200 OK

Notify: DeleteVolume CR

| The PersistentVolume is now marked for deleticl‘H

Delete backingPersistentVolume

Storage Operator|

Call UnprepareVolume

Salt API

‘The Volume now appears as Terminating in the Ulbl

Set Volume status to Terminating

Send order to Salt minion

loop

Poll Salt job status

Job still in progress...

pPoll salt job status

Storage cleaned up

Job done

The PersistentVolume object is really deletecH

Remove PersistentVolume finalizer|

User

[
‘ The Volume object is really deletecH

Remove PersistentVolume finalizer|

| Platform UI| ‘ API Serverl

Storage Operator|

SaItAPII

Cluster Node

Cluster Node I

Cluster Node

Cluster Node

16.1. Volume Management v1.0

65

MetalK8s Documentation, Release 2.4.0

16.1.4 Implementation Details

Volume Status

A PersistentVolume from Kubernetes has the following states:

Pending: used for PersistentVolume that is not available

Available: a free resource that is not yet bound to a claim

Bound: the volume is bound to a claim

Released: the claim has been deleted, but the resource is not yet reclaimed by the cluster

Failed: the volume has failed its automatic reclamation

Similarly, our Volume object will have the following states:

Available: the backing storage is ready and the associated PersistentVolume was created

Pending: preparation of the backing storage in progress (e.g. an asynchronous Salt call is still
running).

Failed: something is wrong with the volume (Salt state execution failed, invalid value in the CRD,

)

Terminating: cleanup of the backing storage in progress (e.g. an asynchronous Salt call is still
running).

Operator Reconciliation Loop

Reconciliation Loop (Top Level)

When the operator receives a request, the first thing it does is to fetch the targeted Volume. If it doesn’t
exist, which happens when a volume is Terminating and has no finalizer, then there nothing more to do.

If the volume does exist, the operator has to check its semantic validity.

Once pre-checks are done, there are four cases:

1.

the volume is marked for deletion: the operator will try to delete the volume (more details in
Volume Finalization).

the volume is stuck in an unrecoverable (automatically at least) error state: the operator can’t do
anything here, the request is considered done and won’t be rescheduled.

the volume doesn’t have a backing PersistentVolume (e.g. newly created volume): the operator
will deploy the volume (more details in Volume Deployment).

the backing PersistentVolume exists: the operator will check its status to update the volume’s
status accordingly.

Reconciliation loop (top level)

[Reconciliatg)

Y25/ yolume is marked for deletion?

|

Don't reschedule)" Nothing we can do here

66

Chapter 16. Design Documents

MetalK8s Documentation, Release 2.4.0

Volume Deployment

To deploy a volume, the operator needs to prepare its storage (using Salt) and create a backing Persis-
tentVolume.

If the Volume object has no value in its Job field, it means that the deployment hasn’t started, thus the
operator will set a finalizer on the Volume object and then start the preparation of the storage using an
asynchronous Salt call (which gives a job ID) before rescheduling the request to monitor the evolution
of the job.

If the Volume object has a job ID, then the storage preparation is in progress and the operator will
monitor it until it’s over. If the Salt job ends with an error, the operator will move the volume into a
failed state.

Otherwise (i.e. Salt job succeeded), the operator will proceed with the PersistentVolume creation
(which requires an extra Salt call, synchronous this time, to get the volume size), taking care of putting
a finalizer on the PersistentVolume (so that its lifetime is tied to the Volume’s) and set the Volume as
the owner of the created PersistentVolume.

Once the PersistentVolume is successfuly created, the operator will move the Volume to the Available
state and reschedule the request (the next iteration will check the health of the PersistentVolume just
created).

Volume Deployment

[Deployvolume)

Check value of the field Job

ob ID

Poll the status of the Salt job

DONE"

Create the backing PersistentVolume

Job still in progress

Add finalizer on Volume

Spawn Salt job PrepareVolume job not found

ob failed
Unset the Volume field Job
Set Volume statusto Pending [Rschedule in 105)

== : : 1
¢

Set Volume ctatus to Available

Volume Finalization

A Volume in state Pending cannot be deleted (because the operator doesn’t know where it is in the
creation process). In such cases, the operator will we reschedule the request until the volume becomes
either Failed or Available.

For volumes with no backing PersistentVolume, the operator will directly reclaim the storage on the
node (using an asynchronous Salt job) and upon completion it will remove the Volume finalizer to let
Kubernetes delete the object.

If there is a backing PersistentVolume, the operator will delete it (if it’s not already in a terminating
state) and watch for the moment when it becomes unused (this is done by rescheduling). Once the back-
ing PersistentVolume becomes unused, the operator will reclaim its storage and remove the finalizers
to let the object be deleted.

16.1. Volume Management v1.0 67

MetalK8s Documentation, Release 2.4.0

Finalizevolumg

Yes, no

Volume iz Pending?

{

Reschedule in 105 ! wait for the creation to termina

YES(Volume is backed by o

at ntVolume is Ter ine
o
s unus [stentvolume }<< will go inferminating state ")
Reschedule in 105 *

@
Check value of the Volume field job

job 1>
-boner

Pollthe status of the Salt job

Reclaimstorag,

((Remove inazr on the bacing_persistentvolume)

Spawn Sat job UnprepareVolume

Set Volume status to Terminating

job falled

1ob stil in progress.

Set the Volume field Job to “DONE"

*] () p— —
- = (mae) | *s

Unset the Volume field Job = This will relaunch the job}

‘The Volume object will be deleted by Kubemete:

o

Volume Deletion Criteria

A volume should be deletable from the UI when it’s deletable from a user point of view (you can always
delete an object from the API), i.e. when deleting the object will trigger an “immediate” deletion (i.e.
the object won’t be retained).

Here are the few rules that are followed to decide if a Volume can be deleted or not:

* Pending states are left untouched: we wait for the completion of the pending action before decid-
ing which action to take.

* The lack of status information is a transient state (can happen between the Volume creation and
the first iteration of the reconciliation loop) and thus we make no decision while the status is unset.

* Volume objects whose PersistentVolume is bound cannot be deleted.

* Volume objects in Terminating state cannot be deleted because their deletion is already in
progress!

In the end, a Volume can be deleted in two cases:
* it has no backing PersistentVolume

* the backing PersistentVolume is not bound (Available, Released or Failed)

Volume Status

Failed [Available
Tome 7SO

YES¢ Volume has

PersistentVolume Status

Unknown Pending
!Pending wvailable !Bﬂund flmsed !iiled

16.1.5 Documentation

Terminating

In the Operational Guide:
¢ document how to create a volume from the CLI

¢ document how to delete a volume from the CLI

68 Chapter 16. Design Documents

MetalK8s Documentation, Release 2.4.0

¢ document how to create a volume from the Ul
¢ document how to delete a volume from the Ul

* document how to create a StorageClass from the CLI (and mention that we should set Volume-
BindingMode to WaitForFirstConsumer)

In the Developper Documentation:
* document how to run the operator locally

* document this design

16.1.6 Test Plan

We should have automated end-to-end tests of the feature (creation and deletion), from the CLI and
maybe on the UI part as well.

16.1. Volume Management v1.0 69

MetalK8s Documentation, Release 2.4.0

70 Chapter 16. Design Documents

CHAPTER
SEVENTEEN

HOW TO BUILD METALKS8S

17.1 Requirements

In order to build MetalK8s we rely and third-party tools, some of them are mandatory, others are optional.

17.1.1 Mandatory

* Python 3.6 or higher: our buildchain is Python-based

* docker 17.03 or higher: to build some images locally

* skopeo, 0.1.19 or higher: to save local and remote images
* hardlink: to de-duplicate images layers

e mkisofs: to create the MetalK8s ISO

17.1.2 Optional

* git: to add the Git reference in the build metadata

* Vagrant, 1.8 or higher: to spawn a local cluster (VirtualBox is currently the only provider sup-
ported)

* VirtualBox: to spawn a local cluster

e tox: to run the linters

17.1.3 Development

If you want to develop on the buildchain, you can add the development dependencies with pip install
-r requirements/build-dev-requirements. txt.

17.2 How to build an ISO

Our build system is based on doit.

To build, simply type ./doit.sh.

Note that:
* you can speed up the build by spawning more workers, e.g. ./doit.sh -n 4.
* you can have a JSON output with ./doit.sh --reporter json

When a task is prefixed by:

71

https://www.python.org/
https://www.docker.com/
https://github.com/containers/skopeo
https://jak-linux.org/projects/hardlink/
https://git-scm.com/
https://www.vagrantup.com/
https://www.virtualbox.org
https://pypi.org/project/tox
http://pydoit.org/

MetalK8s Documentation, Release 2.4.0

» —-: the task is skipped because already up-to-date
* .: the task is executed

* ! the task is ignored.

17.2.1 Main tasks

To get a list of the available targets, you can run ./doit.sh list.
The most important ones are:
* iso: build the MetalK8s ISO
* lint: run the linting tools on the codebase
* populate_iso: populate the ISO file tree
* vagrant_up: spawn a development environment using Vagrant
By default, i.e. if you only type ./doit.sh with no arguments, the iso task is executed.
You can also run a subset of the build only:
* packaging: download and build the software packages and repositories
* images: download and build the container images

* salt_tree: deploy the Salt tree inside the ISO

17.3 Configuration

You can override some buildchain’s settings through a .env file at the root of the repository.
Available options are:

* PROJECT_NAME: name of the project

* BUILD_ROOT: path to the build root (either absolute or relative to the repository)

* VAGRANT_PROVIDER: type of machine to spawn with Vagrant

* VAGRANT_UP_ARGS: command line arguments to pass to vagrant up

* VAGRANT_SNAPSHOT_NAME: name of auto generated Vagrant snapshot

* DOCKER_BIN: Docker binary (name or path to the binary)

* GIT_BIN: Git binary (name or path to the binary)

* HARDLINK_BIN: hardlink binary (name or path to the binary)

* MKISOFS_BIN: mkisofs binary (name or path to the binary)

* SKOPEO_BIN: skopeo binary (name or path to the binary)

* VAGRANT_BIN: Vagrant binary (name or path to the binary)

* GOFMT_BIN: gofmt binary (name or path to the binary)

* OPERATOR_SDK_BIN: the Operator SDK binary (name or path to the binary)

Default settings are equivalent to the following .env:

export PROJECT_NAME=MetalK8s

export BUILD_ROOT=_build

export VAGRANT_PROVIDER=virtualbox

export VAGRANT_UP_ARGS="--provision --no-destroy-on-error --parallel --provider $VAGRANT_PROVIDER"
export DOCKER_BIN=docker

(continues on next page)

72 Chapter 17. How to build MetalK8s

MetalK8s Documentation, Release 2.4.0

(continued from previous page)

export HARDLINK_BIN=hardlink

export GIT_BIN=git

export MKISOFS_BIN=mkisofs

export SKOPEO_BIN=skopeo

export VAGRANT_BIN=vagrant

export GOFMT_BIN=gofmt

export OPERATOR_SDK_BIN=operator-sdk

17.4 Buildchain features

Here are some useful doit commands/features, for more information, the official documentation is here.

17.4.1 doit tabcompletion

This generates completion for bash or zsh (to use it with your shell, see the instructions here).

17.4.2 doit list

By default, . /doit.sh list only shows the “public” tasks.

If you want to see the subtasks as well, you can use the option --all.

% ./doit.sh list --all

images Pull/Build the container images.
iso Build the MetalK8s image.
lint Run the linting tools.

lint:shell Run shell scripts linting.
lint:yaml Run YAML linting.
[...1]

Useful if you only want to run a part of a task (e.g. running the lint tool only on the YAML files).
You can also display the internal (a.k.a. “private” or “hidden”) tasks with the -p (or --private) options.

And if you want to see all the tasks, you can combine both: ./doit.sh list --all --private.

17.4.3 doit clean

You can cleanup the build tree with the . /doit.sh clean command.

Note that you can have fine-grained cleaning, i.e. cleaning only the result of a single task, instead of
trashing the whole build tree: e.g. if you want to delete the container images, you can run ./doit.sh
clean images.

You can also execute a dry-run to see what would be deleted by a clean command: ./doit.sh clean -n
images.

17.4.4 doitinfo

Useful to understand how tasks interact with each others (and for troubleshooting), the info command
display the task’s metadata.

Example:

17.4. Buildchain features 73

http://pydoit.org/contents.html
http://pydoit.org/cmd_other.html#tabcompletion

MetalK8s Documentation, Release 2.4.0

% ./doit.sh info _build_rpm_packages:calico-cni-plugin/srpm
_build_rpm_packages:calico-cni-plugin/srpm

Build calico-cni-plugin-3.8.2-1.el7.src.rpm

status : up-to-date

file_dep
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin/SOURCES/calico-ipam-amd64
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin/SOURCES/v3.8.2.tar.gz
- /home/foo/dev/metalk8s/packages/redhat/calico-cni-plugin.spec
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin/SOURCES/calico-amd64

task_dep

- _package_mkdir_rpm_root

- _build_builder:metalk8s-rpm-builder

- _build_rpm_packages:calico-cni-plugin/mkdir

targets
- /home/foo/dev/metalk8s/_build/packages/redhat/calico-cni-plugin-3.8.2-1.el7.src.rpm

17.4.5 Wildcard selection

You can use wildcard in task names, which allows you to either:

* execute all the sub-tasks of a specific task: _build_rpm_packages:calico-cni-plugin/* will exe-
cute all the tasks required to build the package.

* execute a specific sub-task for all the tasks: _build_rpm_packages:*/get_source will retrieve the
source files for all the packages.

74 Chapter 17. How to build MetalK8s

CHAPTER
EIGHTEEN

HOW TO RUN COMPONENTS LOCALLY

18.1 Running a cluster locally

18.1.1 Requirements

* the mandatory requirements for the buildchain

e Vagrant, 1.8 or higher: to spawn a local cluster (VirtualBox is currently the only provider sup-
ported)

* VirtualBox: to spawn a local cluster

18.1.2 Procedure

You can spawn a local MetalK8s cluster by running . /doit.sh vagrant_up.
This command will start a virtual machine (using VirtualBox) and:

* mount the build tree

* import a private SSH key (automatically generated in .vagrant)

* generate a boostrap configuration

* execute the bootstrap script to make this machine a bootstrap node

After executing this command, you have a MetalK8s bootstrap node up and running and you can connect
to it by using vagrant ssh bootstrap.

Note that you can extend your cluster by spawning extra nodes (up to 9 are already pre-defined in the
provided Vagrantfile) by running vagrant up nodel --provision. This will:

* spawn a virtual machine for the node 1
* import the pre-shared SSH key into it

You can then follow the cluster expansion procedure to add the freshly spawned node into your MetalK8s
cluster (you can get the node’s IP with vagrant ssh nodel -- sudo ip a show eth1).

18.2 Running the storage operator locally

18.2.1 Requirements

* Go (1.12 or higher) and operator-sdk (0.9 or higher): to build the Kubernetes Operators

* Mercurial: some Go dependencies are downloaded from Mercurial repositories.

75

https://www.vagrantup.com/
https://www.virtualbox.org
https://golang.org/
https://github.com/operator-framework/operator-sdk
https://www.mercurial-scm.org/

MetalK8s Documentation, Release 2.4.0

18.2.2 Prerequisites

* You should have a running Metalk8s cluster somewhere

* You should have installed the dependencies locally with cd storage-operator; go mod download

18.2.3 Procedure

1. Copy the /etc/kubernetes/admin.conf from the bootstrap node of your cluster onto your local
machine

2. Delete the already running storage operator, if any, with kubectl --kubeconfig /etc/kubernetes/
admin.conf -n kube-system delete deployment storage-operator

3. Get the address of the Salt API server with kubectl --kubeconfig /etc/kubernetes/admin.conf
-n kube-system describe svc salt-master | grep :4507

4. Run the storage operator with:

cd storage-operator

export KUBECONFIG=<path-to-the-admin.cong-you-copied-locally>
export METALK8S_SALT_MASTER_ADDRESS=https://<ADDRESS-OF-SALT-API>
operator-sdk up local

18.3 Running the platform Ul locally

18.3.1 Requirements

* Node.js, 10.16

18.3.2 Prerequisites

* You should have a running Metalk8s cluster somewhere

* You should have installed the dependencies locally with cd ui; npm install

18.3.3 Procedure

1. Connect to the boostrap node of your cluster, and execute the following command as root:

python - <<EOF
import subprocess
import json

output = subprocess.check_output([
'salt-call', 'pillar.get', 'metalk8s', '--out', 'json'
D
pillar = json.loads(output)['local']
ui_conf = {
‘url': 'https://{3}:6443"' .format(pillar['api_server']['host']),
'url_salt': 'https://{saltlipl}:{saltlports]lapil}'.format(
salt=pillar['endpoints']['salt-master']
),
'url_prometheus': 'http://{prom[ip]}:{prom[ports][web][node_port]}'.format(
prom=pillar['endpoints']['prometheus"']

)Y

(continues on next page)

76 Chapter 18. How to run components locally

https://nodejs.org/en/

MetalK8s Documentation, Release 2.4.0

(continued from previous page)

print(json.dumps(ui_conf, indent=4))
EOF

2. Copy the output into ui/public/config. json.

3. Run the Ul with ¢d ui; npm run start

18.3. Running the platform Ul locally 77

MetalK8s Documentation, Release 2.4.0

78 Chapter 18. How to run components locally

CHAPTER
NINETEEN

DEVELOPMENT BEST PRACTICES

19.1 Commit Best Practices

19.1.1 How to split a change into commits

Why do we need to split changes into commits

This has several advantages amongst which are:

* small commits are easier to review (a large pull request correctly divided into commits is eas-
ier/faster to review than a medium-sized one with less thought-out division)

* simple commits are easier to revert (e866b01f0553/8208a170ac66)/cherry-pick (Pull request
#1641)

* when looking for a regression (e.g. using git bisect) it is easier to find the root cause

* make git log and git blame way more useful

Examples

The golden rule to create good commits is to ensure that there is only one “logical” change per commit.

Cosmetic changes

Use a dedicated commit when you want to make cosmetic changes to the code (linting, whitespaces,
alignment, renaming, etc.).

Mixing cosmetics and functional changes is bad because the cosmetics (which tend to generate a lot
of diff/noise) will obscure the important functional changes, making it harder to correctly determine
whether the change is correct during the review.

Example (Pull request #1620):
* one commit for the cosmetic changes: 766f572e462c6933¢c8168a629ed4f479bb68a803
* one commit for the functional changes: 3367fabdefcOb35d34bf7cf2fb0d33ff81f9fd5a

Ideally, purely cosmetic changes which inflate the number of changes in a PR significantly, should go in
a separate PR

Refactoring

When introducing new features, you often have to add new helpers or refactor existing code. In such
case, instead of having single commit with everything inside, you can either:

1. first add a new helper: 29f49cbe9dfa

79

https://github.com/scality/metalk8s/commit/e866b01f05535925e80da20aca00417904422433
https://github.com/scality/metalk8s/commit/8208a170ac66912ace018bcd00c058ad214d169b
https://github.com/scality/metalk8s/pull/1641
https://github.com/scality/metalk8s/pull/1641
https://github.com/scality/metalk8s/issues/1620
https://github.com/scality/metalk8s/commit/766f572e462c6933c8168a629ed4f479bb68a803
https://github.com/scality/metalk8s/commit/3367fabdefc0b35d34bf7cf2fb0d33ff81f9fd5a
https://github.com/scality/metalk8s/commit/29f49cbe9dfa0b824c818d25d4a2f6965351e65d

MetalK8s Documentation, Release 2.4.0

2. then use it in new code: 7e47310a8f20
Or:
1. first add the new code: 5b2a6d5fa498
2. then refactor the now duplicated code: ac08d0f53a83

Mixing unrelated changes

It is sometimes tempting to do small unrelated changes as you are working on something else in the
same code area. Please refrain to do so, or at least do it in a dedicated commit.

Mixing non-related changes into the same commit makes revert and cherry-pick harder (and understand-
ing as well).

The pull request #1846 is a good example. It tackles three issues at once: #1830 and #1831 (be-
cause they are similar) and #839 (because it was making the other changes easier), but it uses distincts
commits for each issue.

19.1.2 How to write a commit message

Why do we need commit messages

After comments in the code, commit messages are the easiest way to find context for every single line
of code: running git blame on a file will give you, for each line, the identifier of the last commit that
changed the line.

Unlike a comment in the code (which applies to a single line or file), a commit message applies to a
logical change and thus can provide information on the design of the code and why the change was
done. This makes commit messages a part of the code documentation and makes them helpful for other
developers to understand your code.

Last but not least: commit messages can also be used for automating tasks such as issue management.

Note that it is important to have all the necessary information in the commit message, instead of having
them (only) in the related issue, because:

* the issue can contain troubleshooting/design discussion/investigation with a lot of back and forth,
which makes hard to get the gist of it.

* you need access to an external service to get the whole context, which goes against one of biggest
advantage of the distributed SCM (having all the information you need offline, from your local
copy of the repository).

* migration from one tracking system to another will invalidate the references/links to the issues.

Anatomy of a good commit message

A commit is composed of a subject, a body and a footer. A blank line separates the subject from body
and the body from the footer.

The body can be omitted for trivial commit. That being said, be very careful: a change might seem trivial
when you write it but will seem totally awkward the day you will have to understand why you made it.
If you think your patch is trivial and somebody tells you he does not understand your patch, then your
patch is not trivial and it requires a detailed description.

The footer contains references for issue management (Refs, Closes, etc.) or other relevant annotations
(cherry-pick source, etc.). Optional if your commit is not related to any issue (should be pretty rare).

80 Chapter 19. Development Best Practices

https://github.com/scality/metalk8s/commit/7e47310a8f20fd49f0ad36707b20e6c2a53df638
https://github.com/scality/metalk8s/commit/5b2a6d5fa49815180a2effdd37cb58542e83b5a5
https://github.com/scality/metalk8s/commit/ac08d0f53a835a0b2bc61c1fe5b7317bf4d6550c
https://github.com/scality/metalk8s/pull/1846
https://github.com/scality/metalk8s/issues/1830
https://github.com/scality/metalk8s/issues/1831
https://github.com/scality/metalk8s/issues/839

MetalK8s Documentation, Release 2.4.0

Subject

A good commit message should start with a short summary of the change: the subject line.

This summary should be written using the imperative mood and carry as much information as possible
while staying short, ideally under 50 characters (this is a goal, the hard limit is 72).

Subject topic and description shouldn’t start with a capital.
It is composed of:
* a topic, usually the name of the affected component (ui, build, docs, etc.)
* a slash and then the name of the sub-component (optional)
* acolon
* the description of the change
Examples:
* ci: use proxy-cache to reduce flakiness
* build/package: factorize task_dep in DEBPackage
* ui/volume: add banner when failed to create volume
If several components are affected:
* split your commit (preferred)
* pick only the most affected one

* entirely omit the component (happen for truly global change, like renaming licence to license
over the whole codebase)

As for “what is the topic?”, the following heuristic works quite well for MetalK8s: take the name of
the top-level directory (ui, salt, docs, etc.) except for eve (use ci instead). buildchain could also be
shortened to build.

Having the topic in the summary line allows for faster peering over git log output (you can know what
the commit is about just by reading a few characters, not need to check the entire commit message or the
associated diff). It also helps the review process: if you have a big pull request affecting front-end and
back-end, front-end people can only review commits starting with ui (not need to read over the whole
diff, or to open each commit one by one in Github to see which ones are interesting).

Body

The body should answer the following questions:

* Why did you make this change? (is this for a new feature, a bugfix - then, why was it buggy? -,
some cleanup, some optimization, etc.). It is really important to describe the intent/motivation
behind the changes.

* What change did you make? Document what the original problem was and how it is being fixed
(can be omitted for short obvious patches).

* Why did you make the change in that way and not in another (mention alternate solutions consid-
ered but discarded, if any)?

When writing your message you must consider that your reader does not know anything about the code
you have patched.

You should also describe any limitations of the current code. This will avoid reviewer pointing them out,
and also inform future people looking at the code which tradeoffs were made at the time.

Lines must be wrapped at 72 characters.

19.1. Commit Best Practices 81

MetalK8s Documentation, Release 2.4.0

Footer

Use references such as Refs, See, Fixes or Closes followed by an issue number to automate issue man-
agement.

In addition to the references, you can also provide the URLs (it will be quicker to access them from the
terminal).

Example:

topic: description
[commit message body]

Refs: #XXXXX

Refs: #YYYYY

Closes: #77777

See: https://github.com/scality/metalk8s/issues/XXXXX
See: https://github.com/scality/metalk8s/issues/YYYYY
See: https://github.com/scality/metalk8s/issues/Z2Z2777

Footer can also contain a signature (git commit -s) or cherry-pick source (git cherry-pick -x).

Examples

Bad commit message

* Quick fix for service port issue: what was the issue? It is a quick fix, why not a proper fix?
What are the limitations?

* fix glitchs: as expressive and useful as ~fix stuff~
* Bump Create React App to v3 and add optional-chaining: Why? What are the benefits?
* Add skopeo & m2crypto to packages list: Why do we need them?

* Split certificates bootstrap between CA and clients: Why do we need this split? What is the
issue we are trying to solve here?

Note that none of these commits contain a reference to an issue (which could have been used as an
(invalid) excuse for the lack of information): you really have no more context/explanation than what is
shown here.

Good commit message

Commit b531290c04c4

Add gzip to nginx conf

This will decrease the size of the file the client need to download
In the current version we have ~7x improvement.
From 3.17Mb to ©.470Mb send to the client

Some things to note about this commit message:

* Reason behind the changes are explained: we want to decrease the size of the downloaded re-
sources.

* Results/effects are demonstrated: measurements are given.

82 Chapter 19. Development Best Practices

https://help.github.com/en/github/managing-your-work-on-github/closing-issues-using-keywords

MetalK8s Documentation, Release 2.4.0

Commit 82d92836d4ff

Use safer invocation of shell commands

Running commands with the "host” fixture provided by testinfra was done
without concern for quoting of arguments, and might be vulnerable to
injections / escaping issues.

Using a log-like formatting, i.e. ‘host.run('my-cmd %s %d', argl, arg2)®
fixes the issue (note we cannot use a list of strings as with

“subprocess*®).

Issue: GH-781

Some things to note about this commit message:
* Reasons behind the changes are explained: potential security issue.
* Solution is described: we use log-like formatting.

* Non-obvious parts are clarified: cannot use a list of string (as expected) because it is not supported.

Commit f66acObelc19

build: fix concurrent build on MacOS

When trying to use the parallel execution feature of ‘doit‘ on Mac, we
observe that the worker processes are killed by the 0S and only the
main one survives.

The issues seems related to the fact that:

- by default ‘doit‘ uses ‘fork‘ (through ‘multiprocessing‘) to spawn its
workers

- since macOS 10.13 (High Sierra), Apple added a new security measure[1]
that kill processes that are using a dangerous mix of threads and
forks[2])

As a consequence, now instead of working most of the time (and failing
in a hard way to debug), the processes are directly killed.

There are three ways to solve this problems:

1. set the environment variable “*OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES."
2. don't use ‘fork®

3. fix the code that uses a dangerous mix of thread and forks

(1) is not good as it doesn't fix the underlying issue: it only disable
the security and we're back to "works most of the time, sometimes does
weird things”

(2) is easy to do because we can tell to ‘doit' to uses only threads
instead of forks.

(3) is probably the best, but requires more troubleshooting/time/

In conclusion, this commit implements (2) until (3) is done (if ever) by
detecting macOS and forcing the use of threads in that case.

[1]: http://sealiesoftware.com/blog/archive/2017/6/5/0bjective-C_and_fork_in_mac0S_1013.html
[2]: https://blog.phusion.nl/2017/10/13/why-ruby-app-servers-break-on-macos-high-sierra-and-what-

—»can-be-done-about-it/

Closes: #1354

Some things to note about this commit message:

19.1. Commit Best Practices 83

MetalK8s Documentation, Release 2.4.0

* Observed problem is described: parallel builds crash on macOS.

* Root cause is analyzed: OS security measure + thread/fork mix.

* Several solution are proposed: disable the security, workaround the problem or fix the root cause.
* Selection of a solution is explained: we go for the workaround because it is easy and faster.

* Extra-references are given: links in the footer gives more in-depth explanations/context.

19.1.3 Conclusion

When reviewing a change, do not simply look at the correctness of the code: review the commit message
itself and request improvements to its content. Look out for commits that can be divided, ensure that
cosmetic changes are not mixed with functional changes, etc.

The goal here is to improve the long term maintainability, by a wide variety of developers who may only
have the Git history to get some context so it is important to have a useful Git history.

19.2 Python best practices

19.2.1 Import

Avoid from module_foo import symbol_bar
In general, it is a good practice to avoid the form from foo import bar because it introduces two distinct

bindings (bar is distinct from foo.bar) and when the binding in one namespace changes, the binding in
the other will not. ..

That’s also why this can interfere with the mocking.

All in all, this should be avoided when unecessary.

Rationale

Reduce the likelihood of surprising behaviors and ease the mocking.

Example

Good
import foo

baz = foo.Bar()

Bad
from foo import Bar

baz = Bar()

References

* Idioms and Anti-Idioms in Python

e unittest.mock documentation

84 Chapter 19. Development Best Practices

https://docs.python.org/3.1/howto/doanddont.html#from-module-import-name1-name2%0A
https://docs.python.org/3.6/library/unittest.mock.html#where-to-patch

MetalK8s Documentation, Release 2.4.0

19.2.2 Naming

Predicate functions

Functions that return a Boolean value should have a name that starts with has_, is_, was_, can_ or
something similar that makes it clear that it returns a Boolean.

This recommandation also applies to Boolean variable.

Rationale

Makes code clearer and more expressive.

Example

class Foo:
Bad.
def empty(self):
return len(self.bar) == 0

Bad.
def baz(self, initialized):
if initialized:
return
#L...]

Good.
def is_empty(self):
return len(self.bar) ==

Good.
def qux(self, is_initialized):
if is_initialized:
return

#0...]

19.2.3 Patterns and idioms

Don'’t write code vulnerable to “Time of check to time of use”

When there is a time window between the checking of a condition and the use of the result of that
check where the result may become outdated, you should always follow the EAFP (It is Easier to Ask for
Forgiveness than Permission) philosophy rather than the LBYL (Look Before You Leap) one (because it
gives you a false sense of security).

Otherwise, your code will be vulnerable to the infamous TOCTTOU (Time Of Check To Time Of Use)
bugs.

In Python terms:
* LBYL: if guard around the action

e EAFP: try/except statements around the action

Rationale

Avoid race conditions, which are a source of bugs and security issues.

19.2. Python best practices 85

MetalK8s Documentation, Release 2.4.0

Examples

Bad: the file 'bar' can be deleted/created between the ‘os.access‘ and
‘open® call, leading to unwanted behavior.
if os.access('bar', o0s.R_0K):
with open(bar) as fp:
return fp.read()
return 'some default data'

Good: no possible race here.
try:
with open('bar') as fp:
return fp.read()
except OSError:
return 'some default data’

References

e Time of check to time of use

Minimize the amount of code in a try block

The size of a try block should be as small as possible.

Indeed, if the try block spans over several statements that can raise an exception catched by the except,
it can be difficult to know which statement is at the origin of the error.

Of course, this rule doesn’t apply to the catch-all try/except that is used to wrap existing exceptions or
to log an error at the top level of a script.

Having several statements is also OK if each of them raises a different exception or if the exception carries
enough information to make the distinction between the possible origins.

Rationale

Easier debugging, since the origin of the error will be easier to pinpoint.

Don’t use hasattr in Python 2

To check the existence of an attribute, don’t use hasattr: it shadows errors in properties, which can be
surprising and hide the root cause of bugs/errors.

Rationale

Avoid surprising behavior and hard-to-track bugs.

Examples

Bad.
if hasattr(x, "y"):
print(x.y)
else:
print("no y!")

(continues on next page)

86 Chapter 19. Development Best Practices

https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

MetalK8s Documentation, Release 2.4.0

(continued from previous page)

Good.

try:
print(x.y)

except AttributeError:
print("no y!")

References

* hasattr() — A Dangerous Misnomer

19.2. Python best practices 87

https://hynek.me/articles/hasattr/

MetalK8s Documentation, Release 2.4.0

88 Chapter 19. Development Best Practices

CHAPTER
TWENTY

INTEGRATING WITH METALKSS

20.1 Introduction

With a focus on having minimal human actions required, both in its deployment and operation, MetalK8s
also intends to ease deployment and operation of complex applications, named Solutions, on its cluster.

This document defines what a Solution refers to, the responsibilities of each party in this integration, and
will link to relevant documentation pages for detailed information.

20.1.1 What is a Solution?

We use the term Solution to describe a packaged Kubernetes application, archived as an ISO disk image,
containing:

* A set of OCI images to inject in MetalK8s image registry
* An Operator to deploy on the cluster

* Optionally, a Ul for managing and monitoring the application, represented by a standard Kuber-
netes Deployment

For more details, see the following documentation pages:
* Solution archive guidelines
* Solution Operator guidelines
* (TODO) Solution UI guidelines

Once a Solution is deployed on MetalK8s, a user can deploy one or more versions of the Solution Oper-
ator, using either the Solution UI or the Kubernetes API, into separate namespaces. Using the Operator-
defined CustomResource(s), the user can then effectively deploy the application packaged in the Solu-
tion.

20.1.2 How is a Solution declared in MetalK8s?

MetalK8s already uses a BootstrapConfiguration object, stored in /etc/metalk8s/bootstrap.yaml, to
define how the cluster should be configured from the bootstrap node, and what versions of MetalK8s are
available to the cluster.

In the same vein, we want to use a SolutionsConfiguration object, stored in /etc/metalk8s/solutions.
yaml, to declare which Solutions are available to the cluster, from the bootstrap node.

Todo: Add specification in a future Reference guide

Here is how it could look:

89

https://coreos.com/blog/introducing-operators.html

MetalK8s Documentation, Release 2.4.0

apiVersion: metalk8s.scality.com/vlalphail
kind: SolutionsConfiguration
solutions:

- /solutions/storage_1.0.0.1iso

- /solutions/storage_latest.iso

- /other_solutions/computing.iso

There would be no explicit information about what an archive contains. Instead, we want the archive
itself to contain such information (more details in Solution archive guidelines), and to discover it at import
time.

Note that Solutions will be imported based on this file contents, i.e. the images they contain will be made
available in the registry and the UI will be deployed, however deploying the Operator and subsequent
application(s) is left to the user, through manual operations or the Solution UL

Note: Removing an archive path from the solutions list will effectively remove the Solution images
and UI when the “import solutions” playbook is run.

20.1.3 Responsibilities of each party

This section intends to define the boundaries between MetalK8s and the Solutions to integrate with, in
terms of “who is doing what?”.

Note: This is still a work in progress.

MetalK8s

MUST:

* Handle reading and mounting of the Solution ISO archive

* Provide tooling to deploy/upgrade a Solution’s CRDs and Ul
MAY:

* Provide tooling to deploy/upgrade a Solution’s Operator

* Provide tooling to verify signatures in a Solution ISO

* Expose management of Solutions in its own UI

Solution

MUST:

* Comply with the standard archive structure defined by MetalK8s

* If providing a UI, expose management of its Operator instances

* Handle monitoring of its own services (both Operator and application, except the UI)
SHOULD:

* Use MetalK8s monitoring services (Prometheus and Grafana)

Note: Solutions can leverage the Prometheus Operator CRs for setting up the monitoring of their
components. For more information, see Monitoring and Solution Operator guidelines.

90 Chapter 20. Integrating with MetalK8s

https://github.com/coreos/prometheus-operator

MetalK8s Documentation, Release 2.4.0

Todo: Define how Solutions can deploy Grafana dashboards.

20.1.4 Interaction diagrams

We include a detailed interaction sequence diagram for describing how MetalK8s will handle user input
when deploying / upgrading Solutions.

Note: Open the image in a new tab to see it in full resolution.

User MetalK8s Ul Salt Master Bootstrap node Kubernetes APl MetalK8s registry

{import a new Solution (version) | - ‘ -

| Upload Solution ISO i i h

| Request Solutions import ! '

' Add 150 path to the "SolutionsConfiguration" file ! ' ' !

‘ LRetneve "metalk8s-solutions” ConfigMap
<

loo) [For each 150 defined in "SolutionsConfiguration")]
Check IS0 file (against our standardsfconstraints) |

Return status (valid or not) and metadata if any

alt _/ [150is invalid]

Fail early

[150 is|valid]

Run "import_solution_archive” formula

Mount IS0

Configure new ISO source

solution imported successfully

loop__J [For cach latest version newly imported] 1 I
Replace CRDs ' i

Create/Update Deployment for the Solutionul 1 |

I‘“’E_ / [For each Solution version in " i ConfigMap not in i i ion"]

Run "remove_solution_archive® formula

Remove configuration for this Solution versiog

Unmount ISO

solution removed successfully

Update "metalk8s-solutions" ConfigMap '

solutions imported successfully

Request Solutions listing page

Retrieve "metalkss-solutions” ConfigMap

loo [For each Solution configured] i |
1 Retrieve Solution Ul Service ' '

T 1
: — of the Ope IF T T T
I I T I I I
Deployment of a Solution Operator should i H H | H
be managed in the Solution UI, allowing | H | ! |
the user to see multiple instances of the I ' " I i
Operator at once (different namespaces). | H H ! '
T | ' | | |
opt /] [if the user wants to perform manual deployment]] ! ' T '
| Create new Namespace for the Operator to manage i ' ' i '
i Apply the example Deployment from the mounted Solution 150 ' ' I '

User MetalK8s Ul Salt Master Bootstrap node Kubernetes APl MetalK8s registry

20.1. Introduction 921

MetalK8s Documentation, Release 2.4.0

Todo: A detailed diagram for Operator deployment would be useful (wait for #1060 to land). Also, add
another diagram for specific operations in an upgrade scenario using two Namespaces, for staging/testing
the new version.

20.2 Solution archive guidelines

To provide a predictable interface with packaged Solutions, MetalK8s expects a few criteria to be re-
spected, described below.

20.2.1 Archive format
Solution archives must use the ISO-9660:1988 format, including Rock Ridge and Joliet directory records.
The character encoding must be UTF-8. The conformance level is expected to be at most 3, meaning:

* Directory identifiers may not exceed 31 characters (bytes) in length

* File name + '.' + file name extension may not exceed 30 characters (bytes) in length

* Files are allowed to consist of multiple sections

The generated archive should specify a volume ID, set to {project_name} {version}.

Todo: Clarify whether Joliet/Rock Ridge records supersede the conformance level w.r.t. filename lengths

Here is an example invocation of the common Unix mkisofs tool to generate such archive:

mkisofs
-output my_solution.iso
-R # (or "-rock” if available)
-J # (or "-joliet” if available)
-joliet-long
-1 # (or "-full-iso09660-filenames” if available)
-V 'MySolution 1.0.0' # (or "-volid"” if available)
-gid 0
-uid @
-iso-level 3
-input-charset utf-8
-output-charset utf-8
my_solution_root/

Todo: Consider if overriding the source files UID/GID to O is necessary

20.2.2 File hierarchy

Here is the file tree expected by MetalK8s to exist in each Solution archive:

images
L some_image_name
L— 1.0.1

<layer_digest>
manifest. json

version

(continues on next page)

92 Chapter 20. Integrating with MetalK8s

https://github.com/scality/metalk8s/issues/1060
https://www.iso.org/obp/ui/#iso:std:iso:9660:ed-1:v1:en
https://en.wikipedia.org/wiki/Rock_Ridge
https://en.wikipedia.org/wiki/Joliet_(file_system)
https://tools.ietf.org/html/rfc3629
https://linux.die.net/man/8/mkisofs

MetalK8s Documentation, Release 2.4.0

(continued from previous page)

— registry-config.inc
— operator
| L— deploy
|— crds
| L some_crd_name. yaml
operator.yaml
role.yaml
role_binding.yaml
service_account.yaml
— product.txt
— ui
L deployment.yaml

20.2.3 Product information

General product information about the packaged Solution must be stored in the product. txt file, stored
at the archive root.

It must respect the following format (currently version 1, as specified by the ARCHIVE_LAYOUT_VERSION
value):

NAME=Example
VERSION=1.0.0-dev
REQUIRE_METALK8S=">=2.0"
ARCHIVE_LAYOUT_VERSION=1

It is recommended for inspection purposes to include information related to the build-time condi-
tions, such as the following (where command invocations should be statically replaced in the generated
product.txt):

GIT=$(git describe --always --long --tags --dirty)
BUILD_TIMESTAMP=$(date +%Y-%m-%dT%H:%M:%SZ)

Note: If a Solution can require specific versions of MetalK8s on which to be deployed, requiring specific
services (and their respective versions) to be shipped with MetalK8s (e.g. Prometheus/Grafana) is not
yet feasible. It will probably be handled in the Operator declaration, maybe using a CR.

It is recommended for inspection purposes to include information related to the build-time condi-
tions, such as the following (where command invocations should be statically replaced in the generated
product.txt):

GIT=$(git describe --always --long --tags --dirty)
BUILD_TIMESTAMP=$(date +%Y-%m-%dT%H:%M:%SZ)

20.2.4 OCl images

MetalK8s exposes container images in the OCI format through a static read-only registry. This registry
is built with nginx, and relies on having a specific layout of image layers to then replicate the necessary
parts of the Registry API that CRI clients (such as containerd or cri-o) rely on.

Using skopeo, you can save images as a directory of layers:

$ mkdir images/my_image
$ # from your local Docker daemon
$ skopeo copy --format v2s2 --dest-compress docker-daemon:my_image:1.0.0 dir:images/my_image/1.0.0

(continues on next page)

20.2. Solution archive guidelines 93

https://github.com/opencontainers/image-spec/blob/master/spec.md
https://www.nginx.com
https://github.com/containers/skopeo

MetalK8s Documentation, Release 2.4.0

(continued from previous page)

$ # from Docker Hub
$ skopeo copy --format v2s2 --dest-compress docker://docker.io/example/my_image:1.0.0 dir:images/my_
—image/1.0.0

Your images directory should now resemble this:

images
L— my_image
L—1.0.0
53071b97a88426d4db86d0e8436ac5c869124d2c414caf4c9ed4a4e48769c7f37
64f5d945efcc0f39ab11b3cd4bad03cc9fefelfa3613123cad16cf3708e8cafb
manifest. json
version

Once all your images were stored this way, you can de-duplicate layers using hardlinks, using the tool
hardlink:

$ hardlink -c images

A detailed procedure for generating the expected layout is available at NicolasT/static-container-
registry. You can use the script provided there, or use the one vendored in this repository (located
at buildchain/buildchain/static-container-registry) to generate the NGINX configuration to serve
these image layers with the Docker Registry API. MetalK8s, when deploying the Solution, will include
the registry-config.inc file provided at the root of the archive. In order to let MetalK8s control the
mountpoint of the ISO, the configuration must be generated using the following options:

$./static-container-registry.py \
--name-prefix '{{ repository }}' \
--server-root '{{ registry_root }}' \
/path/to/archive/images > /path/to/archive/registry-config.inc.j2

Each archive will be exposed as a single repository, where the name will be computed as
<NAME>-<VERSION> from Product information, and will be mounted at /srv/scality/<NAME>-<VERSION>.

Warning: Operators should not rely on this naming pattern for finding the images for their resources.
Instead, the full repository prefix will be exposed to the Operator container as an environment vari-
able when deployed with MetalK8s. See Solution Operator guidelines for more details.

The images names and tags will be inferred from the directory names chosen when using skopeo copy.
Using hardlink is highly recommended if one wants to define alias tags for a single image.

MetalK8s also defines recommended standards for container images, described in Container Images.

20.2.5 Operator

See Solution Operator guidelines for how the /operator directory should be populated.

20.2.6 Web UI

Todo: Create Ul guidelines and reference here

94 Chapter 20. Integrating with MetalK8s

http://man7.org/linux/man-pages//man1/hardlink.1.html
https://github.com/nicolast/static-container-registry
https://github.com/nicolast/static-container-registry

MetalK8s Documentation, Release 2.4.0

20.3 Solution Operator guidelines

An Operator is a method of packaging, deploying and managing a Kubernetes application. A
Kubernetes application is an application that is both deployed on Kubernetes and managed
using the Kubernetes APIs and kubectl tooling.

—coreos.com/operators

MetalK8s Solutions are a concept mostly centered around the Operator pattern. While there is no explicit
requirements except the ones described below (see Requirements), we recommend using the Operator
SDK as it will embed best practices from the Kubernetes community. We also include some Recommenda-
tions.

20.3.1 Requirements

Files

All Operator-related files except for the container images (see OCI images) should be stored under /
operator in the ISO archive. Those files should be organized as follows:

operator

- deploy
crds
L— some_crd_name.yaml
operator.yaml
role.yaml
role_binding.yaml
service_account.yaml

Most of these files are generated when using the Operator SDK.

Todo: Specify each of them, include example (after #1060 is done). Remember to note specificities
about OCI_REPOSITORY_PREFIX / namespaces. Think about using kustomize (or kubectl apply -k,
though only available from K8s 1.14).

Monitoring

MetalK8s does not handle the monitoring of a Solution application, which means:

* the user, manually or through the Solution UlI, should create Service and ServiceMonitor objects
for each Operator instance

* Operators should create Service and ServiceMonitor objects for each deployed component they
own

The Prometheus Operator deployed by MetalK8s has cluster-scoped permissions, and is able to read the
aforementioned ServiceMonitor objects to set up monitoring of your application services.

20.3.2 Recommendations

Permissions
MetalK8s does not provide tools to deploy the Operator itself, so that users can have better control over
which version runs where.

The best-practice encouraged here is to use namespace-scoped permissions for the Operator, instead of
cluster-scoped.

20.3. Solution Operator guidelines 95

https://coreos.com/operators/
https://github.com/operator-framework/operator-sdk/
https://github.com/operator-framework/operator-sdk/
https://kubernetes.io/
https://github.com/scality/metalk8s/issues/1060
https://github.com/coreos/prometheus-operator

MetalK8s Documentation, Release 2.4.0

This allows for better isolation between different application deployments from a single Solution, for
instance when trying out a new version before affecting production machines, or when managing two
independent application stacks.

Note: Future improvements to MetalK8s may include the addition of an “Operator for Operators”, such
as the Operator Lifecycle Manager.

20.4 Deploying And Experimenting

Given the solution ISO is correctly generated, a script utiliy has been added to enable solution install and
removal

20.4.1 Installation

Use the solution-manager.sh script to install a new solution ISO using the following command

/src/scality/metalk8s-X.X.X/solution-manager.sh -a/--add </path/to/new/IS0>

20.4.2 Removal

To remove a solution from the cluster use the previous script by invoking

/src/scality/metalk8s-X.X.X/solution-manager.sh -d/--del </path/to/IS0O>

96 Chapter 20. Integrating with MetalK8s

https://github.com/operator-framework/operator-lifecycle-manager

Part V

Glossary

97

MetalK8s Documentation, Release 2.4.0

Alertmanager The Alertmanager is a service for handling alerts sent by client applications, such as
Prometheus.

See also the official Prometheus documentation for Alertmanager.
API Server

kube-apiserver The Kubernetes API Server validates and configures data for the Kubernetes objects that
make up a cluster, such as Nodes or Pods.

See also the official Kubernetes documentation for kube-apiserver.
Bootstrap

Bootstrap node The Bootstrap node is the first machine on which MetalK8s is installed, and from where
the cluster will be deployed to other machines. It also serves as the entrypoint for upgrades of the
cluster.

Controller Manager

kube-controller-manager The Kubernetes controller manager embeds the core control loops shipped
with Kubernetes, which role is to watch the shared state from API Server and make changes to
move the current state towards the desired state.

See also the official Kubernetes documentation for kube-controller-manager.
etcd etcd is a distributed data store, which is used in particular for the persistent storage of API Server.
For more information, see etcd.io.

Kubeconfig A configuration file for kubectl, which includes authentication through embedded certifi-
cates.

See also the official Kubernetes documentation for kubeconfig.
Kubelet The kubelet is the primary “node agent” that runs on each cluster node.

See also the official Kubernetes documentation for https://kubernetes.io/docs/reference/command-
line-tools-reference/kubelet/

Node A Node is a Kubernetes worker machine - either virtual or physical. A Node contains the services
required to run Pods.

See also the official Kubernetes documentation for Nodes.
Node manifest The YAML file describing a Node.
See also the official Kubernetes documentation for Nodes management.

Pod A Pod is a group of one or more containers sharing storage and network resources, with a specifi-
cation of how to run these containers.

See also the official Kubernetes documentation for Pods.

Prometheus Prometheus serves as a time-series database, and is used in MetalK8s as the storage for all
metrics exported by applications, whether being provided by the cluster or installed afterwards.

For more details, see prometheus.io.

SaltAPI SaltAPI is an HTTP service for exposing operations to perform with a Salt Master. The version
deployed by MetalK8s is configured to use the cluster authentication/authorization services.

See also the official SaltStack documentation for SaltAPI.

Salt Master The Salt Master is a daemon responsible for orchestrating infrastructure changes by man-
aging a set of Salt Minions.

See also the official SaltStack documentation for Salt Master.

Salt Minion The Salt Minion is an agent responsible for operating changes on a system. It runs on all
MetalK8s nodes.

See also the official SaltStack documentation for Salt Minion.

99

https://prometheus.io/docs/alerting/alertmanager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://etcd.io
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/#management
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://prometheus.io
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#a-rest-api-for-salt
https://docs.saltstack.com/en/latest/topics/development/architecture.html#salt-master
https://docs.saltstack.com/en/latest/topics/development/architecture.html#salt-minion

MetalK8s Documentation, Release 2.4.0

Scheduler

kube-scheduler The Kubernetes scheduler is responsible for assigning Pods to specific Nodes using a
complex set of constraints and requirements.

See also the official Kubernetes documentation for kube-scheduler.

Service A Kubernetes Service is an abstract way to expose an application running on a set of Pods as a
network service.

See also the official Kubernetes documentation for Services.

Taint Taints are a system for Kubernetes to mark Nodes as reserved for a specific use-case. They are used
in conjunction with tolerations.

See also the official Kubernetes documentation for taints and tolerations.

Toleration Tolerations allow to mark Pods as schedulable for all Nodes matching some filter, described
with taints.

See also the official Kubernetes documentation for taints and tolerations.
kubectl kubectl is a CLI interface for interacting with a Kubernetes cluster.

See also the official Kubernetes documentation for kubectl.

100

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://kubernetes.io/docs/reference/kubectl/kubectl/

INDEX

A

Alertmanager, 99
API Server, 99

B

Bootstrap, 99
Bootstrap node, 99

C

Controller Manager, 99

E
etcd, 99

K

kube-apiserver, 99
kube-controller-manager, 99
kube-scheduler, 100
Kubeconfig, 99

kubectl, 100

Kubelet, 99

N

Node, 99
Node manifest, 99

P

Pod, 99
Prometheus, 99

S

Salt Master, 99
Salt Minion, 99
SaltAPI, 99
Scheduler, 100
Service, 100

T

Taint, 100
Toleration, 100

101

	I Quickstart Guide
	Introduction
	Setup of the environment
	Deployment of the Bootstrap node
	Cluster expansion
	Accessing cluster services

	II Installation Guide
	Sizing recommendations

	III Operational Guide
	Bootstrap Node Backup and Restoration Procedure
	Enable IP-in-IP encapsulation
	ISO Preparation
	Upgrade Guide
	Downgrade Guide
	Changing the hostname of a MetalK8s node
	Volume Management
	Account Administration

	IV Developer Guide
	Architecture Documents
	Design Documents
	How to build MetalK8s
	How to run components locally
	Development Best Practices
	Integrating with MetalK8s

	V Glossary
	Index

