

 Navigation

 	
 index

 	
 next |

 	Metagenomic methods for microbial ecologists 1.0 documentation

Welcome to Metagenomic methods for microbial ecologists’s documentation!

Contents:

	Day 1: Introduction
	Preprocessing & quality filtering using a Snakemake workflow

	Introduction to Snakemake

	Launch Snakemake

	Create a rule to unzip FASTQ files

	Creating quality plots using FASTQC

	Trim low quality reads and remove adapters

	Create quality plots of the trimmed data

	Create quality plots using R

	Merge paired-end Illumina data

	Day 4: Metagenomic assembly and binning
	Installing perl-doc (to view some help files for ESOM)

	Qality checking your data

	running cutadapt

	Running mira

	Binning

	ESOM

	crAss

	Differential coverage: manual

	groopM

 Copyright 2014, Mattias de Hollander, Bas Dutilh, Daan Speth.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Metagenomic methods for microbial ecologists 1.0 documentation

Day 1: Introduction

Today we will give an introduction to sequencing techniques and data processing with linux.

Preprocessing & quality filtering using a Snakemake workflow

In this part the following topics will be covered

	introduction to Snakemake

	unzipping files

	making FASTQC plots

	trimming reads with low quality and adapter removal

	combining all steps into a single workflow

Introduction to Snakemake

https://speakerdeck.com/johanneskoester/workflow-management-with-snakemake

	Documentation for snakemake can be found here: https://bitbucket.org/johanneskoester/snakemake/wiki/Documentation

	Use this as a reference while following the step-by-step guide below

Launch Snakemake

	Boot up the Ubuntu live USB-stick

	Open a terminal window using the icon on the left on the screen or by typing: ctrl + alt + T

	Start the Snakemake environment:

source /usr/local/bin/virtualenvwrapper.sh && workon snakemake

	Make sure the snakemake executable is available:

snakemake -h

Note

Question: Which version of Snakemake is installed?

Create a rule to unzip FASTQ files

	Create a directory for this part for the workshop:

mkdir qc_snakemake
cd qc_snakemake

In Snakemake, workflows are specified as Snakefiles. Inspired by GNU Make, a Snakefile contains rules, that denote how to create output files from input files. Dependencies between rules are handled implicitly, by matching filenames of input files against output files. Thereby wildcards can be used to write general rules.

	Create the main workflow file using your favorite text editor. For a graphical editor Gedit is recommended and for a command-line editor Nano is a good choice.:

gedit Snakefile &

	Add the following lines:

configfile: "config.json"

rule all:
 input:
 expand("bunzip/{sample}.fastq",sample=config['data'])

rule bunzip:
 input:
 lambda wildcards: expand("{basedir}{data}",basedir=config["basedir"],data=config["data"][wildcards.data])
 output:
 "bunzip/{data}.fastq"
 log:
 "bunzip/{data}.log"
 threads: 1
 shell: "bunzip2 -d -c {input} > {output}"

	Save the file. If you are using Gedit use the File menu or type ctrl + s or in Nano type ctrl + x and y

In the above Snakefile first the configuration file is loaded, next a target rule is defined that will trigger the creation of the required output. Finally a rule is made to unzip FASTQ files compressed in bzip2 format.

Since version 3.1, Snakemake directly supports the configuration of your workflow. A configuration is provided as a JSON file. The JSON file can be used to define a dictionary of configuration parameters and their values. In the workflow, the configuration is accessible via the global variable config.

	Create a config file:

gedit config.json

	Add the following configuration:

{
 "basedir": "/home/nmp/Documents/DeHollander/",
 "samples": {
 "Sample1": ["Sample1"],
 "Sample2": ["Sample2"],
 "Sample3": ["Sample3"]
 },
 "data": {
 "Sample1": ["sample1.fastq.bz2"],
 "Sample2": ["sample2.fastq.bz2"],
 "Sample3": ["sample3.fastq.bz2"]
 },
 "adapters": "/home/nmp/Documents/DeHollander/contaminant_list.txt",
 "adapters_fasta": "/home/nmp/Documents/DeHollander/illumina_truseq_adapters.fa"
}

	Now run snakemake. It will unpack the input files using the bunzip2 command:

snakemake

Note

	Questions:

	
	Can you explain what happened? Which files are used for input? Which output files are created?

	Open one of the fastq files either using the File Browser or using less on the command line

Creating quality plots using FASTQC

	Add the following text rule to the Snakefile after the bunzip rule:

rule fastqc_raw:
 input: fastq="bunzip/{sample}.fastq"
 output: "fastqc_raw/{sample}_fastqc/"
 params: dir="fastqc_raw", adapters=config['adapters']
 log: "fastqc_raw.log"
 threads: 1
 shell: "fastqc -q -t {threads} --contaminants {params.adapters} --outdir {params.dir} {input.fastq} > {params.dir}/{log}"

	Add final fastqc outputs to the target rule all. Is should now look like this (note that a comma is added at the end of the bunzip line):

rule all:
 input:
 expand("bunzip/{sample}.fastq",sample=config['data']),
 expand("fastqc_raw/{sample}_fastqc/",sample=config['data'])

	Make the plots by running Snakemake again:

snakemake

	Have a look at the results using a browser:

firefox fastqc_raw/Sample*_fastqc/fastqc_report.html

Note

	Questions:

	
	What are the difference between the samples?

	Is there any difference in quality?

	Can you find adapter contamination?

Trim low quality reads and remove adapters

	Create a rule for the fastq-mcf program:

rule trim:
 input: fastq="bunzip/{sample}.fastq"
 output: fastq="fastq-mcf/{sample}_trimmed.fastq"
 params: dir="fastq-mcf", adapters=config["adapters_fasta"]
 log: "{sample}_fastq-mcf.log"
 threads: 1
 # -C: number of subsamples used for determining adapter parameters
 # http://scotthandley.wordpress.com/2013/09/25/adapter-removal-and-adaptive-quality-trimming-with-parity-using-fastq-mcf/
 shell: "fastq-mcf {params.adapters} {input.fastq} -o {output.fastq} -C 99999 -P 33 -w 4 -q 25 -u -x 0.01 -l 20 -t 0 -S >> {params.dir}/{log}"

	Add it to the Snakefile after the fastqc-raw rule

	Run snakemake now with a parameter showing the command that is going to be performed:

snakemake -p

Note

	Exercise:

	
	Have a look at the fastq-mcf parameters. What is the minimum quality.

	What do the other parameters mean?

Create quality plots of the trimmed data

Note

	Exercise:

	
	Create a rule for creating plots with FASTQC on the trimmed data.

	Use the fastqc_rule as as a template and adjust the input and output parameters.

	Add the fastqc_trim output to the rule all: by adding another expand() line with the output of the fastqc_trim rule as input.

	Run snakemake

	Open the output files in Firefox and compare them to the raw data. What is the effect of trimming the reads?

Create quality plots using R

Is it possible to run R code directly from a Snakefile. To make similar quality plots as FASTQC in R we are going to make use of the ‘qrqc’ package: http://www.bioconductor.org/packages/release/bioc/html/qrqc.html

	First we need to install some required software on the USB. Copy paste the commands below to perform this installation:

wget https://bitbucket.org/johanneskoester/snakemake/raw/ef669ba49226368fc71eb1975a89168dcb87d59a/snakemake/utils.py
mv utils.py ~/.virtualenvs/snakemake/lib/python3.3/site-packages/snakemake/
sudo apt-get -y install python3-dev
pip install rpy2

	Create a rule that reads in the untrimmed and trimmed data and saves a quality plot to disk:

from snakemake.utils import R

rule qc_plot:
 input: untrimmed="bunzip/{sample}.fastq", trimmed="fastq-mcf/{sample}_trimmed.fastq"
 output: "qrqc/{sample}_qualplot.png"
 run:
 R("""
 library("qrqc")

 s1 <- readSeqFile("{input.untrimmed}")
 s2 <- readSeqFile("{input.trimmed}")
 q <- qualPlot(list(untrimmed = s1, trimmed = s2))
 ggsave("{output}", q)
 """)

	Add this rule again to the Snakefile.

	Adjust the rule all: to incude the output of the qc_plot rule.

Note

Exercise: Extend above rule to the other functions of the qrqc package. Have a look at the documentation of the qrqc package to see what is possible. For example create a base frequency plot with the basePlot command.

Merge paired-end Illumina data

Sequence that are produced by the Illumina HiSeq or MiSeq machines come in pairs of fastq files with each pair of reads. Files containing R1 in the filename are in the forward direction and with R2 in the reverse. The two read pairs can be merged into a single, longer sequence. Downstream analysis can benefit of the longer read length. Several tools excist to merge paired-end read, and in this section we will make use of FLASH (http://ccb.jhu.edu/software/FLASH/).

	First we need to setup a new directory to store the results:

mkdir /home/nmp/mergepairs && cd /home/nmp/mergepairs

	Create a new config.json file with this content:

{
 "basedir": "/home/nmp/Documents/DeHollander/",
 "samples": {
 "Sample4": ["Sample4"],
 "Sample5": ["Sample5"]
 },
 "data": {
 "Sample4": {"forward": "sample4_R1.fastq", "reverse": "sample4_R2.fastq"},
 "Sample5": {"forward": "sample5_1.fq", "reverse": "sample5_2.fq"}
 },
 "adapters_fasta": "/home/nmp/Documents/DeHollander/illumina_truseq_adapters.fa"
}

	The first step again is to trim the data. Since in the previous section we have worked with single end data, we have to adjust the fastq-mcf rule:

rule fastqmcf_paired:
 input:
 forward = lambda wildcards: config["basedir"] + config["data"][wildcards.data]['forward'],
 reverse = lambda wildcards: config["basedir"] + config["data"][wildcards.data]['reverse']
 output:
 forward="fastq-mcf/{data}_R1_trimmed.fastq",
 reverse="fastq-mcf/{data}_R2_trimmed.fastq"
 params: dir="fastq-mcf", adapters=config["adapters_fasta"]
 log: "{data}_fastq-mcf.log"
 threads: 1
 # -C: number of subsamples used for determining adapter parameters
 # http://scotthandley.wordpress.com/2013/09/25/adapter-removal-and-adaptive-quality-trimming-with-parity-using-fastq-mcf/
 shell: "fastq-mcf {params.adapters} {input} -o {output.forward} -o {output.reverse} -C 99999 -P 33 -w 4 -q 25 -u -x 0.01 -l 20 -t 0 -S >> {params.dir}/{log}"

	We need to get a list of samples from the config file. Add this line to the Snakefile after the config.json file is loaded:

DATA_TO_SAMPLE = {
 data: sample for sample, datasets in config["samples"].items()
 for data in datasets}

	Now lets run Snakemake to create a trimmed file of the forward read from Sample4:

snakemake fastq-mcf/Sample4_R1_trimmed.fastq

One of the strengths of Snakemake is that you can run it on multiple input files with a range of parameters automatically. We are going to run the FLASH program on Sample4 and Sample5 with a range of mismatch parameters. Therefore we need to create a MISMATCHES variable and a ‘final’ rule that will trigger the creation of all needed files.

	Add these lines directly after the DATA_TO_SAMPLE variable:

MISMATCHES = "0 0.1 0.5".split(' ')

rule all:
 input:
 expand("flash/{data}_trimmed_{mismatch}.extendedFrags.fastq".split(),data=config["samples"],mismatch=MISMATCHES)

	Now add a rule to run FLASH on a range of mismatch values:

rule flash_trimmed:
 input:
 forward="fastq-mcf/{data}_R1_trimmed.fastq",
 reverse="fastq-mcf/{data}_R2_trimmed.fastq"
 output:
 "flash/{data}_trimmed_{mismatch}.extendedFrags.fastq"
 params:
 sample=lambda wildcards: DATA_TO_SAMPLE[wildcards.data],
 prefix="{data}_trimmed_{mismatch}", dir="flash",minlength="5",maxlength="400",mismatch="{mismatch}"
 log:
 "{data}_trimmed_{mismatch}_mergepairs.log"
 shell:
 "flash -m {params.minlength} -M {params.maxlength} {input} -x {params.mismatch} -o {params.prefix} -d {params.dir} > {params.dir}/{log}"

	To visualize the steps Snakemake is going to perform on the different datasets, we can create a dependency graph with the following command:

$ snakemake --dag | dot | display

	Finally, let’s run Snakemake to create all of the files seen in the previous picture:

snakemake

Note

	Questions:

	
	Have a look at the fastq-mcf log file fastq-mcf/Sample4_fastq-mcf.log. Do you see any adapter contamination? Do the same for Sample5.

	How many reads are merged? Compare the FLASH log file for Sample4 and Sample5: flash/Sample4_trimmed_0_mergepairs.log

	What is the effect of the different mismatch values?

The main purpose of merging read pairs is to get longer reads. Using the qrqc package in R we can compare the length of the sequences before and after merging.

	Create the following qrqc_seqlen rule at the end of Snakefile:

from snakemake.utils import R

rule qrqc_seqlen:
 input: untrimmed="fastq-mcf/{data}_R1_trimmed.fastq", trimmed="flash/{data}_trimmed_0.extendedFrags.fastq"
 output: "qrqc/{data}_lengthplot.png"
 run:
 R("""
 library("qrqc")

 s1 <- readSeqFile("{input.untrimmed}")
 s2 <- readSeqFile("{input.trimmed}")
 l <- seqlenPlot(list(untrimmed = s1, trimmed = s2))
 ggsave("{output}", l)
 """)

	Create the plot for Sample4 and have a look at it:

snakemake qrqc/Sample4_lengthplot.png
display qrqc/Sample4_lengthplot.png

Note

	Optional exercise:

	
	Make a rule to merge data with FLASH using the untrimmed files

	There are alternative programs to perform the trimming and merging. Create rules for Alientrimmer to trim the data and Usearch to merge data usearch -fastq_mergepairs. Compare this with the output of Fastq-mcf and FLASH.

 Copyright 2014, Mattias de Hollander, Bas Dutilh, Daan Speth.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Metagenomic methods for microbial ecologists 1.0 documentation

Day 4: Metagenomic assembly and binning

Note

First a little disclaimer:

In any bioinformatics step, there is not one ‘best’ tool for the job.
Depending on the data you have, you might want to use different programs than we demonstrate here.
The programs used here are chosen because we have (some) experience running them
and they work with the data we have (400bp single end Ion Torrent reads).
We have tested most of the the workflow we demonstrate today, but there will probably be things that don’t work.
if you run into problems, or have questions, ask!

In any assembly workflow, metagenomic or otherwise, it is important that you remove bad quality and short reads from the data.
To assess the quality of the data we use the program ‘FastQC’.
For the trimming, we use ‘cutadapt’.

But first, installing and downloading some extra stuff
apparently we have missed a few things on the usb stick

Installing perl-doc (to view some help files for ESOM)

	Type this in a terminal window (type password Wag2014 when prompted):

sudo apt-get install perl-doc

	re-installing cutadapt:

cd
cd Programs/
rm -r cutadapt-1.4.1
cd
sudo pip install cutadapt

	installing samtools:

sudo apt-get install samtools

Qality checking your data

	Go to the directory where this mornings files are located:

cd ~/Documents/Speth-Dutilh/

get organized!
mkdir crAss_data
mv F* crAss_data

mkdir wwtp_data
mv course_NIOO_data* ctab_* kit_* wwtp_data

ls
cd wwtp_data

	run fastqc on 4 datasets, without any arguments:

fastqc kit_* ctab_*

	inspect the data:

firefox *_fastqc/fastqc_report.html &

Note

this will open 4 tabs on firefox, each tab contains the quality report of one of the datasets
the ‘&’ symbol at the end will run firefox in the background, so that we can continue below after pressing enter
check the failures and warnings
after running cutadapt, and rerunning fastQC, we’ll discuss the results briefly

running cutadapt

	get organized again!:

mkdir raw_data
mv ctab_* kit_* raw_data
mkdir trimmed_data
cd trimmed_data

	briefly look at the options, we’ll only use length and quality trimming (press enter):

cutadapt -h

	run cutadapt, -m specifies minimum length, -q defines minimum quality of sequence ends -o states the name of the output file:

cutadapt -m 100 -q 24 -o ctab_total_trimmed.fastq ../raw_data/ctab_total_raw.fastq
cutadapt -m 100 -q 24 -o ctab_wash_trimmed.fastq ../raw_data/ctab_wash_raw.fastq
cutadapt -m 100 -q 24 -o kit_total_trimmed.fastq ../raw_data/kit_total_raw.fastq
cutadapt -m 100 -q 24 -o kit_wash_trimmed.fastq ../raw_data/kit_wash_raw.fastq

	run fastqc on the trimmed data:

fastqc kit_* ctab_*

	inspect the data:

firefox *_fastqc/fastqc_report.html &

Note

not all data will show passed, but still the graphs will give information on the effect of the trimming.
we will discuss the data before Bas will start with his assembly lecture

Now that we have trimmed reads, we can prepare for the assembly.

Running mira

	get organized yet again! (although the following steps are not strictly necessary, it is good practice to keep your data organized.):

cd ~/Documents/Speth-Dutilh/wwtp_data
mkdir mira
mkdir mira/data
mkdir mira/assembly
cp trimmed_data/*.fastq mira/data

	go to assembly folder and create manifest file:

cd mira/assembly

	open a text editor:

nano

	write (or copy/paste) the following lines:

project = NIOO_metagenomics_course
job = est,denovo,accurate

readgroup = ctab_total
data = ../data/ctab_total_trimmed.fastq
technology = iontor

readgroup = ctab_wash
data = ../data/ctab_wash_trimmed.fastq
technology = iontor

readgroup = kit_total
data = ../data/kit_total_trimmed.fastq
technology = iontor

readgroup = kit_wash
data = ../data/kit_wash_trimmed.fastq
technology = iontor

Note

project (name) and job (parameters) give information on the total assembly
readgroup allows us to co-assemble different datasets. This enables for instance hybrid assemblies of Pacbio and illumina
data is the readfile (relative to current dir), and technology the platform used for sequencing
this is, by far, not an exhaustive list of options

save as manifest.conf
to save, press ‘control-o’, and choose the name
to exit nano, press ‘control-x’

	run mira:

mira manifest.conf >& log_assembly.txt

Note

################## LUNCHTIME! (while Mira runs) ###########################
####### MAKE SURE THAT MIRA IS RUNNING BEFORE YOU GO FOR LUNCH ############
############ If you don’t know how, ask us before you leave ###############

	inspect data:

cd ~/Documents/Speth-Dutilh/wwtp_data/mira/assembly/NIOO_metagenomics_course_assembly/NIOO_metagenomics_course_d_info/
ls -l

Note

All WARNINGS files should be empty (size 0)

	check general assembly stats:

more NIOO_metagenomics_course_info_assembly.txt

	We’ll use the contigstats file to visualize clusters later:

head metagenomics_course_info_contigstats.txt

cd ../NIOO_metagenomics_course_d_results/
ls -l

Note

The contigs are in NIOO_metagenomics_course_out.unpadded.fasta

Binning

We’ll look into several binning methods.

	GC content and coverage:

cd ~/Documents/Speth-Dutilh/wwtp_data/mira/
mkdir binning
cp assembly/NIOO_metagenomics_course_assembly/NIOO_metagenomics_course_d_results/NIOO_metagenomics_course_out.unpadded.fasta binning/contigs.fa
cp assembly/NIOO_metagenomics_course_assembly/NIOO_metagenomics_course_d_info/NIOO_metagenomics_course_info_contigstats.txt binning/stats.txt

	open Rstudio:

rstudio &

	type the following in Rstudio:

install.packages("ggplot2")
library(ggplot2)

setwd("~/Documents/Speth-Dutilh/wwtp_data/mira/binning")

contigstats <- read.delim("stats.txt")
names(contigstats)
plot <- ggplot(contigstats, aes(x=GC., y=av.cov, size=length)) + geom_point()
plot

look at those beautiful clusters
- let’s select one:

bin1 <- subset(contigstats, GC. > 40 & av.cov > 12.5)
bin1_plot <- ggplot(bin1, aes(x=GC., y=av.cov, size=length)) + geom_point()
bin1_plot

sum(bin1$length)

write.table(bin1, file="bin1_stats.txt",sep="\t", row.names=FALSE, quote=FALSE)

	back to the terminal and type:

ls -l
head bin1_stats.txt

ESOM

	change directory to where the binning files are:

cd ~/Documents/Speth-Dutilh/wwtp_data/mira/binning

	run the esomwrapper script:

perl ~/Programs/Binning-master/esomWrapper.pl -p . -e fa -min 1000 -scripts ~/Programs/Binning-master/

Note

as indicated by the name, this is a wrapper for several other scripts
it calculates the tetranucleotide frequencies of the contigs, and prepares the files for ESOM

	look at the log file and check the rows/columns of neurons for the map:

more ESOM/esom.log

	open the esom software:

esomana

	we’ll take it interactively from here:

info on this can be found in the ESOM README "~/Programs/Binning-master/README.md"

perl scripts to get from class files to binned contigs come with the ESOM installation

crAss

	change directory to where the binning files are:

cd ~/Documents/Speth-Dutilh/wwtp_data/mira/binning

	get organized!:

mkdir crAss
cp ../mira/assembly/NIOO_metagenomics_course_assembly/NIOO_metagenomics_course_d_results/NIOO_metagenomics_course_out.caf crAss
cp ../mira/data/kit_* ../mira/data/ctab_* crAss

	convert files:

cd crAss
miraconvert -f caf -t ace NIOO_metagenomics_course_out.caf assembly.ace
cat ctab_total_trimmed.fastq | perl -e '$i=0;while(<>){if(/^\@/&&$i==0){s/^\@/\>/;print;}elsif($i==1){print;$i=-3}$i++;}' > ctab_total_trimmed.fasta
cat ctab_wash_trimmed.fastq | perl -e '$i=0;while(<>){if(/^\@/&&$i==0){s/^\@/\>/;print;}elsif($i==1){print;$i=-3}$i++;}' > ctab_wash_trimmed.fasta
cat kit_total_trimmed.fastq | perl -e '$i=0;while(<>){if(/^\@/&&$i==0){s/^\@/\>/;print;}elsif($i==1){print;$i=-3}$i++;}' > kit_total_trimmed.fasta
cat kit_wash_trimmed.fastq | perl -e '$i=0;while(<>){if(/^\@/&&$i==0){s/^\@/\>/;print;}elsif($i==1){print;$i=-3}$i++;}' > kit_wash_trimmed.fasta

grep -E '^CO|AF' assembly.ace > small_assembly.ace

Differential coverage: manual

	align reads using bowtie 2:

mkdir aligned_reads

build index from contigs
bowtie2-build contigs.fa indexed_contigs
mv indexed_contigs* aligned_reads

cd aligned_reads

	repeat the 4 commands below for all four datasets:

bowtie2 indexed_contigs -U ../../data/ctab_total_trimmed.fastq -S ctab_total.sam
samtools view -bS ctab_total.sam > ctab_total.bam
samtools sort ctab_total.bam ctab_total.sorted.bam
samtools depth ctab_total.sorted.bam > ctab_total_depth.txt

Note

####### here we’ll need a little workaround...#########
we’ll download a perlscript to calculate the read depth from or “*_depth.txt” files
After running this perl script we’ll look at the data in Rstudio
the script is here:
https://raw.githubusercontent.com/MadsAlbertsen/multi-metagenome/master/misc.scripts/calc.coverage.in.bam.depth.pl

groopM

groopm is an automated binning tool, using differential coverage and kmer content
it requires contigs and sorted/indexed BAM files
we have sorted our BAM files in the previous steps and will index them now and then follow the steps at:
http://minillinim.github.io/GroopM/

 Copyright 2014, Mattias de Hollander, Bas Dutilh, Daan Speth.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Metagenomic methods for microbial ecologists 1.0 documentation

Index

 Copyright 2014, Mattias de Hollander, Bas Dutilh, Daan Speth.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

day-2/index.html

 Navigation

 		
 index

 		Metagenomic methods for microbial ecologists 1.0 documentation »

Day 2: EBI Metagenomics

In this introduction day we we will learn how to:

		Quality trim reads using Alientrimmer

		Use Snakemake to build workflows

 © Copyright 2014, Mattias de Hollander, Bas Dutilh, Daan Speth.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

day-5/index.html

 Navigation

 		
 index

 		Metagenomic methods for microbial ecologists 1.0 documentation »

Day 5: Symposium

		Time
		Title
		Speaker / Practical Supervisor

		08:30-09:00
		Coffee and welcome
		

		09:00-09:30
		Functional (meta)genomics of organohalide respiring bacteria
		Hauke Smidt (WUR)

		09:30-09:50
		Title tba
		Selected course participant

		09:50-10:20
		Functional metagenomic analysis of lignocellulosic degradation in wood feeding beetles
		Eoin Brodie (Lawrence Berkeley National Lab)

		10:20-10:50
		Novel methanogenic archaea revealed by integrated meta-omics
		Tim Urich (University of Vienna)

		10:50-11:10
		Cofee break
		

		11:10-11:40
		Title tba
		Gerard Muyzer (University of Amsterdam)

		11:40-12:00
		Title tba
		Selected course participant

		12:00-12:30
		Title tba
		Kelly Wrighton (Ohio State University)

		12:30-14:00
		Lunch
		

		14:00-14:30
		How to unravel the secrets of impossible anaerobic microbes by metagenomic analysis
		Mike S.M. Jetten (Radboud University)

		14:30-14:50
		Title tba
		Selected course participant

		14:50-15:20
		Mission accomplished? Critical evaluation of computational methods in metagenomics
		Thomas Rattei (University of Vienna)

		15:20-15:40
		Coffee break
		

		15:40-16:10
		Methods and tools for statistical analysis of metagenomic count data
		Paul J. McMurdie (Stanford University)

		16:10-16:30
		Selected course participant
		

		16:30-17:00
		Rhythm on the beach. Metabolic pathways in marine microbial mats
		Christine Hornlein (Royal Netherlands Institute for Sea Research (NIOZ))

		17:00-19:00
		Drinks
		

 © Copyright 2014, Mattias de Hollander, Bas Dutilh, Daan Speth.
 Created using Sphinx 1.2.2.

day-3/index.html

 Navigation

 		
 index

 		Metagenomic methods for microbial ecologists 1.0 documentation »

Day 3: Statistics

In this introduction day we we will learn how to:

		Quality trim reads using Alientrimmer

		Use Snakemake to build workflows

 © Copyright 2014, Mattias de Hollander, Bas Dutilh, Daan Speth.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Metagenomic methods for microbial ecologists 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Mattias de Hollander, Bas Dutilh, Daan Speth.
 Created using Sphinx 1.2.2.

day-1/virtual_machine.html

 Navigation

 		
 index

 		
 previous |

 		Metagenomic methods for microbial ecologists 1.0 documentation »

 # Boot the USB Flash Drive in VirtualBox

Sometimes with modern computers the USB drive provided with he course cannot boot.
Here, we show you how we booted from a USB Flash Drive in VirtualBox.
This process will allow you to run your portable Linux from the USB Flash Drive while still running from Windows.
By default VirtualBox does not support USB Boot. However this is easily attainable by mapping a virtual machine to the USB Drive.

what you need
* Download Virtual box from the VirtualBox Website: http://www.virtualbox.org and install the software in the default path
* The AllBio portable Linux USB stick with Ubuntu 14.04 inserted in one of your USB ports while running Windows
* Your Windows administrator password (Vista/Win7) 8.1 should do fine
* The root password of your AllBio portable Linux (‘g’)
* The password of your AllBio portable Linux main user nmg (‘Wag2014’)

Locate your USB drive number

		Click Start > Run Type diskmgmt.msc and click OK (In Vista/Win7 use the Start > Search Box)

		Locate your USB Disk #

 © Copyright 2014, Mattias de Hollander, Bas Dutilh, Daan Speth.
 Created using Sphinx 1.2.2.

