

Welcome to MESSENGERuvvs’s documentation

MESSENGERuvvs provides an interface to reduced MESSENGER (MErcury Surface,
Space ENvironment, GEochemistry, and Ranging) MASCS (Mercury Atmospheric and
Surface Composition Spectrometer) UVVS (UltraViolet and Visible Spectrometer)
data and to the nexoclom Neutral Exospheres and Cloud Model. See McClintock
et al. Space Science Reviews, 131, 481-521, 2007, and Solomon et al., Mercury -
The View After MESSENGER, Cambridge University Press, 2019, Ch 14-15, for
more details on the MESSENGER observations and models.

	MESSENGERdata

	database_setup

	databasebackups

Installation

MESSENGERuvvs can be installed with pip:

$ pip install MESSENGERuvvs

The MESSENGERuvvs data is not provided with this software package. I was not
responsible for reducing it, and I’m not sure who I’m allowed to distribute it
to. Please contact me if you are interested in this. MESSENGER MASCS/UVVS data
is available from the Planetary Data System [http://pds-geosciences.wustl.edu/missions/messenger/mascs.htm], although
in a different format. We can probably work on a way to get that data in the
format used here if necessary.

Reporting Issues

This project is hosted on github at MESSENGERuvvs [https://github.com/mburger-stsci/MESSENGERuvvs]. Please report bugs or make
comments there.

Contributing

Please let me know if you would like to make contributions.

	Authors

	Matthew Burger

	License

	LICENSE

MESSENGERdata

MESSENGER UVVS data class

	
exception MESSENGERuvvs.MESSENGERdata.InputError(expression, message)

	Raised when a required parameter is not included in the inputfile.

	
class MESSENGERuvvs.MESSENGERdata.MESSENGERdata(species=None, comparisons=None)

	Retrieve MESSENGER data from database.
Given a species and set of comparisons, retrieve MESSSENGER UVVS
data from the database. The list of searchable fields is given at
Database Fields Used by MESSENGERuvvs.

Returns a MESSENGERdata Object.

Parameters

	species
	Species to search. This is required because the data from each
species is stored in a different database table.

	query
	A SQL-style list of comparisons.

The data in the object created is extracted from the database tables using
the query:

SELECT *
FROM <species>uvvsdata, <species>pointing
WHERE <query>

See examples below.

Class Atributes

	species
	The object can only contain a single species.

	frame
	Coordinate frame for the data, either MSO or Model.

	query
	SQL query used to search the database and create the object.

	data
	Pandas dataframe containing result of SQL query. Columns in the
dataframe are the same as in the database except frame and
species have been dropped as they are redundant. If models have been
run, there are also columns in the form modelN for the Nth model run.

	taa
	Median true anomaly for the data in radians.

	model_label
	If N models have been run, this is a dictionary in the form
{'model0':label0, ..., 'modelN':labelN} containing descriptions for
the models.

	model_strength
	If N models have been run, this is a dictionary in the form
{'model0':strength0, ..., 'modelN':strengthN} containing modeled
source rates in units of [image: 10^{26}] atoms/s.

Examples

	Loading data

>>> from MESSENGERuvvs import MESSENGERdata

>>> CaData = MESSENGERdata('Ca', 'orbit = 36')

>>> print(CaData)
Species: Ca
Query: orbit = 36
Frame: MSO
Object contains 581 spectra.

>>> NaData = MESSENGERdata('Na', 'orbit > 100 and orbit < 110')

>>> print(NaData)
Species: Na
Query: orbit > 100 and orbit < 110
Frame: MSO
Object contains 3051 spectra.

>>> MgData = MESSENGERdata('Mg',
 'loctimetan > 5.5 and loctimetan < 6.5 and alttan < 1000')

>>> print(len(MgData))
45766

	Accessing data.

	The observations are stored within the MESSENGERdata object in a
pandas [https://pandas.pydata.org] dataframe attribute called data.
Please see the pandas documentation [https://pandas.pydata.org] for
more information on how to work with dataframes.

>>> print(CaData.data.head(5))
 utc orbit merc_year ... loctimetan slit utcstr
unum ...
3329 2011-04-04 21:24:11.820 36 0 ... 14.661961 Atmospheric 2011-04-04T21:24:11
3330 2011-04-04 21:25:08.820 36 0 ... 12.952645 Atmospheric 2011-04-04T21:25:08
3331 2011-04-04 21:26:05.820 36 0 ... 12.015670 Atmospheric 2011-04-04T21:26:05
3332 2011-04-04 21:27:02.820 36 0 ... 12.007919 Atmospheric 2011-04-04T21:27:02
3333 2011-04-04 21:27:59.820 36 0 ... 12.008750 Atmospheric 2011-04-04T21:27:59

[5 rows x 29 columns]

	Individual observations can be extracted using standard Python
slicing techniques:

>>> print(CaData[3:8])
Species: Ca
Query: orbit = 36
Frame: MSO
Object contains 5 spectra.

>>> print(CaData[3:8].data['taa'])
unum
3332 1.808107
3333 1.808152
3334 1.808198
3335 1.808243
3336 1.808290
Name: taa, dtype: float64

	Modeling data

>>> inputs = Input('Ca.spot.Maxwellian.input')
>>> CaData.model(inputs, 1e5, label='Model 1')
>>> inputs..speeddist.temperature /= 2. # Run model with different temperature
>>> CaData.model(inputs, 1e5, label='Model 2')

	Plotting data

>>> CaData.plot('Ca.orbit36.models.html')

	Exporting data to a file

>>> CaData.export('modelresults.csv')
>>> CaData.export('modelresults.html', columns=['taa'])

	
export(self, filename, columns=['utc', 'radiance'])

	Export data and models to a file.
Parameters

	filename
	Filename to export model results to. The file extension determines
the format. Formats available: csv, pkl, html, tex

	columns
	Columns from the data dataframe to export. Available columns can
be found by calling the keys() method on the data object.
Default = [‘utc’, ‘radiance’] and all model result columns. Note:
The default columns are always included in the output
regardless of whether they are specified.

Returns

No outputs.

	
keys(self)

	Return all keys in the object, including dataframe columns

	
set_frame(self, frame=None)

	Convert between MSO and Model frames.

More frames could be added if necessary.
If Frame is not specified, flips between MSO and Model.

database_setup

	
MESSENGERuvvs.database_setup.database_connect(database=None, port=None, return_con=True)

	Return a database connection to saved atomic data
Wrapper for psycopg2.connect() that determines database and port to use.

Parameters

	database
	Database to connect to. If not given, it must be supplied in
the $HOME/.nexoclom configuration file.

	port
	Port the database server uses. If not given, it must be supplied in
the $HOME/.nexoclom configuration file.

	return_con
	False to return database name and port instead of connection.
Default = True

Returns

Database connection with autocommit = True unless return_con = False

Examples

>>> from atomicdataMB import database_connect
>>> database, port = database_connect(return_con=False)
>>> print(f'database = {database}; port = {port}')
database = thesolarsystemmb; port = 5432
>>> with database_connect() as con:
... cur = con.cursor()
... cur.execute('SELECT DISTINCT species from gvalues')
... species = cur.fetchall()
>>> species = [s[0] for s in species]
>>> print(species)
['Ca', 'OH', 'O', 'Ti', 'C', 'Mg+', 'Na', 'Mg', 'H', 'Mn', 'He',
 'Ca+', 'K', 'S']

	
MESSENGERuvvs.database_setup.messenger_database_setup(force=False)

	Setup the database from SQL database dump files.
Repopulates the database using a SQL backup rather than the original
IDL save files. See Database Fields Used by MESSENGERuvvs for a description of the
tables and fields used by MESSENGERuvvs.

Parameters

	force
	If True, deletes old database tables and remakes them.
Default is False, which only creates the tables if necessary.

Returns

No output.

databasebackups

Backup the MESSENGERuvvs database tables.

	
MESSENGERuvvs.databasebackups.databasebackups()

	Backup the MESSENGERuvvs database tables.

Dump the MESSENGERuvvs data into SQL files that can be restored if
necessary. Tables that are backed-up are: cauvvsdata, capointing,
mguvvsdata, mgpointing, nauvvsdata, napointing, mesmercyear.

This function takes no arguments. The path to save the database dumps
must be specified in $HOME/.nexoclom in the format
datapath = <path to data>. The default database and port are
thesolarsystemmb and 5432. These can also be specified in the
.nexoclom file.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 MESSENGERuvvs	

 	
 	
 MESSENGERuvvs.database_setup	

 	
 	
 MESSENGERuvvs.databasebackups	

 	
 	
 MESSENGERuvvs.MESSENGERdata	

Index

 D
 | E
 | I
 | K
 | M
 | S

D

 	
 	database_connect() (in module MESSENGERuvvs.database_setup)

 	
 	databasebackups() (in module MESSENGERuvvs.databasebackups)

E

 	
 	export() (MESSENGERuvvs.MESSENGERdata.MESSENGERdata method)

I

 	
 	InputError

K

 	
 	keys() (MESSENGERuvvs.MESSENGERdata.MESSENGERdata method)

M

 	
 	messenger_database_setup() (in module MESSENGERuvvs.database_setup)

 	MESSENGERdata (class in MESSENGERuvvs.MESSENGERdata)

 	
 	MESSENGERuvvs.database_setup (module)

 	MESSENGERuvvs.databasebackups (module)

 	MESSENGERuvvs.MESSENGERdata (module)

S

 	
 	set_frame() (MESSENGERuvvs.MESSENGERdata.MESSENGERdata method)

LICENSE

Copyright (c) 2019, Matthew Burger
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Database Fields Used by MESSENGERuvvs

Two tables are created for each species (Ca, Na, and Mg): xxuvvsdata and
xxuvvspointing where xx is the species. Fields in each table:

cauvvsdata, nauvvsdata, mguvvsdata

	unum
	Unique spectrum identifier. This is used to join xxuvvsdata and
xxuvvspointing (xxuvvsdata.unum = xxpoainting.pnum)

	species
	Species in the table. This is uni-valued for each table.

	frame
	Reference frame for the pointing information. In the database this value
is ‘MSO for all spectra, but in can be changed to ‘model’ after being
loaded into a MESSENGERdata object.

	UTC
	UTC start time of the observation.

	orbit
	Orbit number for the observation.

	merc_year
	Mercury year since begining of mission. Years are measured from
perihelion, so Year 1 is incomplete.

	taa
	Mercury true anomaly angle in radians.

	rmerc
	Distance of Mercury from the Sun in AU.

	drdt
	Mercury’s radial distance from the Sun in km/s.

	subslong
	Sub-solar longitude in radians.

	g
	g-value for Mercury relative to the Sun in photons/s.

	radiance
	Measured radiance in the spectrum in kR.

	sigma
	Uncertainty in radiance measurement in kR.

capointing, napointing, mgpointing

	pnum
	Unique spectrum identifier. This is used to join xxuvvsdata and
xxuvvspointing (xxuvvsdata.unum = xxpoainting.pnum)

	x, y, z
	Spacecraft coordinates in the current reference frame in Mercury radii
(Measured relative to Mercury’s center).

	xbore, ybore, zbore
	Boresight direction ([image: \sqrt{xbore^2 + ybore^2 + zbore^2} = 1])

	obstype
	Type of commanded UVVS observation (e.g., UVVSExoScan).

	obstype_num
	Type number corresponding to obsype (e.g., UVVSExoScan=5).

	xtan, ytan, ztan
	Location of the point at which the instrument line-of-sight is tangent
to Mercury’s surface in Mercury radii (Measured relative to Mercury’s
center).

	rtan
	Distance of the instrument line-of-sight tangent point from Mercury’s
center ([image: rtan = \sqrt{xtan^2 + ytan^2 + ztan^2}])

	alttan
	Height (altitude) of the line-of-sight tangent point from Mercury’s
surface in km ([image: alttan = rtan - 1 \mathrm{R_M}]).

	longtan
	Longitude of the tangent point in radians. I’m not sure what coordinate
system this is measured in (suface fixed or MSO).

	lattan
	Latitude of the tangent point in radians.

	loctimetan
	Local time of the tangent point in hours.

	slit
	UVVS slit used for the observation (Atmospheric or Surface)

 nav.xhtml

 Table of Contents

 		
 Welcome to MESSENGERuvvs’s documentation

 		
 MESSENGERdata

 		
 database_setup

 		
 databasebackups

_images/math/42961fdb7e7a4230a07904e81da55a4e2d7c0754.png
1040

_images/math/bb0ace50af4b007c1618fce6658379b6ccd74fb6.png
/xbore? + ybore? + zbore?

_static/plus.png

_static/file.png

_static/minus.png

_images/math/1a3da3c00d11fe7e59c079d5216cde597906a4e7.png
rtan — 1Ry

_images/math/398c4d8577b5774a798abb2df8083f38bb848c27.png
rta;

/xtan? + ytan® + ztan?

