
message Documentation
Release 1.2.0

IIASA Energy Program

Nov 01, 2019

Contents

1 Overview and scope 3

2 Getting Started 5
2.1 Installation . 5
2.2 Tutorials . 6

3 Detailed documentation 9
3.1 MESSAGEix framework overview . 9
3.2 Python & R API . 12
3.3 Mathematical specification . 24
3.4 Developing MESSAGEix models . 56

4 Using and contributing to MESSAGEix 77
4.1 User guidelines and notice . 77
4.2 Contributing to MESSAGEix development . 78
4.3 Contributor License Agreement . 83
4.4 Frequently asked questions . 84
4.5 References . 85

Bibliography 87

Python Module Index 89

Index 91

i

ii

message Documentation, Release 1.2.0

Fig. 1: The ix modeling platform (source: [1])

Contents 1

message Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Overview and scope

MESSAGEix is a versatile, open-source, dynamic systems-optimization modelling framework. It was developed for
strategic energy planning and integrated assessment of energy-engineering-economy-environment systems (E4). The
framework can be applied to analyse scenarios of the energy system transformation under technical-engineering con-
straints and political-societal considerations. The optimization model can be linked to the general-economy MACRO
model to incorporate feedback between prices and demand levels for energy and commodities. The equations are
implemented in the mathematical programming system GAMS for numerical solution of a model instance.

The MESSAGEix framework is fully integrated with ’s ix modeling platform (ixmp), a data warehouse for high-
powered numerical scenario analysis. The platform supports an efficient workflow between original input data sources,
the implementation of the mathematical model formulation, and the analysis of numerical results. The platform can be
accessed via a web-based user interface and application programming interfaces (API) to the scientific programming
languages Python and R. The platform also includes a generic data exchange API to GAMS for numerical computation.

This documentation provides an introduction and the mathematical formulation of the MESSAGEix equations and
auxiliary functions. For the scientific reference of the framework, see Huppmann et al. (2019) [1]. The formulation
of MESSAGEix is a re-implementation and extension of ‘MESSAGE V’ (Messner and Strubegger, 1995 [5]), the
Integrated Assessment model developed at the International Institute for Applied Systems Analysis (IIASA) since the
1980s. For an overview of the MESSAGEix model used at the IIASA Energy Program and a list of recent publications,
please refer to the MESSAGE-GLOBIOM documentation website.

3

http://www.gams.com
http://www.gams.com
http://data.ene.iiasa.ac.at/message-globiom/

message Documentation, Release 1.2.0

4 Chapter 1. Overview and scope

CHAPTER 2

Getting Started

2.1 Installation

2.1.1 Install GAMS

MESSAGEix requires GAMS.

1. Download the latest version of GAMS for your operating system; run the installer.

2. Add GAMS to the PATH environment variable. This is required in order for MESSAGEix to run the mathe-
matical model core:

• on Windows, in the GAMS installer. . .

– Check the box labeled “Use advanced installation mode.”

– Check the box labeled “Add GAMS directory to PATH environment variable” on the Advanced
Options page.

• on macOS or Linux, add the following line to your .bash_profile (Mac) or .bashrc (Linux):

export PATH=$PATH:/path/to/gams-directory-with-gams-binary

2.1.2 Install MESSAGEix via Anaconda

After installing GAMS, we recommend that new users install Anaconda, and then use it to install MESSAGEix.
Advanced users may choose to install MESSAGEix from source code (next section).

3. Install Python via Anaconda. We recommend the latest version, i.e., Python 3.6+.

4. Open a command prompt. We recommend Windows users use the “Anaconda Prompt” to avoid permissions
issues when installing and using MESSAGEix. This program is available in the Windows Start menu after
installing Anaconda.

5. Install the message-ix package:

5

http://www.gams.com
http://www.gams.com
https://www.anaconda.com/distribution/#download-section

message Documentation, Release 1.2.0

$ conda install -c conda-forge message-ix

2.1.3 Install MESSAGEix from source

3. Install ixmp from source.

4. (Optional) If you intend to contribute changes to MESSAGEix, first register a Github account, and fork the mes-
sage_ix repository. This will create a new repository <user>/message_ix. (Please also see Contributing
to MESSAGEix development.)

5. Clone either the main repository, or your fork; using the Github Desktop client, or the command line:

$ git clone git@github.com:iiasa/message_ix.git

or:
$ git clone git@github.com:USER/message_ix.git

6. Open a command prompt in the message_ix directory and type:

$ pip install .

7. (Optional) Run the built-in test suite to check that MESSAGEix functions correctly on your system:

$ pip install .[tests]
$ py.test tests

2.1.4 Configure model files

By default, the GAMS files containing the mathematical model core are installed with message_ix (e.g., in your
Python site-packages directory). Many users will simply want to run MESSAGEix, or use the Python or R APIs
to manipulate data, parameters and scenarios. For these uses, direct editing of the GAMS files is not necessary.

To edit the files directly—to change the mathematical formulation, such as adding new types of parameters, constraints,
etc.—use the messageix-config utility to place the model files in a directory of your choice:

$ messageix-config --model_path /path/to/model

Note: If you installed from source on Windows using install.bat, this command was run automatically, pointing
to message_ix/model.

2.2 Tutorials

To get started with MESSAGEix, the following tutorials are provided as Jupyter notebooks, which combine code,
sample output, and explanatory text.

A static, non-interactive version of each notebook can be viewed online using the links below. In order to execute the
tutorial code or make modifications, read the Preparation section, next.

6 Chapter 2. Getting Started

https://message.iiasa.ac.at/projects/ixmp/en/latest/install.html
https://github.com/iiasa/message_ix
https://github.com/iiasa/message_ix
https://desktop.github.com
https://jupyter.org/

message Documentation, Release 1.2.0

2.2.1 Preparation

Getting tutorial files

If you installed MESSAGEix from source, all notebooks are in the tutorial directory.

If you installed MESSAGEix using Anaconda, download the notebooks using the messageix-dl utility. In a
command prompt:

$ messageix-dl --local_path /path/to/tutorials

Running tutorials

Using Anaconda

The nb_conda package is required. It should be installed by default with Anaconda. If it was not, install it:

$ conda install nb_conda

1. Open “Jupyter Notebooks” from Anaconda’s “Home” tab (or directly if you have the option).

2. Choose and open a tutorial notebook.

3. Each notebook requires a kernel that executes code interactively. Check that the kernel matches your conda
environment, and if necessary change kernels with the menu, e.g. Kernel → Change Kernel → Python [conda
root].

From the command line

1. Navigate to the tutorial folder. For instance, if messageix-dl was used above:

$ cd /path/to/tutorials

2. Start the Jupyter notebook:

$ jupyter notebook

2.2.2 Westeros Electrified

This tutorial demonstrates how to model a very simple energy system, and then uses it to illustrate a range of framework
features.

1. Build the baseline model.

2. Introduce emissions and a bound on the emissions.

3. Limit emissions using a tax instead of a bound.

4. Represent both coal and wind electricity, using a “firm capacity” formulation: each generation technology can
supply some firm capacity, but the variable, renewable technology (wind) supplies less than coal.

5. Represent coal and wind electricity using a different, “flexibility requirement” formulation, wherein wind re-
quires and coal supplies flexibility.

6. Variablity in energy supply and demand, by adding two sub-annual time steps (winter and summer).

2.2. Tutorials 7

https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_baseline.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_emissions_bounds.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_emissions_taxes.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_firm_capacity.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_flexible_generation.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_seasonality.ipynb

message Documentation, Release 1.2.0

7. Use ixmp and message_ix reporting features to post-process the raw results from a solved model.

2.2.3 Austrian energy system

This tutorial demonstrates a stylized representation of a national electricity sector model, with several fossil and
renewable power plant types.

1. Prepare the base model version, in Python or in R.

2. Plot results, in Python or in R.

3. Run a single policy scenario.

4. Run multiple policy scenarios. This tutorial has two notebooks: an introduction with some exercises and com-
pleted code for the exercises.

Have a question? First, check the Frequently asked questions, then try the community Google group:

• on the Web at https://groups.google.com/d/forum/message_ix, or

• via e-mail at <message_ix@googlegroups.com>.

8 Chapter 2. Getting Started

https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_report.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_reticulate.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_load_scenario.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_load_scenario_R.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_single_policy.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_multiple_policies.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_multiple_policies-answers.ipynb
https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_multiple_policies-answers.ipynb
https://groups.google.com/d/forum/message_ix
mailto:message_ix@googlegroups.com

CHAPTER 3

Detailed documentation

3.1 MESSAGEix framework overview

MESSAGEix is a framework that can be used to develop and run many different models, each describing a different
energy system. Models in the MESSAGEix framework can range from very simple (as in the Tutorials) to highly
detailed (e.g. the MESSAGE-GLOBIOM global model).

3.1.1 Supported features

The framework allows direct and explicit representation of:

• Energy technologies with arbitrary inputs and outputs, that can be used to describe a “reference energy system,”
including:

– the fuel supply chain,

– conversion technologies from primary to secondary energy forms,

– transmission and distribution (e.g. of electricity), and

– final demand for energy services.

• Vintaging of capacity, early retirement and decommissioning of technologies.

• System integration of variable renewable energy sources (based on Sullivan et al., 2013 [6] and Johnson et al.,
2016 [2]).

• Soft relaxation of dynamic constraints on new capacity and activity (Keppo and Strubegger, 2010 [3]).

• Perfect-foresight and dynamic-recursive (myopic) solution algorithms.

3.1.2 Running a model

There are three ways to run a MESSAGEix model:

9

message Documentation, Release 1.2.0

Fig. 1: Components and their interlinkages in the ix modeling platform (source [1]): web-based user interface, scien-
tific programming interface, modeling platform, database backend, implementation of the MESSAGEix mathematical
model formulation.

10 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

1. Via Python or R APIs using the packages/libraries ixmp and message_ix, calling message_ix.
Scenario.solve(). (See the Tutorials.)

2. Using the file MESSAGE_master.gms, where the scenario name (i.e., the gdx input file), the optimization
horizon (perfect foresight or myopic/ rolling-horizon version), and other options can be defined explicitly.

This approach is recommended for users who prefer to work via GAMS IDE or other text editors to set the model
specifications.

3. Directly from the command line calling the file MESSAGE_run.gms (see the auto-doc page). The scenario
name and other arguments can be passed as command line parameters:

$ gams MESSAGE_run.gms --in="<data-file>" --out="<output-file>"

Auto-generated documentation for the model run scripts is provided:

Note: This page is generated from inline documentation in MESSAGE_run.gms.

Run script for MESSAGEix (stand-alone)

This is MESSAGEix version 1.2.0. The version number must match the version number of the ixmp MESSAGE-
scheme specifications used for exporting data and importing results.

This file contains the workflow of a MESSAGEix-standalone run. It can be called:

• Via the scientific programming API’s using the packages/libraries ixmp and message_ix, calling the
method solve() of the message_ix.Scenario class (see the tutorials).

• using the file MESSAGE_master.gms with the option $SETGLOBAL macromode "none", where
the input data file name and other options are stated explicitly, or

• directly from the command line, with the input data file name and other options specific as command line
parameters, e.g.

gams MESSAGE_run.gms --in="<data-file>" [--out="<output-file>"]

By default, the data file (in gdx format) should be located in the model/data folder and be named in the format
MsgData_<name>.gdx. Upon completion of the GAMS execution, a results file <output-file>will be written
(or model\output\MsgOutput.gdx if --out is not provided).

Note: This page is generated from inline documentation in MESSAGE-MACRO_run.gms.

Run script for MESSAGEix and MACRO

This is MESSAGEix-MACRO version 1.2.0. The version number must match the version number of the ixmp
MESSAGE-scheme specifications used for exporting data and importing results.

This file contains the workflow of a MESSAGEix-MACRO run. It can be called:

• Via the scientific programming API’s using the packages/libraries ixmp and message_ix, calling the
method solve() of the message_ix.Scenario class (see the tutorials).

• using the file MESSAGE_master.gms with the option $SETGLOBAL macromode "linked",
where the input data file name and other options are stated explicitly, or

3.1. MESSAGEix framework overview 11

model/MESSAGE_run.html

message Documentation, Release 1.2.0

• directly from the command line, with the input data file name and other options specific as command line
parameters, e.g.

gams MESSAGE-MACRO_run.gms --in="<data-file>" [--out="<output-file>"]

By default, the data file (in gdx format) should be located in the model/data folder and be named in the format
MsgData_<name>.gdx. Upon completion of the GAMS execution, a results file <output-file>will be written
(or model\output\MsgOutput.gdx if --out is not provided).

3.2 Python & R API

The application programming interface (API) for MESSAGEix model developers is implemented in Python:

• ixmp package

• message_ix package

• Model classes

• Utility methods

• Testing utilities

Support for R usage of the core classes is provided through the reticulate package. For instance:

> library(reticulate)
> ixmp <- import('ixmp')
> message_ix <- import('message_ix')
> mp <- ixmp$Platform(...)
> scen <- message_ix$Scenario(mp, ...)

3.2.1 ixmp package

ixmp provides three classes. These are fully described by the ixmp documentation, which is cross-linked from many
places in the MESSAGEix documentation.

Platform(*args[, backend]) Instance of the modeling platform.
TimeSeries(mp, model, scenario[, version, . . .]) Collection of data in time series format.
Scenario(mp, model, scenario[, version, . . .]) Collection of model-related data.

ixmp also provides some utility classes and methods:

ixmp.config.Config([read]) Configuration for ixmp.
ixmp.model.MODELS Mapping from names to available models.
ixmp.model.get_model(name,
**model_options)

Return a model for name (or the default) with
model_options.

ixmp.testing.make_dantzig

12 Chapter 3. Detailed documentation

https://rstudio.github.io/reticulate/
https://message.iiasa.ac.at/projects/ixmp/en/latest/index.html
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Platform
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.TimeSeries
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.config.Config
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-model.html#ixmp.model.MODELS
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-model.html#ixmp.model.get_model
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.testing.make_dantzig

message Documentation, Release 1.2.0

3.2.2 message_ix package

MESSAGEix models are created using the message_ix.Scenario class. Several utility methods are also pro-
vided in the module message_ix.utils.

class message_ix.Scenario(mp, model, scenario=None, version=None, annotation=None,
cache=False)

Bases: ixmp.core.Scenario

MESSAGEix Scenario.

See ixmp.TimeSeries for the meaning of arguments mp, model, scenario, version, and annotation; ixmp.
Scenario for the meaning of cache. The scheme of a newly-created Scenario is always ‘MESSAGE’.

This class extends ixmp.Scenario and ixmp.TimeSeries and inherits all their methods. Documentation
of these inherited methods is included here for convenience. message_ix.Scenario defines additional
methods specific to MESSAGEix:

add_cat(name, cat, keys[, is_unique]) Map elements from keys to category cat within set
name.

add_horizon(data) Add sets related to temporal dimensions of the
model.

add_spatial_sets(data) Add sets related to spatial dimensions of the model.
cat(name, cat) Return a list of all set elements mapped to a category.
cat_list(name) Return a list of all categories for a mapping set.
firstmodelyear The first model year of the scenario.
read_excel(fname[, add_units, commit_steps]) Read Excel file data and load into the scenario.
rename(name, mapping[, keep]) Rename an element in a set
to_excel(fname) Save a scenario as an Excel file.
vintage_and_active_years([ya_args,
in_horizon])

Return sets of vintage and active years for use in data
input.

years_active(node, tec, yr_vtg) Return years in which tec of yr_vtg can be active in
node.

add_cat(name, cat, keys, is_unique=False)
Map elements from keys to category cat within set name.

Parameters

• name (str) – Name of the set.

• cat (str) – Name of the category.

• keys (str or list of str) – Element keys to be added to the category mapping.

• is_unique (bool, optional) – If True, then cat must have only one element. An
exception is raised if cat already has an element, or if len(keys) > 1.

add_geodata(df)
Add geodata (layers) to the TimeSeries.

Parameters df (pandas.DataFrame) – Data to add. df must have the following columns:

• region

• variable

• time

• unit

3.2. Python & R API 13

https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.TimeSeries
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.TimeSeries
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

message Documentation, Release 1.2.0

• year

• value

• meta

add_horizon(data)
Add sets related to temporal dimensions of the model.

Parameters data (dict-like) – Year sets. “year” is a required key. “firstmodelyear” is
optional; if not provided, the first element of “year” is used.

Examples

>>> s = message_ix.Scenario()
>>> s.add_horizon({'year': [2010, 2020]})
>>> s.add_horizon({'year': [2010, 2020], 'firstmodelyear': 2020})

add_par(name, key_or_data=None, value=None, unit=None, comment=None, key=None, val=None)
Set the values of a parameter.

Parameters

• name (str) – Name of the parameter.

• key_or_data (str or iterable of str or range or dict or
pandas.DataFrame) – Element(s) to be added.

• value (numeric or iterable of numeric, optional) – Values.

• unit (str or iterable of str, optional) – Unit symbols.

• comment (str or iterable of str, optional) – Comment(s) for the added
values.

add_set(name, key, comment=None)
Add elements to an existing set.

Parameters

• name (str) – Name of the set.

• key (str or iterable of str or dict or pandas.DataFrame) – Element(s) to be added. If
name exists, the elements are appended to existing elements.

• comment (str or iterable of str, optional) – Comment describing the
element(s). If given, there must be the same number of comments as elements.

Raises

• KeyError – If the set name does not exist. init_set() must be called before
add_set().

• ValueError – For invalid forms or combinations of key and comment.

add_spatial_sets(data)
Add sets related to spatial dimensions of the model.

Parameters data (dict) – Mapping of level → member. Each member may be:

• A single label for elements.

• An iterable of labels for elements.

• A recursive dict following the same convention, defining sub-levels and their members.

14 Chapter 3. Detailed documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

message Documentation, Release 1.2.0

Examples

>>> s = message_ix.Scenario()
>>> s.add_spatial_sets({'country': 'Austria'})
>>> s.add_spatial_sets({'country': ['Austria', 'Germany']})
>>> s.add_spatial_sets({'country': {
... 'Austria': {'state': ['Vienna', 'Lower Austria']}}})

add_timeseries(df, meta=False)
Add data to the TimeSeries.

Parameters

• df (pandas.DataFrame) – Data to add. df must have the following columns:

– region or node

– variable

– unit

Additional column names may be either of:

– year and value—long, or ‘tabular’, format.

– one or more specific years—wide, or ‘IAMC’ format.

• meta (bool, optional) – If True, store df as metadata. Metadata is
treated specially when Scenario.clone() is called for Scenarios created with
scheme='MESSAGE'.

cat(name, cat)
Return a list of all set elements mapped to a category.

Parameters

• name (str) – Name of the set.

• cat (str) – Name of the category.

Returns

Return type list of str

cat_list(name)
Return a list of all categories for a mapping set.

Parameters name (str) – Name of the set.

change_scalar(name, val, unit, comment=None)
Set the value and unit of a scalar.

Parameters

• name (str) – Name of the scalar.

• val (number) – New value of the scalar.

• unit (str) – New unit of the scalar.

• comment (str, optional) – Description of the change.

check_out(timeseries_only=False)
Check out the TimeSeries for modification.

3.2. Python & R API 15

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

message Documentation, Release 1.2.0

clear_cache(name=None, ix_type=None)
clear the Python cache of item elements

Parameters

• name (str, optional) – item name (None clears entire Python cache)

• ix_type (str, optional) – type of item (if provided, cache clearing is faster)

clone(*args, **kwargs)
Clone the current scenario and return the clone.

See ixmp.Scenario.clone() for other parameters.

Parameters

• keep_solution (bool, optional) – If True, include all timeseries data and the
solution (vars and equs) from the source scenario in the clone. Otherwise, only time-
series data marked as meta=True (see TimeSeries.add_timeseries()) or prior
to first_model_year (see TimeSeries.add_timeseries()) are cloned.

• shift_first_model_year (int, optional) – If given, the values of the so-
lution are transfered to parameters historical_*, parameter resource_volume is updated,
and the first_model_year is shifted. The solution is then discarded, see TimeSeries.
remove_solution().

commit(comment)
Commit all changed data to the database.

If the TimeSeries was newly created (with version='new'), version is updated with a new version
number assigned by the backend. Otherwise, commit() does not change the version.

Parameters comment (str) – Description of the changes being committed.

discard_changes()
Discard all changes and reload from the database.

equ(name, filters=None, **kwargs)
return a dataframe of (filtered) elements for a specific equation

Parameters

• name (str) – name of the equation

• filters (dict) – index names mapped list of index set elements

equ_list()
List all defined equations.

firstmodelyear
The first model year of the scenario.

Returns

Return type int

get_geodata()
Fetch geodata and return it as dataframe.

Returns Specified data.

Return type pandas.DataFrame

get_meta(name=None)
get scenario metadata

16 Chapter 3. Detailed documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario.clone
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

message Documentation, Release 1.2.0

Parameters name (str, optional) – metadata attribute name

has_equ(name)
check whether the scenario has an equation with that name

has_par(name)
check whether the scenario has a parameter with that name

has_set(name)
Check whether the scenario has a set name.

has_solution()
Return True if the Scenario has been solved.

If has_solution() == True, model solution data exists in the db.

has_var(name)
check whether the scenario has a variable with that name

idx_names(name)
return the list of index names for an item (set, par, var, equ)

Parameters name (str) – name of the item

idx_sets(name)
Return the list of index sets for an item (set, par, var, equ)

Parameters name (str) – name of the item

init_equ(name, idx_sets=None, idx_names=None)
Initialize a new equation.

Parameters

• name (str) – name of the item

• idx_sets (list of str) – index set list

• idx_names (list of str, optional) – index name list

init_par(name, idx_sets, idx_names=None)
Initialize a new parameter.

Parameters

• name (str) – Name of the parameter.

• idx_sets (list of str) – Names of sets that index this parameter.

• idx_names (list of str, optional) – Names of the dimensions indexed by
idx_sets.

init_scalar(name, val, unit, comment=None)
Initialize a new scalar.

Parameters

• name (str) – Name of the scalar

• val (number) – Initial value of the scalar.

• unit (str) – Unit of the scalar.

• comment (str, optional) – Description of the scalar.

init_set(name, idx_sets=None, idx_names=None)
Initialize a new set.

3.2. Python & R API 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

message Documentation, Release 1.2.0

Parameters

• name (str) – Name of the set.

• idx_sets (list of str, optional) – Names of other sets that index this set.

• idx_names (list of str, optional) – Names of the dimensions indexed by
idx_sets.

Raises jpype.JavaException – If the set (or another object with the same name) already
exists.

init_var(name, idx_sets=None, idx_names=None)
initialize a new variable in the scenario

Parameters

• name (str) – name of the item

• idx_sets (list of str) – index set list

• idx_names (list of str, optional) – index name list

is_default()
Return True if the version is the default version.

last_update()
get the timestamp of the last update/edit of this TimeSeries

load_scenario_data()
Load all Scenario data into memory.

Raises ValueError – If the Scenario was instantiated with cache=False.

par(name, filters=None, **kwargs)
return a dataframe of (filtered) elements for a specific parameter

Parameters

• name (str) – name of the parameter

• filters (dict) – index names mapped list of index set elements

par_list()
List all defined parameters.

preload_timeseries()
Preload timeseries data to in-memory cache. Useful for bulk updates.

read_excel(fname, add_units=False, commit_steps=False)
Read Excel file data and load into the scenario.

Parameters

• fname (string) – path to file

• add_units (bool) – add missing units, if any, to the platform instance. default: False

• commit_steps (bool) – commit changes after every data addition. default: False

remove_geodata(df)
Remove geodata from the TimeSeries instance.

Parameters df (pandas.DataFrame) – Data to remove. df must have the following
columns:

• region

18 Chapter 3. Detailed documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

message Documentation, Release 1.2.0

• variable

• unit

• time

• year

remove_par(name, key=None)
Remove parameter values or an entire parameter.

Parameters

• name (str) – Name of the parameter.

• key (dataframe or key list or concatenated string, optional)
– elements to be removed

remove_set(name, key=None)
delete a set from the scenario or remove an element from a set (if key is specified)

Parameters

• name (str) – name of the set

• key (dataframe or key list or concatenated string) – elements to be
removed

remove_solution(first_model_year=None)
Remove the solution from the scenario

This function removes the solution (variables and equations) and timeseries data marked as meta=False
from the scenario (see TimeSeries.add_timeseries()).

Parameters first_model_year (int, optional) – If given, timeseries data marked as
meta=False is removed only for years from first_model_year onwards.

Raises ValueError – If Scenario has no solution or if first_model_year is not int.

remove_timeseries(df)
Remove timeseries data from the TimeSeries instance.

Parameters df (pandas.DataFrame) – Data to remove. df must have the following
columns:

• region or node

• variable

• unit

• year

rename(name, mapping, keep=False)
Rename an element in a set

Parameters

• name (str) – name of the set to change (e.g., ‘technology’)

• mapping (str) – mapping of old (current) to new set element names

• keep (bool, optional, default: False) – keep the old values in the model

run_id()
get the run id of this TimeSeries

3.2. Python & R API 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

message Documentation, Release 1.2.0

scalar(name)
Return the value and unit of a scalar.

Parameters name (str) – Name of the scalar.

Returns {‘value’

Return type value, ‘unit’: unit}

set(name, filters=None, **kwargs)
Return the (filtered) elements of a set.

Parameters

• name (str) – Name of the set.

• filters (dict) – Mapping of dimension_name → elements, where dimension_name is
one of the idx_names given when the set was initialized (see init_set()), and elements
is an iterable of labels to include in the return value.

Returns

Return type pandas.DataFrame

set_as_default()
Set the current version as the default.

set_list()
List all defined sets.

set_meta(name, value)
set scenario metadata

Parameters

• name (str) – metadata attribute name

• value (str or number or bool) – metadata attribute value

solve(model=’MESSAGE’, solve_options={}, **kwargs)
Solve MESSAGE or MESSAGE-MACRO for the Scenario.

By default, ixmp.Scenario.solve() is called with ‘MESSAGE’ as the model argument. model may
also be overwritten, e.g.:

>>> s.solve(model='MESSAGE-MACRO')

Parameters

• model (str, optional) – Type of model to solve, e.g. ‘MESSAGE’ or ‘MESSAGE-
MACRO’.

• solve_options (dict (str -> str), optional) – Name to value map-
ping to use for GAMS CPLEX solver options file. See MESSAGE and
DEFAULT_CPLEX_OPTIONS.

• kwargs – Many other options control the execution of the underlying GAMS code; see
GAMSModel.

timeseries(region=None, variable=None, unit=None, year=None, iamc=False)
Retrieve TimeSeries data.

Parameters

20 Chapter 3. Detailed documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario.solve
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

message Documentation, Release 1.2.0

• iamc (bool, default: False) – Return data in wide/’IAMC’ format. If False,
return data in long/’tabular’ format; see add_timeseries().

• region (str or list of strings) – Regions to include in returned data.

• variable (str or list of strings) – Variables to include in returned data.

• unit (str or list of strings) – Units to include in returned data.

• year (str, int or list of strings or integers) – Years to include in
returned data.

Returns Specified data.

Return type pandas.DataFrame

to_excel(fname)
Save a scenario as an Excel file. NOTE: Cannot export solution currently (only model data) due to limita-
tions in excel sheet names (cannot have multiple sheet names which are identical except for upper/lower
case).

Parameters fname (string) – path to file

var(name, filters=None, **kwargs)
return a dataframe of (filtered) elements for a specific variable

Parameters

• name (str) – name of the variable

• filters (dict) – index names mapped list of index set elements

var_list()
List all defined variables.

vintage_and_active_years(ya_args=None, in_horizon=True)
Return sets of vintage and active years for use in data input.

For a valid pair (year_vtg, year_act), the following conditions are satisfied:

1. Both the vintage year (year_vtg) and active year (year_act) are in the model’s year set.

2. year_vtg <= year_act.

3. year_act <= the model’s first year or year_act is in the smaller subset ixmp.Scenario.
years_active() for the given ya_args.

Parameters

• ya_args (tuple of (node, technology, year_vtg), optional) – Ar-
guments to ixmp.Scenario.years_active().

• in_horizon (bool, optional) – Restrict years returned to be within the current
model horizon.

Returns with columns, “year_vtg” and “year_act”, in which each row is a valid pair.

Return type pandas.DataFrame

years_active(node, tec, yr_vtg)
Return years in which tec of yr_vtg can be active in node.

Parameters

• node (str) – Node name.

3.2. Python & R API 21

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str

message Documentation, Release 1.2.0

• tec (str) – Technology name.

• yr_vtg (str) – Vintage year.

Returns

Return type list of int

3.2.3 Model classes

message_ix.models.DEFAULT_CPLEX_OPTIONS = {'advind': 0, 'epopt': 1e-06, 'lpmethod': 2, 'threads': 4}
Solver options used by message_ix.Scenario.solve(). These configure the GAMS CPLEX solver (or
another solver, if selected); see the solver documentation for possible values.

class message_ix.models.MESSAGE(name=None, **model_options)
Bases: ixmp.model.gams.GAMSModel

The MESSAGE Python class encapsulates the GAMS code for the core MESSAGE mathematical formulation.
The model_options arguments are received from Scenario.solve(), and—except for solve_options—are
passed on to the parent class GAMSModel; see there for a full list of options.

name = 'MESSAGE'

defaults = dict(...)
Default model options. The paths to MESSAGE GAMS source files use the MODEL_PATH configuration
setting. MODEL_PATH, in turn, defaults to “message_ix/model” inside the directory where message_ix
is installed.

Key Value
MESSAGE defaults
model_file '{MODEL_PATH}/{model_name}_run.gms'
in_file '{MODEL_PATH}/data/MsgData_{case}.gdx'
out_file '{MODEL_PATH}/output/MsgOutput_{case}.gdx'
solve_args ['--in="{in_file}"', '--out="{out_file}"',

'--iter="{MODEL_PATH}/output/MsgIterationReport_{case}.
gdx"']

Inherited from GAMSModel
case '{scenario.model}_{scenario.scenario}'
gams_args ['LogOption=4']
check_solutionTrue
com-
ment

None

equ_list None
var_list None

classmethod read_version()
Retrieve MESSAGE version string from version.gms.

run(scenario)
Execute the model.

MESSAGE creates a file named cplex.opt in the model directory, containing the options in
DEFAULT_CPLEX_OPTIONS, or any overrides passed to solve().

class message_ix.models.MESSAGE_MACRO(name=None, **model_options)
Bases: message_ix.models.MESSAGE

name = 'MESSAGE-MACRO'

22 Chapter 3. Detailed documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.gams.com/latest/docs/S_CPLEX.html
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-model.html#ixmp.model.gams.GAMSModel
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-model.html#ixmp.model.gams.GAMSModel
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-model.html#ixmp.model.gams.GAMSModel
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

message Documentation, Release 1.2.0

3.2.4 Utility methods

message_ix.utils.make_df(base, **kwargs)
Extend or overwrite base with new values from kwargs.

Parameters

• base (dict, pandas.Series, or pandas.DataFrame) – Existing dataset to append
to.

• **kwargs – Additional values to append to base.

Returns base modified with kwargs.

Return type pandas.DataFrame

Examples

Scalar values in base or kwargs are broadcast. The number of rows in the returned pandas.DataFrame
equals the length of the longest item in either argument.

>>> base = {'foo': 'bar'}
>>> make_df(base, baz=[42, 43, 44])

foo baz
0 bar 42
1 bar 43
2 bar 44

message_ix.utils.make_ts(df, time_col, value_col, metadata={})
The function groups the dataframe by the year specified in year_col_name (year_act Vs. year_vtg). It then
reshapes the dataframe df to reseble the timeseries requirements: sets the unit, the variable name, and the value
column to the one specified in value_col_name. it further drops all all additional columns.

message_ix.utils.matching_rows(df, row, match_columns=[])
The function finds all the columns in a dataframe that are specified in the match columns list.

message_ix.utils.multiply_df(df1, column1, df2, column2)
The function merges dataframe df1 with df2 and multiplies column1 with column2. The function returns the
new merged dataframe with the result of the muliplication in the column ‘product’.

3.2.5 Testing utilities

message_ix.testing.make_dantzig(mp, solve=False, multi_year=False)
Return an message_ix.Scenario for Dantzig’s canning problem.

Parameters

• mp (ixmp.Platform) – Platform on which to create the scenario.

• solve (bool, optional) – If True, the scenario is solved.

• multi_year (bool, optional) – If True, the scenario has years 1963–1965 inclu-
sive. Otherwise, the scenario has the single year 1963.

message_ix.testing.make_westeros(mp, emissions=False, solve=False)
Return an message_ix.Scenario for the Westeros model.

This is the same model used in the westeros_baseline.ipynb tutorial.

Parameters

3.2. Python & R API 23

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Platform
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

message Documentation, Release 1.2.0

• mp (ixmp.Platform) – Platform on which to create the scenario.

• emissions (bool, optional) – If True, the emissions_factor parameter is
also populated for CO2.

• solve (bool, optional) – If True, the scenario is solved.

3.3 Mathematical specification

These pages provide comprehensive description of the variables and equations in the core MESSAGEix mathematical
implementation.

Note: This page is generated from inline documentation in MESSAGE/sets_maps_def.gms.

3.3.1 Sets and mappings definition

This file contains the definition of all sets and mappings used in MESSAGEix.

Sets in the MESSAGEix implementation

Set name Notation Explanatory comments
node1 𝑛 ∈ 𝑁 regions, countries, grid cells
commodity 𝑐 ∈ 𝐶 resources, electricity, water, land availability, etc.
level 𝑙 ∈ 𝐿 levels of the reference energy system or supply chain (primary, secondary, . . .

, useful)
grade 𝑔 ∈ 𝐺 grades of resource quality in the extraction & mining sector
technology [tec] 𝑡 ∈ 𝑇

technologies that use input commodities to produce outputs;
the short-hand notation “tec” is used in the GAMS implementation

mode2 𝑚 ∈ 𝑀 modes of operation for specific technologies
emission 𝑒 ∈ 𝐸 greenhouse gases, pollutants, etc.
land_scenario 𝑠 ∈ 𝑆 scenarios of land use (for land-use model emulator)
land_type 𝑢 ∈ 𝑈 land-use types (e.g., field, forest, pasture)
year [year_all]34 𝑦 ∈ 𝑌 model horizon (including historical periods for vintage structure of installed

capacity and dynamic constraints)
time5 ℎ ∈ 𝐻 subannual time periods (seasons, days, hours)
relation6 𝑟 ∈ 𝑅 set of generic linear constraints
rating 𝑞 ∈ 𝑄 identifies the ‘quality’ of the renewable energy potential
lvl_spatial set of spatial hierarchy levels (global, region, country, grid cell)
lvl_temporal set of temporal hierarchy levels (year, season, day, hour)

1 The set node includes spatial units across all levels of spatial disaggregation (global, regions, countries, basins, grid cells). The hierarchical
mapping is implemented via the mapping set map_spatial_hierarchy. This set always includes an element ‘World’ when initializing a
MESSAGE-scheme message_ix.Scenario.

2 For example, high electricity or high heat production modes of operation for combined heat and power plants.
3 In the MESSAGEix implementation in GAMS, the set year_all denotes the “superset” of the entire horizon (historical and model horizon),

and the set year is a dynamic subset of year_all. This facilitates an efficient implementation of the historical capacity build-up and the
(optional) recursive-dynamic solution approach. When working with a message_ix.Scenario via the scientific programming API, the set of

24 Chapter 3. Detailed documentation

https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Platform
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

message Documentation, Release 1.2.0

Category types and mappings

This feature is used to easily implement aggregation across groups of set elements. For example, by setting an upper
bound over an emission type, the constraint enforces that the sum over all emission species mapped to that type via
the mapping set cat_emission satisfies that upper bound.

Set name Notation Explanatory comments
level_resource (level)7 𝑙 ∈ 𝐿𝑅𝐸𝑆 ⊆

𝐿
levels related to fossil resources representation

level_renewable (level)7 𝑙 ∈ 𝐿𝑅𝐸𝑁 ⊆
𝐿

levels related to renewables representation

type_node8 ̂︀𝑛 ∈ ̂︀𝑁 Category types for nodes
cat_node
(type_node,node)

𝑛 ∈ 𝑁(̂︀𝑛) Category mapping between node types and nodes

type_tec9 ̂︀𝑡 ∈ ̂︀𝑇 Category types for technologies
cat_tec (type_tec,tec) 𝑡 ∈ 𝑇 (̂︀𝑡) Category mapping between tec types and technologies
inv_tec (tec)10 𝑡 ∈ 𝑇 𝐼𝑁𝑉 ⊆

𝑇
Specific subset of investment technologies

renewable_tec (tec)11 𝑡 ∈ 𝑇𝑅𝐸𝑁 ⊆
𝑇

Specific subset of renewable-energy technologies

type_emission ̂︀𝑒 ∈ ̂︀𝐸 Category types for emissions (greenhouse gases, pollutants, etc.)
cat_emission
(type_emission,emission)

𝑒 ∈ 𝐸(̂︀𝑒) Category mapping between emission types and emissions

type_tec_land
(type_tec)12

̂︀𝑡 ∈̂︀𝑇𝐿𝐴𝑁𝐷 ⊆ ̂︀𝑇 Mapping set of technology types and land use

balance_equality (com-
modity,level)

𝑐 ∈ 𝐶, 𝑙 ∈ 𝐿 Commodities and level related to Equation COMMOD-
ITY_BALANCE_LT

Mappings sets

These sets are generated automatically when exporting a MESSAGE-scheme ixmp.Scenario to gdx using the API.
They are used in the GAMS model to reduce model size by excluding non-relevant variables and equations (e.g.,
actitivity of a technology outside of its technical lifetime).

all periods is called year for a more concise notation. The specification of the model horizon is implemented using the mapping set cat_year
and the type “firstmodelyear”.

4 In MESSAGEix, the key of an element in set year identifies the last year of the period, i.e., in a set 𝑦𝑒𝑎𝑟 = [2000, 2005, 2010, 2015], the
period ‘2010’ comprises the years [2006, .., 2010].

5 The set time collects all sub-annual temporal units across all levels of temporal disaggregation. In a MESSAGE-scheme ixmp.Scenario, this
set always includes an element “year”, and the duration of that element is 1 (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒′𝑦𝑒𝑎𝑟′ = 1).

6 A generic formulation of linear constraints is implemented in MESSAGEix, see Section of generic relations (linear constraints). These
constraints can be used for testing and development, but specific new features should be implemented by specific equations and parameters.

7 The constraint EXTRACTION_EQUIVALENCE is active only for the levels included in this set, and the constraint COMMODITY_BALANCE is
deactivated for these levels.

8 The element “economy” is added by default as part of the MESSAGE-scheme ixmp.Scenario.
9 The element “all” in type_tec and the associated mapping to all technologies in the set cat_tec are added by default as part of the

MESSAGE-scheme message_ix.Scenario.
10 The auxiliary set inv_tec (subset of technology) is a short-hand notation for all technologies with defined investment costs. This activates

the investment cost part in the objective function and the constraints for all technologies where investment decisions are relevant. It is added by
default when exporting MESSAGE-scheme message_ix.Scenario to gdx.

11 The auxiliary set renewable_tec (subset of technology) is a short-hand notation for all technologies with defined parameters relevant
for the equations in the “Renewable” section. It is added by default when exporting MESSAGE-scheme message_ix.Scenario to gdx.

12 The mapping set type_tec_land is a dynamic subset of type_tec and specifies whether emissions from the land-use model emu-
lator module are included when aggregrating over a specific technology type. The element “all” is added by default in a MESSAGE-scheme
message_ix.Scenario.

3.3. Mathematical specification 25

message Documentation, Release 1.2.0

Set name Notation Explanatory comments
map_node(node,location) mapping of nodes across hierarchy levels (location is in node)

Mapping sets (flags) for bounds

There are a number of mappings sets generated when exporting a message_ix.Scenario to gdx. They
are used as ‘flags’ to indicate whether a constraint is active. The names of these sets follow the format
is_<constraint>_<dir>.

Such mapping sets are necessary because GAMS does not distinguish between 0 and ‘no value assigned’, i.e., it cannot
differentiate between a bound of 0 and ‘no bound assigned’.

Mapping sets (flags) for fixed variables

Similar to the mapping sets for bounds, there are mapping sets to indicate whether decision variables are pre-defined
to a specific value, usually taken from a solution of another model instance. This can be used to represent imperfect
foresight where a policy shift or parameter change is introduced in later years. The names of these sets follow the
format is_fixed_<variable>.

Note: This page is generated from inline documentation in MESSAGE/parameter_def.gms.

3.3.2 Parameter definition

This file contains the definition of all parameters used in MESSAGEix.

In MESSAGEix, all parameters are understood as yearly values, not as per (multi-year) period. This provides flexibility
when changing the resolution of the model horizon (i.e., the set year).

Parameters written in italics are auxiliary parameters that are either generated automatically when exporting a
message_ix.Scenario to gdx or that are computed during the pre-processing stage in GAMS.

General parameters of the MESSAGEix implementation

Parameter name Index dimensions Explanatory comments
duration_period (|𝑦|)1 year duration of multi-year period (in number of years)2

duration_time time duration of sub-annual time slices (relative to 1)3

duration_time_rel time | time relative duration between sub-annual time slices4

interestrate year economy-wide interest rate or social discount rate
df_period year cumulative discount factor over period duration4

df_year year discount factor of the last year in the period4

1 The short-hand notation |𝑦| is used for the parameters 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦 in the mathematical model documentation for exponents.
2 The values for this parameter are computed automatically when exporting a MESSAGE-scheme ixmp.Scenario to gdx. Note that in MES-

SAGEix, the elements of the year set are understood to be the last year in a period, see this footnote.
3 The element ‘year’ in the set of subannual time slices time has the value of 1. This value is assigned by default when creating a new

ixmp.Scenario based on the MESSAGE scheme.
4 These parameters are computed during the GAMS execution.

26 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Parameters of the Resources section

Parameter name Index dimensions
resource_volume node | commodity | grade
resource_cost node | commodity | grade | year
resource_remaining node | commodity | grade | year
bound_extraction_up node | commodity | level | year
commodity_stock5 node | commodity | level | year
historical_extraction6 node | commodity | grade | year

Parameters of the Demand section

Parameter name Index dimensions
demand [demand_fixed]7 node | commodity | level | year | time
peak_load_factor8 node | commodity | year

Parameters of the Technology section

5 This parameter allows (exogenous) additions to the commodity stock over the model horizon, e.g., precipitation that replenishes the water
table.

6 Historical values of new capacity and activity can be used for parametrising the vintage structure of existing capacity and implement dynamic
constraints in the first model period.

7 The parameter demand in a MESSAGE-scheme ixmp.Scenario is translated to the parameter demand_fixed in the MESSAGE implemen-
tation in GAMS. The variable DEMAND is introduced as an auxiliary reporting variable; it equals demand_fixed in a MESSAGE-standalone run
and reports the final demand including the price response in an iterative MESSAGE-MACRO solution.

8 The parameters peak_load_factor and reliability_factor are based on the formulation proposed by Sullivan et al., 2013 [6]. It
is used in Reliability of installed capacity.

3.3. Mathematical specification 27

message Documentation, Release 1.2.0

Input/output mapping, costs and engineering specifications

Parameter name Index names
input9 node_loc | tec | year_vtg | year_act | mode | node_origin |

commodity | level | time | time_origin
output9 node_loc | tec | year_vtg | year_act | mode | node_dest | commodity |

level | time | time_dest
inv_cost9 node_loc | tec | year_vtg
fix_cost9 node_loc | tec | year_vtg | year_act
var_cost9 node_loc | tec | year_vtg | year_act | mode | time
levelized_cost10 node_loc | tec | year_vtg | time
construction_time node_loc | tec | year_vtg
technical_lifetime node_loc | tec | year_vtg
capacity_factor9 node_loc | tec | year_vtg | year_act | time
operation_factor9 node_loc | tec | year_vtg | year_act
min_utilization_factor9 node_loc | tec | year_vtg | year_act
rating_bin12 node | technology | year_act | commodity | level | time | rating
reliability_factor8 node | technology | year_act | commodity | level | time | rating
flexibility_factor node_loc | technology | year_vtg | year_act | mode | commodity |

level | time | rating
renewable_capacity_factor node_loc | commodity | grade | level | year
renewable_potential node | commodity | grade | level | year
emission_factor node_loc | tec | year_vtg | year_act | mode | emission

Bounds on capacity and activity

The following parameters specify upper and lower bounds on new capacity, total installed capacity, and activity.

Parameter name Index names
bound_new_capacity_upnode_loc | tec | year_vtg
bound_new_capacity_lonode_loc | tec | year_vtg
bound_total_capacity_upnode_loc | tec | year_act
bound_total_capacity_lonode_loc | tec | year_act
bound_activity_up node_loc | tec | year_act | mode | time
bound_activity_lo node_loc | tec | year_act | mode | time

The bounds on activity are implemented as the aggregate over all vintages in a specific period (cf. Equation
ACTIVITY_BOUND_UP and ACTIVITY_BOUND_LO).

Dynamic constraints on capacity and activity

The following parameters specify constraints on the growth of new capacity and activity, i.e., market penetration.

9 Fixed and variable cost parameters and technical specifications are indexed over both the year of construction (vintage) and the year of operation
(actual). This allows to represent changing technology characteristics depending on the age of the plant.

10 The parameter levelized_cost is computed in the GAMS pre-processing under the assumption of full capacity utilization until the end
of the technical lifetime.

12 The upper bound of a contribution by any technology to the constraints on system reliability (Reliability of installed capacity) and flexibility
(Equation SYSTEM_FLEXIBILITY_CONSTRAINT) can depend on the share of the technology output in the total commodity use at a specific level.

28 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Parameter name Index names
initial_new_capacity_up node_loc | tec | year_vtg
growth_new_capacity_up13 node_loc | tec | year_vtg
soft_new_capacity_up13 node_loc | tec | year_vtg
initial_new_capacity_lo node_loc | tec | year_vtg
growth_new_capacity_lo13 node_loc | tec_actual | year_vtg
soft_new_capacity_lo13 node_loc | tec | year_vtg
initial_activity_up14 node_loc | tec | year_act | time
growth_activity_up1314 node_loc | tec | year_act | time
soft_activity_up13 node_loc | tec | year_act | time
initial_activity_lo14 node_loc | tec | year_act | time
growth_activity_lo1314 node_loc | tec | year_act | time
soft_activity_lo13 node_loc | tec | year_act | time

Parameters for the add-on technologies

The implementation of MESSAGEix includes the functionality to introduce “add-on technologies” that are specifically
linked to parent technologies. This feature can be used to model mitigation options (scrubber, cooling). Note, that
no default addon_conversion is set, to avoid default conversion factors of 1 being set for technologies with mutiple
modes, of which only a single mode should be linked to the add-on technology.

Parameter name Index names
addon_conversion node | tec | year_vtg | year_act | mode | time | type_addon
addon_up node | tec | vintage | year | mode | time | type_addon
addon_lo node | tec | vintage | year | mode | time | type_addon

The upper bound of

Cost parameters for ‘soft’ relaxations of dynamic constraints

The implementation of MESSAGEix includes the functionality for ‘soft’ relaxations of dynamic constraints on new-
built capacity and activity (see Keppo and Strubegger, 2010 [3]). Refer to the section Dynamic constraints on market
penetration.

Parameter name Index names
abs_cost_new_capacity_soft_upnode_loc | tec | year_vtg
abs_cost_new_capacity_soft_lonode_loc | tec | year_vtg
level_cost_new_capacity_soft_upnode_loc | tec | year_vtg
level_cost_new_capacity_soft_lonode_loc | tec | year_vtg
abs_cost_activity_soft_upnode_loc | tec | year_act | time
abs_cost_activity_soft_lonode_loc | tec | year_act | time
level_cost_activity_soft_upnode_loc | tec | year_act | time
level_cost_activity_soft_lonode_loc | tec | year_act | time

13 All parameters related to the dynamic constraints are understood as the bound on the rate of growth/decrease, not as in percentage points and
not as (1+growth rate).

14 The dynamic constraints are not indexed over modes in the MESSAGEix implementation.

3.3. Mathematical specification 29

message Documentation, Release 1.2.0

Historical capacity and activity values

Historical data on new capacity and activity levels are included in MESSAGEix for correct accounting of the vintage
portfolio and a seamless implementation of dynamic constraints from historical years to model periods.

Parameter name Index names
historical_new_capacity6 node_loc | tec | year_vtg
historical_activity6 node_loc | tec | year_act | mode | time

Auxiliary investment cost parameters and multipliers

Documentation not yet included.

Parameters of the Emission section

The implementation of MESSAGEix includes a flexible and versatile accounting of emissions across different cate-
gories and species, with the option to define upper bounds and taxes on various (aggregates of) emissions and pollu-
tants), (sets of) technologies, and (sets of) years.

Parameter name Index dimensions
historical_emission6 node | emission | type_tec | year
emission_scaling15 type_emission | emission
bound_emission node | type_emission | type_tec | type_year
tax_emission node | type_emission | type_tec | type_year

Parameters of the Land-Use model emulator section

The implementation of MESSAGEix includes a land-use model emulator, which draws on exogenous land-use scenar-
ios (provided by another model) to derive supply of commodities (e.g., biomass) and emissions from agriculture and
forestry.

15 The parameters emission_scaling allows to efficiently aggregate different emissions/pollutants and set bounds or taxes on various cate-
gories.

30 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Parameter name Index dimensions
historical_land6 node | land_scenario | year
land_cost node | land_scenario | year
land_input node | land_scenario | year | commodity | level | time
land_output node | land_scenario | year | commodity | level | time
land_use node | land_scenario | year | land_type
land_emission node | land_scenario | year | emission
initial_land_scen_up node | land_scenario | year
growth_land_scen_up node | land_scenario | year
initial_land_scen_lo node | land_scenario | year
growth_land_scen_lo node | land_scenario | year
initial_land_up node | year | land_type
dynamic_land_up node | land_scenario | year | land_type
growth_land_up node | year | land_type
initial_land_lo node | year | land_type
dynamic_land_lo node | land_scenario | year | land_type
growth_land_lo node | year | land_type

Parameters of the Share Constraints section

Share constraints define the share of a given commodity to be active on a certain level

Parameter name Index dimensions
share_commodity_up shares | node_share | year_act | time
share_commodity_lo shares | node | year_act | time
share_mode_up shares | node_loc | technology | mode | year_act | time
share_mode_lo shares | node_loc | technology | mode | year_act | time

Parameters of the Relations section

Generic linear relations are implemented in MESSAGEix. This feature is intended for development and testing only -
all new features should be implemented as specific new mathematical formulations and associated sets & parameters.

Parameter name Index dimensions
relation_upper relation | node_rel | year_rel
relation_lower relation | node_rel | year_rel
relation_cost relation | node_rel | year_rel
relation_new_capacity relation | node_rel | year_rel | tec
relation_total_capacity relation | node_rel | year_rel | tec
relation_activity relation | node_rel | year_rel | node_loc | tec | year_act | mode

Fixed variable values

The following parameters allow to set variable values to a specific value. The value is usually taken from a solution of
another model instance (e.g., scenarios where a shock sets in later to mimick imperfect foresight).

The fixed values do not override any upper or lower bounds that may be defined, so fixing variables to values outside
of that range will yield an infeasible model.

3.3. Mathematical specification 31

message Documentation, Release 1.2.0

Parameter name Index dimensions
fixed_extraction node | commodity | grade | year
fixed_stock node | commodity | level | year
fixed_new_capacity node | technology | year_vtg
fixed_capacity node | technology | year_vtg | year_act
fixed_activity node | technology | year_vtg | year_act | mode | time
fixed_land node | land_scenario | year

Note that the variable 𝑆𝑇𝑂𝐶𝐾_𝐶𝐻𝐺 is determined implicitly by the 𝑆𝑇𝑂𝐶𝐾 variable and therefore does not need
to be explicitly fixed.

Note: This page is generated from inline documentation in MESSAGE/model_core.gms.

3.3.3 Mathematical formulation (core model)

The MESSAGEix systems-optimization model minimizes total costs while satisfying given demand levels for com-
modities/services and considering a broad range of technical/engineering constraints and societal restrictions (e.g.
bounds on greenhouse gas emissions, pollutants, system reliability). Demand levels are static (i.e. non-elastic), but
the demand response can be integrated by linking MESSAGEix to the single sector general-economy MACRO model
included in this framework.

For the complete list of sets, mappings and parameters, refer to the auto-documentation pages Sets and mappings
definition and Parameter definition.

Notation declaration

The following short notation is used in the mathematical description relative to the GAMS code:

32 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Mathematical notation of sets

Math notation GAMS set & index notation
𝑛 ∈ 𝑁 node (across spatial hierarchy levels)
𝑦 ∈ 𝑌 year (all periods including historical and model horizon)
𝑦 ∈ 𝑌 𝑀 ⊂ 𝑌 time periods included in model horizon
𝑦 ∈ 𝑌 𝐻 ⊂ 𝑌 historical time periods (prior to first model period)
𝑐 ∈ 𝐶 commodity
𝑙 ∈ 𝐿 level
𝑔 ∈ 𝐺 grade
𝑡 ∈ 𝑇 technology (a.k.a tec)
ℎ ∈ 𝐻 time (subannual time periods)
𝑚 ∈ 𝑀 mode
𝑞 ∈ 𝑄 rating of non-dispatchable technologies relative to aggregate commodity use
𝑒 ∈ 𝐸 emission, pollutants
𝑠 ∈ 𝑆 scenarios of land use (for land-use model emulator)
𝑢 ∈ 𝑈 land-use types
𝑟 ∈ 𝑅 set of generic relations (linear constraints)
𝑡 ∈ 𝑇 𝐼𝑁𝑉 ⊆ 𝑇 all technologies with investment decisions and capacity constraints
𝑡 ∈ 𝑇𝑅𝐸𝑁 ⊆ 𝑇 all technologies which draw their input from the renewable level
𝑛 ∈ 𝑁(̂︀𝑛) all nodes that are subnodes of node ̂︀𝑛
𝑦 ∈ 𝑌 (̂︀𝑦) all years mapped to the category type_year ̂︀𝑦
𝑡 ∈ 𝑇 (̂︀𝑡) all technologies mapped to the category type_tec ̂︀𝑡
𝑒 ∈ 𝐸(̂︀𝑒) all emissions mapped to the category type_emission ̂︀𝑒

Decision variables

Variable Explanatory text
𝑂𝐵𝐽 ∈ R Objective value of the optimization program
𝐸𝑋𝑇𝑛,𝑐,𝑔,𝑦 ∈ R+ Extraction of non-renewable/exhaustible resources from reserves
𝑆𝑇𝑂𝐶𝐾𝑛,𝑐,𝑙,𝑦 ∈ R+ Quantity in stock (storage) at start of period 𝑦
𝑆𝑇𝑂𝐶𝐾_𝐶𝐻𝐺𝑛,𝑐,𝑙,𝑦,ℎ ∈ R Input or output quantity into intertemporal commodity stock (storage)
𝑅𝐸𝑁𝑛,𝑡,𝑐,𝑔,𝑦,ℎ Activity of renewable technologies per grade
𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦 ∈ R+ Newly installed capacity (yearly average over period duration)
𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,𝑦 ∈ R+ Maintained capacity in year 𝑦 of vintage 𝑦𝑉

𝐶𝐴𝑃_𝐹𝐼𝑅𝑀𝑛,𝑡,𝑐,𝑙,𝑦,𝑞 Capacity counting towards firm (dispatchable)
𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ∈ R Activity of a technology (by vintage, mode, subannual time)
𝐴𝐶𝑇_𝑅𝐴𝑇𝐼𝑁𝐺𝑛,𝑡,𝑦𝑉 ,𝑦,𝑐,𝑙,ℎ,𝑞 Activity attributed to a particular rating bin1

𝐶𝐴𝑃_𝑁𝐸𝑊_𝑈𝑃𝑛,𝑡,𝑦 ∈ R+ Relaxation of upper dynamic constraint on new capacity
𝐶𝐴𝑃_𝑁𝐸𝑊_𝐿𝑂𝑛,𝑡,𝑦 ∈ R+ Relaxation of lower dynamic constraint on new capacity
𝐴𝐶𝑇_𝑈𝑃𝑛,𝑡,𝑦,ℎ ∈ R+ Relaxation of upper dynamic constraint on activity2

𝐴𝐶𝑇_𝐿𝑂𝑛,𝑡,𝑦,ℎ ∈ R+ Relaxation of lower dynamic constraint on activity2

𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦 ∈ [0, 1] Relative share of land-use scenario (for land-use model emulator)
𝐸𝑀𝐼𝑆𝑆𝑛,𝑒,̂︀𝑡,𝑦 Auxiliary variable for aggregate emissions by technology type
𝑅𝐸𝐿𝑟,𝑛,𝑦 ∈ R Auxiliary variable for left-hand side of relations (linear constraints)
𝐶𝑂𝑀𝑀𝑂𝐷𝐼𝑇𝑌 _𝑈𝑆𝐸𝑛,𝑐,𝑙,𝑦 Auxiliary variable for amount of commodity used at specific level

1 The auxiliary variable 𝐴𝐶𝑇_𝑅𝐴𝑇𝐼𝑁𝐺𝑛,𝑡,𝑦𝑉 ,𝑦,𝑐,𝑙,ℎ,𝑞 is defined in terms of input or output of the technology.
2 The dynamic activity constraints are implemented as summed over all modes; therefore, the variables for the relaxation are not indexed over

the set mode.

3.3. Mathematical specification 33

message Documentation, Release 1.2.0

The index 𝑦𝑉 is the year of construction (vintage) wherever it is necessary to clearly distinguish between year of
construction and the year of operation.

All decision variables are by year, not by (multi-year) period, except 𝑆𝑇𝑂𝐶𝐾𝑛,𝑐,𝑙,𝑦 . In particular, the new capacity
variable 𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦 has to be multiplied by the number of years in a period |𝑦| = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦 to
determine the available capacity in subsequent periods. This formulation gives more flexibility when it comes to using
periods of different duration (more intuitive comparison across different periods).

The current model framework allows both input or output normalized formulation. This will affect the parametrization,
see Section Efficiency - output- vs. input defined technologies for more details.

Auxiliary variables

Variable Explanatory text
𝐷𝐸𝑀𝐴𝑁𝐷𝑛,𝑐,𝑙,𝑦,ℎ ∈ R Demand level (in equilibrium with MACRO integration)
𝑃𝑅𝐼𝐶𝐸_𝐶𝑂𝑀𝑀𝑂𝐷𝐼𝑇𝑌𝑛,𝑐,𝑙,𝑦,ℎ Commodity price (undiscounted marginals of the commodity balances)
𝑃𝑅𝐼𝐶𝐸_𝐸𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑛,𝑒,̂︀𝑡,𝑦 Emission price (undiscounted marginals of EMISSION_BOUND constraint)
𝐶𝑂𝑆𝑇_𝑁𝑂𝐷𝐴𝐿_𝑁𝐸𝑇𝑛,𝑦 ∈ R System costs at the node level net of energy trade revenues/cost
𝐺𝐷𝑃𝑛,𝑦 ∈ R gross domestic product (GDP) in market exchange rates for MACRO report-

ing

Objective function

The objective function of the MESSAGEix core model

Equation OBJECTIVE

The objective function (of the core model) minimizes total discounted systems costs including costs for emissions,
relaxations of dynamic constraints

𝑂𝐵𝐽 =
∑︁

𝑛,𝑦∈𝑌 𝑀

𝑑𝑓_𝑦𝑒𝑎𝑟𝑦 · 𝐶𝑂𝑆𝑇_𝑁𝑂𝐷𝐴𝐿𝑛,𝑦

Regional system cost accounting function

Accounting of regional system costs over time

34 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Equation COST_ACCOUNTING_NODAL

Accounting of regional systems costs over time as well as costs for emissions (taxes), land use (from the model
land-use model emulator), relaxations of dynamic constraints, and linear relations.

𝐶𝑂𝑆𝑇_𝑁𝑂𝐷𝐴𝐿𝑛,𝑦 =
∑︁
𝑐,𝑔

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑐𝑜𝑠𝑡𝑛,𝑐,𝑔,𝑦 · 𝐸𝑋𝑇𝑛,𝑐,𝑔,𝑦

+
∑︁
𝑡

(︂
𝑖𝑛𝑣_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦 · 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦

· 𝑒𝑛𝑑_𝑜𝑓_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦 · 𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦

+
∑︁
𝑦𝑉 ≤𝑦

𝑓𝑖𝑥_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦𝑉 ,𝑦 · 𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,𝑦

+
∑︁
𝑦𝑉 ≤𝑦
𝑚,ℎ

𝑣𝑎𝑟_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ·𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ

+
(︁
𝑎𝑏𝑠_𝑐𝑜𝑠𝑡_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑠𝑜𝑓𝑡_𝑢𝑝𝑛,𝑡,𝑦

+ 𝑙𝑒𝑣𝑒𝑙_𝑐𝑜𝑠𝑡_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑠𝑜𝑓𝑡_𝑢𝑝𝑛,𝑡,𝑦 · 𝑖𝑛𝑣_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦
)︁
· 𝐶𝐴𝑃_𝑁𝐸𝑊_𝑈𝑃𝑛,𝑡,𝑦

+
(︁
𝑎𝑏𝑠_𝑐𝑜𝑠𝑡_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑠𝑜𝑓𝑡_𝑙𝑜𝑛,𝑡,𝑦

+ 𝑙𝑒𝑣𝑒𝑙_𝑐𝑜𝑠𝑡_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑠𝑜𝑓𝑡_𝑙𝑜𝑛,𝑡,𝑦 · 𝑖𝑛𝑣_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦
)︁
· 𝐶𝐴𝑃_𝑁𝐸𝑊_𝐿𝑂𝑛,𝑡,𝑦

+
∑︁
𝑚,ℎ

(︁
𝑎𝑏𝑠_𝑐𝑜𝑠𝑡_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑜𝑓𝑡_𝑢𝑝𝑛,𝑡,𝑦,𝑚,ℎ

+ 𝑙𝑒𝑣𝑒𝑙_𝑐𝑜𝑠𝑡_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑜𝑓𝑡_𝑢𝑝𝑛,𝑡,𝑦,𝑚,ℎ · 𝑙𝑒𝑣𝑒𝑙𝑖𝑧𝑒𝑑_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦,𝑚,ℎ

)︁
·𝐴𝐶𝑇_𝑈𝑃𝑛,𝑡,𝑦,ℎ

+
∑︁
𝑚,ℎ

(︁
𝑎𝑏𝑠_𝑐𝑜𝑠𝑡_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑜𝑓𝑡_𝑙𝑜𝑛,𝑡,𝑦,𝑚,ℎ

+ 𝑙𝑒𝑣𝑒𝑙_𝑐𝑜𝑠𝑡_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑜𝑓𝑡_𝑙𝑜𝑛,𝑡,𝑦,𝑚,ℎ · 𝑙𝑒𝑣𝑒𝑙𝑖𝑧𝑒𝑑_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦,𝑚,ℎ

)︁
·𝐴𝐶𝑇_𝐿𝑂𝑛,𝑡,𝑦,ℎ

)︂
+
∑︁
̂︀𝑒,̂︀𝑡

𝑒∈𝐸(̂︀𝑒)
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑠𝑐𝑎𝑙𝑖𝑛𝑔̂︀𝑒,𝑒 · 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑡𝑎𝑥𝑛,̂︀𝑒,̂︀𝑡,𝑦 · 𝐸𝑀𝐼𝑆𝑆𝑛,𝑒,̂︀𝑡,𝑦

+
∑︁
𝑠

𝑙𝑎𝑛𝑑_𝑐𝑜𝑠𝑡𝑛,𝑠,𝑦 · 𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦

+
∑︁
𝑟

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑟,𝑛,𝑦 ·𝑅𝐸𝐿𝑟,𝑛,𝑦

Here, 𝑛𝐿 ∈ 𝑁(𝑛) are all nodes 𝑛𝐿 that are sub-nodes of node 𝑛. The subset of technologies 𝑡 ∈ 𝑇 (̂︀𝑡) are all tecs that
belong to category ̂︀𝑡, and similar notation is used for emissions 𝑒 ∈ 𝐸.

Resource and commodity section

Constraints on resource extraction

Equation EXTRACTION_EQUIVALENCE

This constraint translates the quantity of resources extracted (summed over all grades) to the input used by all tech-
nologies (drawing from that node). It is introduced to simplify subsequent notation in input/output relations and nodal

3.3. Mathematical specification 35

message Documentation, Release 1.2.0

balance constraints.

∑︁
𝑔

𝐸𝑋𝑇𝑛,𝑐,𝑔,𝑦 =
∑︁

𝑛𝐿,𝑡,𝑚,ℎ,ℎ𝑂𝐷

𝑦𝑉 ≤𝑦

𝑙∈𝐿𝑅𝐸𝑆⊆𝐿

𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ,ℎ𝑂𝐷 ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑚,𝑦,ℎ

The set 𝐿𝑅𝐸𝑆 ⊆ 𝐿 denotes all levels for which the detailed representation of resources applies.

Equation EXTRACTION_BOUND_UP

This constraint specifies an upper bound on resource extraction by grade.

𝐸𝑋𝑇𝑛,𝑐,𝑔,𝑦 ≤ 𝑏𝑜𝑢𝑛𝑑_𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑢𝑝𝑛,𝑐,𝑔,𝑦

Equation RESOURCE_CONSTRAINT

This constraint restricts that resource extraction in a year guarantees the “remaining resources” constraint, i.e., only a
given fraction of remaining resources can be extracted per year.

𝐸𝑋𝑇𝑛,𝑐,𝑔,𝑦 ≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑛,𝑐,𝑔,𝑦 ·
(︁
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑣𝑜𝑙𝑢𝑚𝑒𝑛,𝑐,𝑔

−
∑︁
𝑦′<𝑦

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦′ · 𝐸𝑋𝑇𝑛,𝑐,𝑔,𝑦′

)︁

Equation RESOURCE_HORIZON

This constraint ensures that total resource extraction over the model horizon does not exceed the available resources.

∑︁
𝑦

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦 · 𝐸𝑋𝑇𝑛,𝑐,𝑔,𝑦 ≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑣𝑜𝑙𝑢𝑚𝑒𝑛,𝑐,𝑔

Constraints on commodities and stocks

Auxiliary COMMODITY_BALANCE

For the commodity balance constraints below, we introduce an auxiliary COMMODITY_BALANCE. This is imple-
mented as a GAMS $macro function.

36 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

∑︁
𝑛𝐿,𝑡,𝑚,ℎ𝐴

𝑦𝑉 ≤𝑦

𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ · 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑙ℎ,ℎ𝐴 ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ𝐴

−
∑︁

𝑛𝐿,𝑡,𝑚,ℎ𝐴

𝑦𝑉 ≤𝑦

𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ · 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑙ℎ,ℎ𝐴 ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑚,𝑦,ℎ𝐴

+ 𝑆𝑇𝑂𝐶𝐾_𝐶𝐻𝐺𝑛,𝑐,𝑙,𝑦,ℎ

+
∑︁
𝑠

(︁
𝑙𝑎𝑛𝑑_𝑜𝑢𝑡𝑝𝑢𝑡𝑛,𝑠,𝑦,𝑐,𝑙,ℎ − 𝑙𝑎𝑛𝑑_𝑖𝑛𝑝𝑢𝑡𝑛,𝑠,𝑦,𝑐,𝑙,ℎ

)︁
·𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦

− 𝑑𝑒𝑚𝑎𝑛𝑑_𝑓𝑖𝑥𝑒𝑑𝑛,𝑐,𝑙,𝑦,ℎ = 𝐶𝑂𝑀𝑀𝑂𝐷𝐼𝑇𝑌 _𝐵𝐴𝐿𝐴𝑁𝐶𝐸𝑛, 𝑐, 𝑙, 𝑦, ℎ ∀ 𝑙 /∈ (𝐿𝑅𝐸𝑆 , 𝑙𝑅𝐸𝑁 ⊆ 𝐿

The commodity balance constraint at the resource level is included in the Equation RESOURCE_CONSTRAINT , while
at the renewable level, it is included in the Equation RENEWABLES_EQUIVALENCE.

Equation COMMODITY_BALANCE_GT

This constraint ensures that supply is greater or equal than demand for every commodity-level combination.

𝐶𝑂𝑀𝑀𝑂𝐷𝐼𝑇𝑌 _𝐵𝐴𝐿𝐴𝑁𝐶𝐸𝑛,𝑐,𝑙,𝑦,ℎ ≥ 0

Equation COMMODITY_BALANCE_LT

This constraint ensures the supply is smaller than or equal to the demand for all commodity-level combinatio given in
the 𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑐,𝑙. In combination withe constraint above, it ensures that supply is (exactly) equal to demand.

𝐶𝑂𝑀𝑀𝑂𝐷𝐼𝑇𝑌 _𝐵𝐴𝐿𝐴𝑁𝐶𝐸𝑛,𝑐,𝑙,𝑦,ℎ ≤ 0

Equation STOCKS_BALANCE

This constraint ensures the inter-temporal balance of commodity stocks. The parameter 𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦_𝑠𝑡𝑜𝑐𝑘𝑠𝑛,𝑐,𝑙 can
be used to model exogenous additions to the stock

𝑆𝑇𝑂𝐶𝐾𝑛,𝑐,𝑙,𝑦 + 𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦_𝑠𝑡𝑜𝑐𝑘𝑛,𝑐,𝑙,𝑦 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦·
∑︁
ℎ

𝑆𝑇𝑂𝐶𝐾_𝐶𝐻𝐺𝑛,𝑐,𝑙,𝑦,ℎ

+ 𝑆𝑇𝑂𝐶𝐾𝑛,𝑐,𝑙,𝑦+1

Technology section

Technical and engineering constraints

The first set of constraints concern technologies that have explicit investment decisions and where installed/maintained
capacity is relevant for operational decisions. The set where 𝑇 𝐼𝑁𝑉 ⊆ 𝑇 is the set of all these technologies.

3.3. Mathematical specification 37

message Documentation, Release 1.2.0

Equation CAPACITY_CONSTRAINT

This constraint ensures that the actual activity of a technology at a node cannot exceed available (maintained) capacity
summed over all vintages, including the technology capacity factor 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦,𝑡.

∑︁
𝑚

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ≤ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒ℎ · 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 ,𝑦,ℎ · 𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,𝑦 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

Equation CAPACITY_MAINTENANCE_HIST

The following three constraints implement technology capacity maintenance over time to allow early retirment. The
optimization problem determines the optimal timing of retirement, when fixed operation-and-maintenance costs ex-
ceed the benefit in the objective function.

The first constraint ensures that historical capacity (built prior to the model horizon) is available as installed capacity
in the first model period.

𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,′𝑓𝑖𝑟𝑠𝑡_𝑝𝑒𝑟𝑖𝑜𝑑′ ≤ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑛,𝑡,𝑦𝑉 ,′𝑓𝑖𝑟𝑠𝑡_𝑝𝑒𝑟𝑖𝑜𝑑′ · 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦𝑉 · ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑛,𝑡,𝑦𝑉

if 𝑦𝑉 <′ 𝑓𝑖𝑟𝑠𝑡_𝑝𝑒𝑟𝑖𝑜𝑑′ and |𝑦| − |𝑦𝑉 | < 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙_𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑛,𝑡,𝑦𝑉 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

Equation CAPACITY_MAINTENANCE_NEW

The second constraint ensures that capacity is fully maintained throughout the model period in which it was constructed
(no early retirement in the period of construction).

𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,𝑦𝑉 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑛,𝑡,𝑦𝑉 ,𝑦𝑉 · 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦𝑉 · 𝐶𝐴𝑃_𝑁𝐸𝑊𝑛, 𝑡, 𝑦𝑉 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

The current formulation does not account for construction time in the constraints, but only adds a mark-up to the
investment costs in the objective function.

Equation CAPACITY_MAINTENANCE

The third constraint implements the dynamics of capacity maintenance throughout the model horizon. Installed ca-
pacity can be maintained over time until decommissioning, which is irreversible.

𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,𝑦 ≤ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑛,𝑡,𝑦𝑉 ,𝑦 · 𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,𝑦−1

if 𝑦 > 𝑦𝑉 and 𝑦𝑉 >′ 𝑓𝑖𝑟𝑠𝑡_𝑝𝑒𝑟𝑖𝑜𝑑′ and |𝑦| − |𝑦𝑉 | < 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙_𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑛,𝑡,𝑦𝑉 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

Equation OPERATION_CONSTRAINT

This constraint provides an upper bound on the total operation of installed capacity over a year. It can be used to
represent reuqired scheduled unavailability of installed capacity.

38 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

∑︁
𝑚,ℎ

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ≤ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 ,𝑦 · 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,’year’ · 𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,𝑦 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

This constraint is only active if 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 ,𝑦 < 1.

Equation MIN_UTILIZATION_CONSTRAINT

This constraint provides a lower bound on the total utilization of installed capacity over a year.

∑︁
𝑚,ℎ

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ≥ 𝑚𝑖𝑛_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 ,𝑦 · 𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,𝑦 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

This constraint is only active if 𝑚𝑖𝑛_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 ,𝑦 is defined.

Constraints representing renewable integration

Equation RENEWABLES_EQUIVALENCE

This constraint defines the auxiliary variables 𝑅𝐸𝑁 to be equal to the output of renewable technologies (summed over
grades).

∑︁
𝑔

𝑅𝐸𝑁𝑛,𝑡,𝑐,𝑔,𝑦,ℎ ≤
∑︁

𝑛,𝑡,𝑚,𝑙,ℎ,ℎ𝑂𝐷

𝑦𝑉 ≤𝑦

𝑙∈𝐿𝑅𝐸𝑁⊆𝐿

𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ,ℎ𝑂𝐷 ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑚,𝑦,ℎ

The set 𝐿𝑅𝐸𝑁 ⊆ 𝐿 denotes all levels for which the detailed representation of renewables applies.

Equation RENEWABLES_POTENTIAL_CONSTRAINT

This constraint sets the potential potential by grade as the upper bound for the auxiliary variable 𝑅𝐸𝑁 .

∑︁
𝑡,ℎ

𝑡∈𝑇𝑅⊆𝑡

𝑅𝐸𝑁𝑛,𝑡,𝑐,𝑔,𝑦,ℎ ≤
∑︁
𝑙

𝑙∈𝐿𝑅⊆𝐿

𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒_𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑛,𝑐,𝑔,𝑙,𝑦

Equation RENEWABLES_CAPACITY_REQUIREMENT

This constraint connects the capacity factor of a renewable grade to the installed capacity of a technology. It sets the
lower limit for the capacity of a renewable technology to the summed activity over all grades (REN) devided by the
capactiy factor of this grade. It represents the fact that different renewable grades require different installed capacities
to provide their full potential.

3.3. Mathematical specification 39

message Documentation, Release 1.2.0

∑︁
𝑦𝑉 ,ℎ

𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,𝑦 · 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 ,𝑦 · 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 ,𝑦,ℎ

≥
∑︁
𝑔,ℎ,𝑙

1

𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑐,𝑔,𝑙,𝑦
·𝑅𝐸𝑁𝑛,𝑡,𝑐,𝑔,𝑦,ℎ

This constraint is only active if 𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑐,𝑔,𝑙,𝑦 is defined.

Constraints for addon technologies

Equation ADDON_ACTIVITY_UP

This constraint provides an upper bound on the activity of an addon technology that can only be operated jointly with
a parent technology (e.g., abatement option, SO2 scrubber, power plant cooling technology).

∑︁
𝑡′∼𝑡𝐴,𝑦𝑉 ≤𝑦

𝐴𝐶𝑇𝑛,𝑡′,𝑦𝑉 ,𝑦,𝑚,ℎ ≤
∑︁

𝑡,𝑦𝑉 ≤𝑦

𝑎𝑑𝑑𝑜𝑛_𝑢𝑝𝑛,𝑡𝑎,𝑦,𝑚,ℎ,𝑡𝐴 · 𝑎𝑑𝑑𝑜𝑛_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑛,𝑡′,𝑦𝑉 ,𝑦,𝑚,ℎ ·𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ

Equation ADDON_ACTIVITY_LO

This constraint provides a lower bound on the activity of an addon technology that has to be operated jointly with a
parent technology (e.g., power plant cooling technology). The parameter addon_lo allows to define a minimum level
of operation of addon technologies relative to the activity of the parent technology. If addon_minimum = 1, this means
that it is mandatory to operate the addon technology at the same level as the parent technology (i.e., full mitigation).

∑︁
𝑡′∼𝑡𝐴,𝑦𝑉 ≤𝑦

𝐴𝐶𝑇𝑛,𝑡′,𝑦𝑉 ,𝑦,𝑚,ℎ ≥
∑︁

𝑡,𝑦𝑉 ≤𝑦

𝑎𝑑𝑑𝑜𝑛_𝑙𝑜𝑛,𝑡𝑎,𝑦,𝑚,ℎ,𝑡𝐴 · 𝑎𝑑𝑑𝑜𝑛_𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑛,𝑡′,𝑦𝑉 ,𝑦,𝑚,ℎ ·𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ

System reliability and flexibility requirements

This section followi allows to include system-wide reliability and flexility considerations. The current formulation is
based on Sullivan et al., 2013 [6].

Aggregate use of a commodity

The system reliability and flexibility constraints are implemented using an auxiliary variable representing the total use
(i.e., input of each commodity per level).

Equation COMMODITY_USE_LEVEL

This constraint defines the auxiliary variable 𝐶𝑂𝑀𝑀𝑂𝐷𝐼𝑇𝑌 _𝑈𝑆𝐸𝑛,𝑐,𝑙,𝑦, which is used to define the rating bins
and the peak-load that needs to be offset with firm (dispatchable) capacity.

40 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

𝐶𝑂𝑀𝑀𝑂𝐷𝐼𝑇𝑌 _𝑈𝑆𝐸𝑛,𝑐,𝑙,𝑦 =
∑︁

𝑛𝐿,𝑡,𝑦𝑉 ,𝑚,ℎ

𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ,ℎ

· 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑙ℎ,ℎ ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ

This constraint and the auxiliary variable is only active if 𝑝𝑒𝑎𝑘_𝑙𝑜𝑎𝑑_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑐,𝑙,𝑦,ℎ or
𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑐,𝑙,ℎ,𝑟 is defined.

Auxilary variables for technology activity by “rating bins”

The capacity and activity of certain (usually non-dispatchable) technologies can be assumed to only partially contribute
to the system reliability and flexibility requirements.

Equation ACTIVITY_RATING_BIN

The auxiliary variable for rating-specific activity of each technology cannot exceed the share of the rating bin in
relation to the total commodity use.

𝐴𝐶𝑇_𝑅𝐴𝑇𝐼𝑁𝐺𝑛,𝑡,𝑦𝑉 ,𝑦,𝑐,𝑙,ℎ,𝑞 ≤ 𝑟𝑎𝑡𝑖𝑛𝑔_𝑏𝑖𝑛𝑛,𝑡,𝑦,𝑐,𝑙,ℎ,𝑞 · 𝐶𝑂𝑀𝑀𝑂𝐷𝐼𝑇𝑌 _𝑈𝑆𝐸𝑛,𝑐,𝑙,𝑦

Equation ACTIVITY_SHARE_TOTAL

The sum of the auxiliary rating-specific activity variables need to equal the total input and/or output of the technology.∑︁
𝑞

𝐴𝐶𝑇_𝑅𝐴𝑇𝐼𝑁𝐺𝑛,𝑡,𝑦𝑉 ,𝑦,𝑐,𝑙,ℎ,𝑞 =
∑︁

𝑛𝐿,𝑡,𝑚,ℎ𝐴

𝑦𝑉 ≤𝑦

(𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ + 𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ)

· 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑙ℎ,ℎ𝐴 ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ𝐴

Reliability of installed capacity

The “firm capacity” that a technology can contribute to system reliability depends on its dispatch characteristics. For
dispatchable technologies, the total installed capacity counts toward the firm capacity constraint. This is active if the
parameter is defined over 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦,𝑐,𝑙,ℎ,′𝑓𝑖𝑟𝑚′ . For non-dispatchable technologies, or those that do not
have explicit investment decisions, the contribution to system reliability is calculated by using the auxiliary variable
𝐴𝐶𝑇_𝑅𝐴𝑇𝐼𝑁𝐺𝑛,𝑡,𝑦𝑉 ,𝑦,𝑐,𝑙,ℎ,𝑞 as a proxy, with the 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦,𝑐,𝑙,ℎ,𝑞 defined per rating bin 𝑞.

Equation FIRM_CAPACITY_PROVISION

Technologies where the reliability factor is defined with the rating firm have an auxiliary variable
𝐶𝐴𝑃_𝐹𝐼𝑅𝑀𝑛,𝑡,𝑐,𝑙,𝑦,𝑞, defined in terms of output.

∑︁
𝑞

𝐶𝐴𝑃_𝐹𝐼𝑅𝑀𝑛,𝑡,𝑐,𝑙,𝑦,𝑞 =
∑︁
𝑦𝑉 ≤𝑦

𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ · 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒ℎ

· 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 ,𝑦,ℎ · 𝐶𝐴𝑃𝑛,𝑡,𝑦𝑌 ,𝑦 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

3.3. Mathematical specification 41

message Documentation, Release 1.2.0

Equation SYSTEM_RELIABILITY_CONSTRAINT

This constraint ensures that there is sufficient firm (dispatchable) capacity in each period. The formulation is based on
Sullivan et al., 2013 [6].

∑︁
𝑡,𝑞𝑡∈𝑇 𝐼𝑁𝑉

𝑦𝑉 ≤𝑦

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦,𝑐,𝑙,ℎ,′𝑓𝑖𝑟𝑚′ · 𝐶𝐴𝑃_𝐹𝐼𝑅𝑀𝑛,𝑡,𝑐,𝑙,𝑦

+
∑︁

𝑡,𝑞,𝑦𝑉 ≤𝑦

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦,𝑐,𝑙,ℎ,𝑞 ·𝐴𝐶𝑇_𝑅𝐴𝑇𝐼𝑁𝐺𝑛,𝑡,𝑦𝑉 ,𝑦,𝑐,𝑙,ℎ,𝑞

≥ 𝑝𝑒𝑎𝑘_𝑙𝑜𝑎𝑑_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑐,𝑙,𝑦,ℎ · 𝐶𝑂𝑀𝑀𝑂𝐷𝐼𝑇𝑌 _𝑈𝑆𝐸𝑛,𝑐,𝑙,𝑦

This constraint is only active if 𝑝𝑒𝑎𝑘_𝑙𝑜𝑎𝑑_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑐,𝑙,𝑦,ℎ is defined.

Equation SYSTEM_FLEXIBILITY_CONSTRAINT

This constraint ensures that, in each sub-annual time slice, there is a sufficient contribution from flexible technologies
to ensure smooth system operation.

∑︁
𝑛𝐿,𝑡,𝑚,ℎ𝐴

𝑦𝑉 ≤𝑦

𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑐,𝑙,ℎ,′𝑢𝑛𝑟𝑎𝑡𝑒𝑑′

· (𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ + 𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ)

· 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑙ℎ,ℎ𝐴 ·𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ

+
∑︁

𝑛𝐿,𝑡,𝑚,ℎ𝐴

𝑦𝑉 ≤𝑦

𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑐,𝑙,ℎ,1

· (𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ + 𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ)

· 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑙ℎ,ℎ𝐴 ·𝐴𝐶𝑇_𝑅𝐴𝑇𝐼𝑁𝐺𝑛,𝑡,𝑦𝑉 ,𝑦,𝑐,𝑙,ℎ,𝑞 ≥ 0

Bounds on capacity and activity

Equation NEW_CAPACITY_BOUND_UP

This constraint provides upper bounds on new capacity installation.

𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦 ≤ 𝑏𝑜𝑢𝑛𝑑_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

Equation NEW_CAPACITY_BOUND_LO

This constraint provides lower bounds on new capacity installation.

𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦 ≥ 𝑏𝑜𝑢𝑛𝑑_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

42 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Equation TOTAL_CAPACITY_BOUND_UP

This constraint gives upper bounds on the total installed capacity of a technology in a specific year of operation
summed over all vintages.

∑︁
𝑦𝑉 ≤𝑦

𝐶𝐴𝑃𝑛,𝑡,𝑦,𝑦𝑉 ≤ 𝑏𝑜𝑢𝑛𝑑_𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

Equation TOTAL_CAPACITY_BOUND_LO

This constraint gives lower bounds on the total installed capacity of a technology.

∑︁
𝑦𝑉 ≤𝑦

𝐶𝐴𝑃𝑛,𝑡,𝑦,𝑦𝑉 ≥ 𝑏𝑜𝑢𝑛𝑑_𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

Equation ACTIVITY_BOUND_UP

This constraint provides upper bounds by mode of a technology activity, summed over all vintages.

∑︁
𝑦𝑉 ≤𝑦

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ≤ 𝑏𝑜𝑢𝑛𝑑_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑚,𝑦,ℎ

Equation ACTIVITY_BOUND_ALL_MODES_UP

This constraint provides upper bounds of a technology activity across all modes and vintages.

∑︁
𝑦𝑉 ≤𝑦,𝑚

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ≤ 𝑏𝑜𝑢𝑛𝑑_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦,′𝑎𝑙𝑙′,ℎ

Equation ACTIVITY_BOUND_LO

This constraint provides lower bounds by mode of a technology activity, summed over all vintages.

∑︁
𝑦𝑉 ≤𝑦

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ≥ 𝑏𝑜𝑢𝑛𝑑_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦,𝑚,ℎ

We assume that 𝑏𝑜𝑢𝑛𝑑_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦,𝑚,ℎ = 0 unless explicitly stated otherwise.

3.3. Mathematical specification 43

message Documentation, Release 1.2.0

Equation ACTIVITY_BOUND_ALL_MODES_LO

This constraint provides lower bounds of a technology activity across all modes and vintages.

∑︁
𝑦𝑉 ≤𝑦,𝑚

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ≥ 𝑏𝑜𝑢𝑛𝑑_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦,′𝑎𝑙𝑙′,ℎ

We assume that 𝑏𝑜𝑢𝑛𝑑_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦,′𝑎𝑙𝑙′,ℎ = 0 unless explicitly stated otherwise.

Constraints on shares of technologies and commodities

This section allows to include upper and lower bounds on the shares of modes used by a technology or the shares of
commodities produced or consumed by groups of technologies.

Share constraints on activity by mode

Equation SHARES_MODE_UP

This constraint provides upper bounds of the share of the activity of one mode of a technology. For example, it could
limit the share of heat that can be produced in a combined heat and electricity power plant.

𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ𝐴 ≤ 𝑠ℎ𝑎𝑟𝑒_𝑚𝑜𝑑𝑒_𝑢𝑝𝑠,𝑛,𝑦,𝑚,ℎ ·
∑︁
𝑚′

𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚′,ℎ𝐴

Equation SHARES_MODE_LO

This constraint provides lower bounds of the share of the activity of one mode of a technology.

𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ𝐴 ≥ 𝑠ℎ𝑎𝑟𝑒_𝑚𝑜𝑑𝑒_𝑙𝑜𝑠,𝑛,𝑦,𝑚,ℎ ·
∑︁
𝑚′

𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚′,ℎ𝐴

Share constraints on commodities

These constraints allow to set upper and lower bound on the quantity of commodities produced or consumed by a
group of technologies relative to the commodities produced or consumed by another group.

The implementation is generic and flexible, so that any combination of commodities, levels, technologies and nodes
can be put in relation to any other combination.

The notation 𝑆𝑠ℎ𝑎𝑟𝑒 represents the mapping set map_shares_commodity_share denoting all technology types,
nodes, commodities and levels to be included in the numerator, and 𝑆𝑡𝑜𝑡𝑎𝑙 is the equivalent mapping set
map_shares_commodity_total for the denominator.

44 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Equation SHARE_CONSTRAINT_COMMODITY_UP

∑︁
𝑛𝐿,𝑡,𝑚,ℎ𝐴

𝑦𝑉 ≤𝑦,(𝑛,̂︀𝑡,𝑚,𝑐,𝑙)∼𝑆𝑠ℎ𝑎𝑟𝑒

(𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ + 𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ)

· 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑙ℎ,ℎ𝐴 ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ𝐴

≥ 𝑠ℎ𝑎𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦_𝑢𝑝𝑠,𝑛,𝑦,ℎ ·
∑︁

𝑛𝐿,𝑡,𝑚,ℎ𝐴

𝑦𝑉 ≤𝑦,(𝑛,̂︀𝑡,𝑚,𝑐,𝑙)∼𝑆𝑡𝑜𝑡𝑎𝑙

(𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ + 𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ)

· 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑙ℎ,ℎ𝐴 ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ𝐴

This constraint is only active if 𝑠ℎ𝑎𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦_𝑢𝑝𝑠,𝑛,𝑦,ℎ is defined.

Equation SHARE_CONSTRAINT_COMMODITY_LO

∑︁
𝑛𝐿,𝑡,𝑚,ℎ𝐴

𝑦𝑉 ≤𝑦,(𝑛,̂︀𝑡,𝑚,𝑐,𝑙)∼𝑆𝑠ℎ𝑎𝑟𝑒

(𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ + 𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ)

· 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑙ℎ,ℎ𝐴 ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ𝐴

≤ 𝑠ℎ𝑎𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦_𝑙𝑜𝑠,𝑛,𝑦,ℎ ·
∑︁

𝑛𝐿,𝑡,𝑚,ℎ𝐴

𝑦𝑉 ≤𝑦,(𝑛,̂︀𝑡,𝑚,𝑐,𝑙)∼𝑆𝑡𝑜𝑡𝑎𝑙

(𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ + 𝑖𝑛𝑝𝑢𝑡𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑛,𝑐,𝑙,ℎ𝐴,ℎ)

· 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑟𝑒𝑙ℎ,ℎ𝐴 ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ𝐴

This constraint is only active if 𝑠ℎ𝑎𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦_𝑙𝑜𝑠,𝑛,𝑦,ℎ is defined.

Dynamic constraints on market penetration

The constraints in this section specify dynamic upper and lower bounds on new capacity and activity, i.e., constraints
on market penetration and rate of expansion or phase-out of a technology.

The formulation directly includes the option for ‘soft’ relaxations of dynamic constraints (cf. Keppo and Strubegger,
2010 [3]).

Equation NEW_CAPACITY_CONSTRAINT_UP

The level of new capacity additions cannot be greater than an initial value (compounded over the period duration),
annual growth of the existing ‘capital stock’, and a “soft” relaxation of the upper bound.

3.3. Mathematical specification 45

message Documentation, Release 1.2.0

𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦 ≤ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦 ·

(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦

)︁|𝑦|
− 1

𝑔𝑟𝑜𝑤𝑡ℎ_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦

+
(︁
𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦−1 + ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑛,𝑡,𝑦−1

)︁
·
(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦

)︁|𝑦|
+ 𝐶𝐴𝑃_𝑁𝐸𝑊_𝑈𝑃𝑛,𝑡,𝑦 ·

(︃(︁
1 + 𝑠𝑜𝑓𝑡_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦

)︁|𝑦|
− 1

)︃
∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

Here, |𝑦| is the number of years in period 𝑦, i.e., 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦 .

Equation NEW_CAPACITY_SOFT_CONSTRAINT_UP

This constraint ensures that the relaxation of the dynamic constraint on new capacity (investment) does not exceed the
level of the investment in the same period (cf. Keppo and Strubegger, 2010 [3]).

𝐶𝐴𝑃_𝑁𝐸𝑊_𝑈𝑃𝑛,𝑡,𝑦 ≤ 𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

Equation NEW_CAPACITY_CONSTRAINT_LO

This constraint gives dynamic lower bounds on new capacity.

𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦 ≥− 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦 ·

(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦

)︁|𝑦|
𝑔𝑟𝑜𝑤𝑡ℎ_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦

+
(︁
𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦−1 + ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑛,𝑡,𝑦−1

)︁
·
(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦

)︁|𝑦|
− 𝐶𝐴𝑃_𝑁𝐸𝑊_𝐿𝑂𝑛,𝑡,𝑦 ·

(︃(︁
1 + 𝑠𝑜𝑓𝑡_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦

)︁|𝑦|
− 1

)︃
∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

Equation NEW_CAPACITY_SOFT_CONSTRAINT_LO

This constraint ensures that the relaxation of the dynamic constraint on new capacity does not exceed level of the
investment in the same year.

𝐶𝐴𝑃_𝑁𝐸𝑊_𝐿𝑂𝑛,𝑡,𝑦 ≤ 𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦 ∀ 𝑡 ∈ 𝑇 𝐼𝑁𝑉

46 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Equation ACTIVITY_CONSTRAINT_UP

This constraint gives dynamic upper bounds on the market penetration of a technology activity.

∑︁
𝑦𝑉 ≤𝑦,𝑚

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ≤ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦,ℎ ·

(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦,ℎ

)︁|𝑦|
− 1

𝑔𝑟𝑜𝑤𝑡ℎ_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦,ℎ

+

(︂ ∑︁
𝑦𝑉 ≤𝑦−1,𝑚

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦−1,𝑚,ℎ +
∑︁
𝑚

ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑛,𝑡,𝑦−1,𝑚,ℎ

)︂

·
(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦,ℎ

)︁|𝑦|
+𝐴𝐶𝑇_𝑈𝑃𝑛,𝑡,𝑦,ℎ ·

(︃(︁
1 + 𝑠𝑜𝑓𝑡_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑢𝑝𝑛,𝑡,𝑦,ℎ

)︁|𝑦|
− 1

)︃

Equation ACTIVITY_SOFT_CONSTRAINT_UP

This constraint ensures that the relaxation of the dynamic activity constraint does not exceed the level of the activity.

𝐴𝐶𝑇_𝑈𝑃𝑛,𝑡,𝑦,ℎ ≤
∑︁

𝑦𝑉 ≤𝑦,𝑚

𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ

Equation ACTIVITY_CONSTRAINT_LO

This constraint gives dynamic lower bounds on the market penetration of a technology activity.

∑︁
𝑦𝑉 ≤𝑦,𝑚

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ ≥− 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦,ℎ ·

(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦,ℎ

)︁|𝑦|
− 1

𝑔𝑟𝑜𝑤𝑡ℎ_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦,ℎ

+

(︂ ∑︁
𝑦𝑉 ≤𝑦−1,𝑚

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦−1,𝑚,ℎ +
∑︁
𝑚

ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑛,𝑡,𝑦−1,𝑚,ℎ

)︂

·
(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦,ℎ

)︁|𝑦|
−𝐴𝐶𝑇_𝐿𝑂𝑛,𝑡,𝑦,ℎ ·

(︃(︁
1 + 𝑠𝑜𝑓𝑡_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑙𝑜𝑛,𝑡,𝑦,ℎ

)︁|𝑦|
− 1

)︃

Equation ACTIVITY_SOFT_CONSTRAINT_LO

This constraint ensures that the relaxation of the dynamic activity constraint does not exceed the level of the activity.

𝐴𝐶𝑇_𝐿𝑂𝑛,𝑡,𝑦,ℎ ≤
∑︁

𝑦𝑉 ≤𝑦,𝑚

𝐴𝐶𝑇𝑛,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ

3.3. Mathematical specification 47

message Documentation, Release 1.2.0

Emission section

Auxiliary variable for aggregate emissions

Equation EMISSION_EQUIVALENCE

This constraint simplifies the notation of emissions aggregated over different technology types and the land-use model
emulator. The formulation includes emissions from all sub-nodes 𝑛𝐿 of 𝑛.

𝐸𝑀𝐼𝑆𝑆𝑛,𝑒,̂︀𝑡,𝑦 =
∑︁

𝑛𝐿∈𝑁(𝑛)

(︃ ∑︁
𝑡∈𝑇 (̂︀𝑡),𝑦𝑉 ≤𝑦,𝑚,ℎ

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,𝑒 ·𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦,𝑚,ℎ

+
∑︁
𝑠

𝑙𝑎𝑛𝑑_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛𝐿,𝑠,𝑦,𝑒 · 𝐿𝐴𝑁𝐷𝑛𝐿,𝑠,𝑦 if ̂︀𝑡 ∈ ̂︀𝑇𝐿𝐴𝑁𝐷

)︃

Bound on emissions

Equation EMISSION_CONSTRAINT

This constraint enforces upper bounds on emissions (by emission type). For all bounds that include multiple periods,
the parameter 𝑏𝑜𝑢𝑛𝑑_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛,̂︀𝑒,̂︀𝑡,̂︀𝑦 is scaled to represent average annual emissions over all years included in the
year-set ̂︀𝑦.

The formulation includes historical emissions and allows to model constraints ranging over both the model horizon
and historical periods.

∑︀
𝑦′∈𝑌 (̂︀𝑦),𝑒∈𝐸(̂︀𝑒) 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦′ · 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑠𝑐𝑎𝑙𝑖𝑛𝑔̂︀𝑒,𝑒·(︁

𝐸𝑀𝐼𝑆𝑆𝑛,𝑒,̂︀𝑡,𝑦′ +
∑︀

𝑚 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛,𝑒,̂︀𝑡,𝑦′

)︁
∑︀

𝑦′∈𝑌 (̂︀𝑦) 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦′
≤ 𝑏𝑜𝑢𝑛𝑑_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛,̂︀𝑒,̂︀𝑡,̂︀𝑦

Land-use model emulator section

Bounds on total land use

Equation LAND_CONSTRAINT

This constraint enforces a meaningful result of the land-use model emulator, in particular a bound on the total land
used in MESSAGEix. The linear combination of land scenarios must be equal to 1.

∑︁
𝑠∈𝑆

𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦 = 1

Dynamic constraints on land use

These constraints enforces upper and lower bounds on the change rate per land scenario.

48 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Equation DYNAMIC_LAND_SCEN_CONSTRAINT_UP

𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦 ≤𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑙𝑎𝑛𝑑_𝑠𝑐𝑒𝑛_𝑢𝑝𝑛,𝑠,𝑦 ·

(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑠𝑐𝑒𝑛_𝑢𝑝𝑛,𝑠,𝑦

)︁|𝑦|
− 1

𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑠𝑐𝑒𝑛_𝑢𝑝𝑛,𝑠,𝑦

+
(︀
𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦−1 + ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑙𝑎𝑛𝑑𝑛,𝑠,𝑦−1

)︀
·
(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑠𝑐𝑒𝑛_𝑢𝑝𝑛,𝑠,𝑦

)︁|𝑦|
Equation DYNAMIC_LAND_SCEN_CONSTRAINT_LO

𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦 ≥− 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑙𝑎𝑛𝑑_𝑠𝑐𝑒𝑛_𝑙𝑜𝑛,𝑠,𝑦 ·

(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑠𝑐𝑒𝑛_𝑙𝑜𝑛,𝑠,𝑦

)︁|𝑦|
− 1

𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑠𝑐𝑒𝑛_𝑙𝑜𝑛,𝑠,𝑦

+
(︀
𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦−1 + ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑙𝑎𝑛𝑑𝑛,𝑠,𝑦−1

)︀
·
(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑠𝑐𝑒𝑛_𝑙𝑜𝑛,𝑠,𝑦

)︁|𝑦|
These constraints enforces upper and lower bounds on the change rate per land type determined as a linear combination
of land use scenarios.

Equation DYNAMIC_LAND_TYPE_CONSTRAINT_UP

∑︁
𝑠∈𝑆

𝑙𝑎𝑛𝑑_𝑢𝑠𝑒𝑛,𝑠,𝑦,𝑢 · 𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦 ≤ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑙𝑎𝑛𝑑_𝑢𝑝𝑛,𝑦,𝑢 ·

(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑢𝑝𝑛,𝑦,𝑢

)︁|𝑦|
− 1

𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑢𝑝𝑛,𝑦,𝑢

+
(︁∑︁

𝑠∈𝑆

(︀
𝑙𝑎𝑛𝑑_𝑢𝑠𝑒𝑛,𝑠,𝑦−1,𝑢 + 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑙𝑎𝑛𝑑_𝑢𝑝𝑛,𝑠,𝑦−1,𝑢

)︀
·
(︀
𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦−1 + ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑙𝑎𝑛𝑑𝑛,𝑠,𝑦−1

)︀)︁
·
(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑢𝑝𝑛,𝑦,𝑢

)︁|𝑦|
Equation DYNAMIC_LAND_TYPE_CONSTRAINT_LO

∑︁
𝑠∈𝑆

𝑙𝑎𝑛𝑑_𝑢𝑠𝑒𝑛,𝑠,𝑦,𝑢 · 𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦 ≥ −𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑙𝑎𝑛𝑑_𝑙𝑜𝑛,𝑦,𝑢 ·

(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑙𝑜𝑛,𝑦,𝑢

)︁|𝑦|
− 1

𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑙𝑜𝑛,𝑦,𝑢

+
(︁∑︁

𝑠∈𝑆

(︀
𝑙𝑎𝑛𝑑_𝑢𝑠𝑒𝑛,𝑠,𝑦−1,𝑢 + 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑙𝑎𝑛𝑑_𝑙𝑜𝑛,𝑠,𝑦−1,𝑢

)︀
·
(︀
𝐿𝐴𝑁𝐷𝑛,𝑠,𝑦−1 + ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑙𝑎𝑛𝑑𝑛,𝑠,𝑦−1

)︀)︁
·
(︁
1 + 𝑔𝑟𝑜𝑤𝑡ℎ_𝑙𝑎𝑛𝑑_𝑙𝑜𝑛,𝑦,𝑢

)︁|𝑦|

3.3. Mathematical specification 49

message Documentation, Release 1.2.0

Section of generic relations (linear constraints)

This feature is intended for development and testing only - all new features should be implemented as specific new
mathematical formulations and associated sets & parameters!

Auxiliary variable for left-hand side

Equation RELATION_EQUIVALENCE

𝑅𝐸𝐿𝑟,𝑛,𝑦 =
∑︁
𝑡

(︃
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟,𝑛,𝑦,𝑡 · 𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦

+ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟,𝑛,𝑦,𝑡 ·
∑︁
𝑦𝑉 ≤𝑦

𝐶𝐴𝑃𝑛,𝑡,𝑦𝑉 ,𝑦

+
∑︁

𝑛𝐿,𝑦′,𝑚,ℎ

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑟,𝑛,𝑦,𝑛𝐿,𝑡,𝑦′,𝑚

·
(︁ ∑︁

𝑦𝑉 ≤𝑦′

𝐴𝐶𝑇𝑛𝐿,𝑡,𝑦𝑉 ,𝑦′,𝑚,ℎ + ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑛𝐿,𝑡,𝑦′,𝑚,ℎ

)︁)︃

The parameter ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙_𝑛𝑒𝑤_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑟,𝑛,𝑦 is not included here, because relations can only be active in periods
included in the model horizon and there is no “writing” of capacity relation factors across periods.

Upper and lower bounds on user-defined relations

Equation RELATION_CONSTRAINT_UP

𝑅𝐸𝐿𝑟,𝑛,𝑦 ≤ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑢𝑝𝑝𝑒𝑟𝑟,𝑛,𝑦

Equation RELATION_CONSTRAINT_LO

𝑅𝐸𝐿𝑟,𝑛,𝑦 ≥ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑤𝑒𝑟𝑟,𝑛,𝑦

Note: This page is generated from inline documentation in MESSAGE/model_solve.gms.

3.3.4 Solve statement workflow

This part of the code includes the perfect-foresight, myopic and rolling-horizon model solve statements including the
required accounting of investment costs beyond the model horizon.

50 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Perfect-foresight model

For the perfect foresight version of MESSAGEix, include all years in the model horizon and solve the entire model.
This is the standard option; the GAMS global variable %foresight%=0 by default.

min
𝑥

𝑂𝐵𝐽 =
∑︁
𝑦∈𝑌

𝑂𝐵𝐽𝑦(𝑥𝑦)

Recursive-dynamic and myopic model

For the myopic and rolling-horizon models, loop over horizons and iteratively solve the model, keeping the decision
variables from prior periods fixed. This option is selected by setting the GAMS global variable %foresight% to
a value greater than 0, where the value represents the number of years that the model instance is considering when
iterating over the periods of the optimization horizon.

Loop over 𝑦 ∈ 𝑌 , solving

min
𝑥

𝑂𝐵𝐽 =
∑︁

𝑦∈𝑌 (𝑦)

𝑂𝐵𝐽𝑦(𝑥𝑦)

s.t. 𝑥𝑦′ = 𝑥*
𝑦′ ∀ 𝑦′ < 𝑦

where 𝑌 (𝑦) = {𝑦 ∈ 𝑌 | |𝑦| − |𝑦| < 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛_ℎ𝑜𝑟𝑖𝑧𝑜𝑛} and 𝑥*
𝑦′ is the optimal value of 𝑥𝑦′ in iteration |𝑦′| of

the iterative loop.

The advantage of this implementation is that there is no need to ‘store’ the optimal values of all decision variables in
additional reporting parameters - the last model solve automatically includes the results over the entire model horizon
and can be imported via the ixmp interface.

Note: This page is generated from inline documentation in MESSAGE/reporting.gms.

3.3.5 Standard output reports

This part of the code contains the definitions and scripts for a number of standard output reports. These default reports
will be created after every MESSAGE run.

Note: This page is generated from inline documentation in MESSAGE/scaling_investment_costs.gms.

3.3.6 Auxiliary investment parameters

Levelized capital costs

For the ‘soft’ relaxations of the dynamic constraints and the associated penalty factor in the objective function, we
need to compute the parameter 𝑙𝑒𝑣𝑒𝑙𝑖𝑧𝑒𝑑_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦.

𝑙𝑒𝑣𝑒𝑙𝑖𝑧𝑒𝑑_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑚,𝑦,ℎ := 𝑖𝑛𝑣_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦 ·
𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒𝑦 · (1 + 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒𝑦)

|𝑦|

(1 + 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒𝑦)
|𝑦| − 1

+ 𝑓𝑖𝑥_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦,𝑦 ·
1∑︀

ℎ′ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒ℎ′ · 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦,𝑦,ℎ′

+ 𝑣𝑎𝑟_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦,𝑦,𝑚,ℎ

3.3. Mathematical specification 51

message Documentation, Release 1.2.0

where |𝑦| = 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙_𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑛,𝑡,𝑦 . This formulation implicitly assumes constant fixed and variable costs over
time.

Warning: All soft relaxations of the dynamic activity constraint are disabled if the levelized costs are negative!

Construction time accounting

If the construction of new capacity takes a significant amount of time, investment costs have to be scaled up accordingly
to account for the higher capital costs.

𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦 = (1 + 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒𝑦)
|𝑦|

where |𝑦| = 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑛,𝑡,𝑦. If no construction time is specified, the default value of the investment cost
scaling factor defaults to 1. The model assumes that the construction time only plays a role for the investment costs,
i.e., each unit of new-built capacity is available instantaneously.

Comment: This formulation applies the discount rate of the vintage year (i.e., the year in which the new capacity
becomes operational).

Investment costs beyond the model horizon

If the technical lifetime of a technology exceeds the model horizon 𝑌 𝑚𝑜𝑑𝑒𝑙, the model has to add a scaling factor to the
investment costs (𝑒𝑛𝑑_𝑜𝑓_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦). Assuming a constant stream of revenue (marginal value of the ca-
pacity constraint), this can be computed by annualizing investment costs from the condition that in an optimal solution,
the investment costs must equal the discounted future revenues, if the investment variable 𝐶𝐴𝑃_𝑁𝐸𝑊𝑛,𝑡,𝑦 > 0:

𝑖𝑛𝑣_𝑐𝑜𝑠𝑡𝑛,𝑡,𝑦𝑉 =
∑︁

𝑦∈𝑌 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒

𝑛,𝑡,𝑦𝑉

𝑑𝑓_𝑦𝑒𝑎𝑟𝑦 · 𝛽𝑛,𝑡,

Here, 𝛽𝑛,𝑡 > 0 is the dual variable to the capacity constraint (assumed constant over future periods) and 𝑌 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
𝑛,𝑡,𝑦𝑉 is

the set of periods in the lifetime of a plant built in period 𝑦𝑉 . Then, the scaling factor 𝑒𝑛𝑑_𝑜𝑓_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉

can be derived as follows:

𝑒𝑛𝑑_𝑜𝑓_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 :=

∑︀
𝑦∈𝑌 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒

𝑛,𝑡,𝑦𝑉 ∩𝑌 𝑚𝑜𝑑𝑒𝑙 𝑑𝑓_𝑦𝑒𝑎𝑟𝑦∑︀
𝑦′∈𝑌 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒

𝑛,𝑡,𝑦𝑉
𝑑𝑓_𝑦𝑒𝑎𝑟𝑦′ + 𝑏𝑒𝑦𝑜𝑛𝑑_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉

∈ (0, 1],

where the parameter 𝑏𝑒𝑦𝑜𝑛𝑑_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 accounts for the discount factor beyond the overall model horizon
(the set 𝑌 in contrast to the set 𝑌 𝑚𝑜𝑑𝑒𝑙 ⊆ 𝑌 of the periods included in the current model iteration (see the page on the
recursive-dynamic model solution approach).

𝑏𝑒𝑦𝑜𝑛𝑑_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑛,𝑡,𝑦𝑉 := max
{︁
0, 𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐_𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑛,𝑡,𝑦𝑉 −

∑︁
𝑦′≥𝑦𝑉

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦′

}︁

𝑏𝑒𝑦𝑜𝑛𝑑_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 := 𝑑𝑓_𝑦𝑒𝑎𝑟̂︀𝑦 · 1

(1 + 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒̂︀𝑦)|̂︀𝑦| ·
1−

(︁
1

1+𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒̂︀𝑦
)︁|̃︀𝑦|

1− 1
1+𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒̂︀𝑦

where ̂︀𝑦 is the last period included in the overall model horizon, |̂︀𝑦| = 𝑝𝑒𝑟𝑖𝑜𝑑_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑̂︀𝑦 and |̃︀𝑦| =
𝑏𝑒𝑦𝑜𝑛𝑑_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑛,𝑡,𝑦𝑉 .

If the interest rate is zero, i.e., 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑟𝑎𝑡𝑒̂︀𝑦 = 0, the parameter 𝑏𝑒𝑦𝑜𝑛𝑑_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 equals the remaining
technical lifetime beyond the model horizon and the parameter 𝑒𝑛𝑑_𝑜𝑓_ℎ𝑜𝑟𝑖𝑧𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑡,𝑦𝑉 equals the share of
technical lifetime within the model horizon.

Possible extension: Instead of assuming 𝛽𝑛,𝑡 to be constant over time, one could include a simple (linear) projection
of 𝛽𝑛,𝑡,𝑦 beyond the end of the model horizon. However, this would likely require to include the computation of dual
variables endogenously, and thus a mixed-complementarity formulation of the model.

52 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

Remaining installed capacity

The model has to take into account that the technical lifetime of a technology may not coincide with the cumulative
period duration. Therefore, the model introduces the parameter 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑛,𝑡,𝑦𝑉 ,𝑦 as a factor of remaining
technical lifetime in the last period of operation divided by the duration of that period.

Note: This page is generated from inline documentation in MACRO/macro_core.gms.

3.3.7 MACRO - Mathematical formulation

MACRO is a macroeconomic model maximizing the intertemporal utility function of a single representative producer-
consumer in each node (or macro-economic region). The optimization result is a sequence of optimal savings, in-
vestment, and consumption decisions. The main variables of the model are the capital stock, available labor, and
commodity inputs, which together determine the total output of an economy according to a nested constant elastic-
ity of substitution (CES) production function. End-use service demands in the (commercial) demand categories of
MESSAGE is determined within the model, and is consistent with commodity supply curves, which are inputs to the
model.

Notation declaration

The following short notation is used in the mathematical description relative to the GAMS code:

Math Nota-
tion

GAMS set & index nota-
tion

Description

𝑛 node (or node_active in
loops)

spatial node corresponding to the macro-economic MESSAGE re-
gions

𝑦 year year (2005, 2010, 2020, . . . , 2100)
𝑠 sector sector corresponding to the (commercial) end-use demands of

MESSAGE

A listing of all parameters used in MACRO together with a decription can be found in the table below.

3.3. Mathematical specification 53

message Documentation, Release 1.2.0

Parameter Description
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦 Number of years in time period 𝑦 (forward diff)
𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡𝑛,𝑦 Total system costs in region 𝑛 and period 𝑦 from MESSAGE model run
𝑒𝑛𝑒𝑠𝑡𝑎𝑟𝑡𝑛,𝑠,𝑦 Consumption level of (commercial) end-use services 𝑠 in region 𝑛 and period 𝑦 from MES-

SAGE model run
𝑒𝑛𝑒𝑝𝑟𝑖𝑐𝑒𝑛,𝑠,𝑦 Shadow prices of (commercial) end-use services 𝑠 in region 𝑛 and period 𝑦 from MESSAGE

model run
𝜖𝑛 Elasticity of substitution between capital-labor and total energy in region 𝑛
𝜌𝑛 𝜖− 1/𝜖 where 𝜖 is the elasticity of subsitution in region 𝑛
𝑑𝑒𝑝𝑟𝑛 Annual depreciation rate in region 𝑛
𝛼𝑛 Capital value share parameter in region 𝑛
𝑎𝑛 Production function coefficient of capital and labor in region 𝑛
𝑏𝑛,𝑠 Production function coefficients of the different end-use sectors in region 𝑛, sector 𝑠 and period

𝑦
𝑢𝑑𝑓𝑛,𝑦 Utility discount factor in period year in region 𝑛 and period 𝑦
𝑛𝑒𝑤𝑙𝑎𝑏𝑛,𝑦 New vintage of labor force in region 𝑛 and period 𝑦
𝑔𝑟𝑜𝑤𝑛,𝑦 Annual growth rates of potential GDP in region 𝑛 and period 𝑦
𝑎𝑒𝑒𝑖𝑛,𝑠,𝑦 Autonomous energy efficiency improvement (AEEI) in region 𝑛, sector 𝑠 and period 𝑦
𝑓𝑖𝑛_𝑡𝑖𝑚𝑒𝑛,𝑦 finite time horizon correction factor in utility function in region 𝑛 and period 𝑦

Decision variables

Variable Definition Description
𝐾𝑛,𝑦 𝐾𝑛,𝑦 ≥ 0 ∀𝑛, 𝑦 Capital stock in region 𝑛 and period 𝑦
𝐾𝑁𝑛,𝑦 𝐾𝑁𝑛,𝑦 ≥ 0 ∀𝑛, 𝑦 New Capital vintage in region 𝑛 and period 𝑦
𝑌𝑛,𝑦 𝑌𝑛,𝑦 ≥ 0 ∀𝑛, 𝑦 Total production in region 𝑛 and period 𝑦
𝑌 𝑁𝑛,𝑦 𝑌 𝑁𝑛,𝑦 ≥ 0 ∀𝑛, 𝑦 New production vintage in region 𝑛 and period 𝑦
𝐶𝑛,𝑦 𝐶𝑛,𝑦 ≥ 0 ∀𝑛, 𝑦 Consumption in region 𝑛 and period 𝑦
𝐼𝑛,𝑦 𝐼𝑛,𝑦 ≥ 0 ∀𝑛, 𝑦 Investment in region 𝑛 and period 𝑦
𝑃𝐻𝑌 𝑆𝐸𝑁𝐸𝑛,𝑠,𝑦𝑃𝐻𝑌 𝑆𝐸𝑁𝐸𝑛,𝑠,𝑦 ≥

0 ∀𝑛, 𝑠, 𝑦
Physical end-use service use in region 𝑛, sector 𝑠 and period 𝑦

𝑃𝑅𝑂𝐷𝐸𝑁𝐸𝑛,𝑠,𝑦𝑃𝑅𝑂𝐷𝐸𝑁𝐸𝑛,𝑠,𝑦 ≥
0 ∀𝑛, 𝑠, 𝑦

Value of end-use service in the production function in region 𝑛, sec-
tor 𝑠 and period 𝑦

𝑁𝐸𝑊𝐸𝑁𝐸𝑛,𝑠,𝑦 𝑁𝐸𝑊𝐸𝑁𝐸𝑛,𝑠,𝑦 ≥
0 ∀𝑛, 𝑠, 𝑦

New end-use service in the production function in region 𝑛, sector 𝑠
and period 𝑦

𝐸𝐶𝑛,𝑦 𝐸𝐶 ∈ [−∞..∞] Approximation of system costs based on MESSAGE results
𝑈𝑇𝐼𝐿𝐼𝑇𝑌 𝑈𝑇𝐼𝐿𝐼𝑇𝑌 ∈ [−∞..∞] Utility function (discounted log of consumption)

Equation UTILITY_FUNCTION

The utility function which is maximized sums up the discounted logarithm of consumption of a single representative
producer-consumer over the entire time horizon of the model.

𝑈𝑇𝐼𝐿𝐼𝑇𝑌 =
∑︁
𝑛

(︂ ∑︁
𝑦|((𝑜𝑟𝑑(𝑦)>1)∧(𝑜𝑟𝑑(𝑦)<|𝑦|))

𝑢𝑑𝑓𝑛,𝑦 · log(𝐶𝑛,𝑦) · 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦

+
∑︁

𝑦|(𝑜𝑟𝑑(𝑦)=|𝑦|)

𝑢𝑑𝑓𝑛,𝑦 · log(𝐶𝑛,𝑦) ·
(︀
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦−1 +

1

𝐹𝐼𝑁_𝑇𝐼𝑀𝐸𝑛,𝑦

)︀)︂

54 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

The utility discount rate for period 𝑦 is set to 𝑑𝑟𝑎𝑡𝑒𝑛−𝑔𝑟𝑜𝑤𝑛,𝑦 , where 𝑑𝑟𝑎𝑡𝑒𝑛 is the discount rate used in MESSAGE,
typically set to 5%, and 𝑔𝑟𝑜𝑤 is the potential GDP growth rate. This choice ensures that in the steady state, the optimal
growth rate is identical to the potential GDP growth rates 𝑔𝑟𝑜𝑤. The values for the utility discount rates are chosen
for descriptive rather than normative reasons. The term 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦+𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦−1

2 mutliples the discounted
logarithm of consumption with the period length. The final period is treated separately to include a correction factor

1
𝐹𝐼𝑁_𝑇𝐼𝑀𝐸𝑛,𝑦

reflecting the finite time horizon of the model. Note that the sum over nodes 𝑛𝑜𝑑𝑒_𝑎𝑐𝑡𝑖𝑣𝑒 is artificial,
because 𝑛𝑜𝑑𝑒_𝑎𝑐𝑡𝑖𝑣𝑒 only contains one element.

Equation CAPITAL_CONSTRAINT

The following equation specifies the allocation of total production among current consumption 𝐶𝑛,𝑦 , investment into
building up capital stock excluding the sectors represented in MESSAGE 𝐼𝑛,𝑦 and the MESSAGE system costs 𝐸𝐶𝑛,𝑦

which are derived from a previous MESSAGE model run. As described in [4], the first-order optimality conditions
lead to the Ramsey rule for the optimal allocation of savings, investment and consumption over time.

𝑌𝑛,𝑦 = 𝐶𝑛,𝑦 + 𝐼𝑟,𝑦 + 𝐸𝐶𝑛,𝑦 ∀𝑛, 𝑦

Equation NEW_CAPITAL

The accumulation of capital in the sectors not represented in MESSAGE is governed by new capital stock equation.
Net capital formation 𝐾𝑁𝑛,𝑦 is derived from gross investments 𝐼𝑛,𝑦 minus depreciation of previsouly existing capital
stock.

𝐾𝑁𝑛,𝑦 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦 · 𝐼𝑛,𝑦 ∀𝑛, 𝑦 > 1

Here, the initial boundary condition for the base year 𝑦0 implies for the investments that 𝐼𝑛,𝑦0 = (𝑔𝑟𝑜𝑤𝑛,𝑦0 +𝑑𝑒𝑝𝑟𝑛) ·
𝑘𝑔𝑑𝑝𝑛 · 𝑔𝑑𝑝𝑛,𝑦0 .

Equation NEW_PRODUCTION

MACRO employs a nested constant elasticity of substitution (CES) production function with capital, labor and the
(commercial) end-use services represented in MESSAGE as inputs. This version of the production function is equaiva-
lent to that in MARKAL-MACRO.

𝑌 𝑁𝑛,𝑦 =

(︃
𝑎𝑛 ·𝐾𝑁𝑛,𝑦

(𝜌𝑛·𝛼𝑛) · 𝑛𝑒𝑤𝑙𝑎𝑏𝑛,𝑦(𝜌𝑛·(1−𝛼𝑛)) +
∑︁
𝑠

(𝑏𝑛,𝑠 ·𝑁𝐸𝑊𝐸𝑁𝐸𝑛,𝑠,𝑦
𝜌𝑛)

)︃ 1
𝜌𝑛

∀𝑛, 𝑦 > 1

Equation TOTAL_CAPITAL

Equivalent to the total production equation above, the total capital stock, again excluding those sectors which are
modeled in MESSAGE, is then simply a summation of capital stock in the previous period 𝑦− 1, depreciated with the
depreciation rate 𝑑𝑒𝑝𝑟𝑛, and the capital stock added in the current period 𝑦.

𝐾𝑛,𝑦 = 𝐾𝑛,𝑦−1 · (1− 𝑑𝑒𝑝𝑟𝑛)
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦 +𝐾𝑁𝑛,𝑦 ∀𝑛, 𝑦 > 1

Equation TOTAL_PRODUCTION

Total production in the economy (excluding energy sectors) is the sum of production from assets that were already
existing in the previous period 𝑦 − 1, depreciated with the depreciation rate 𝑑𝑒𝑝𝑟𝑛, and the new vintage of production

3.3. Mathematical specification 55

message Documentation, Release 1.2.0

from period 𝑦.

𝑌𝑛,𝑦 = 𝑌𝑛,𝑦−1 · (1− 𝑑𝑒𝑝𝑟𝑛)
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦 + 𝑌 𝑁𝑛,𝑦 ∀𝑛, 𝑦 > 1

Equation NEW_ENERGY

Total energy production (across the six commerical energy demands 𝑠) is the sum of production from all assets that
were already existing in the previous period 𝑦 − 1, depreciated with the depreciation rate 𝑑𝑒𝑝𝑟𝑛, and the the new
vintage of energy production from period 𝑦.

𝑃𝑅𝑂𝐷𝐸𝑁𝐸𝑛,𝑠,𝑦 = 𝑃𝑅𝑂𝐷𝐸𝑁𝐸𝑛,𝑠,𝑦−1 · (1− 𝑑𝑒𝑝𝑟𝑛)
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑𝑦 +𝑁𝐸𝑊𝐸𝑁𝐸𝑛,𝑠,𝑦 ∀𝑛, 𝑠, 𝑦 > 1

Equation ENERGY_SUPPLY

The relationship below establishes the link between physical energy 𝑃𝐻𝑌 𝑆𝐸𝑁𝐸𝑟,𝑠,𝑦 as accounted in MESSAGE
for the six commerical energy demands 𝑠 and energy in terms of monetary value 𝑃𝑅𝑂𝐷𝐸𝑁𝐸𝑛,𝑠,𝑦 as specified in the
production function of MACRO.

𝑃𝐻𝑌 𝑆𝐸𝑁𝐸𝑛,𝑠,𝑦 ≥ 𝑃𝑅𝑂𝐷𝐸𝑁𝐸𝑛,𝑠,𝑦 · 𝑎𝑒𝑒𝑖_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑠,𝑦 ∀𝑛, 𝑠, 𝑦 > 1

The cumulative effect of autonomous energy efficiency improvements (AEEI) is captured in 𝑎𝑒𝑒𝑖_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑠,𝑦 =

𝑎𝑒𝑒𝑖_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑠,𝑦−1 · (1− 𝑎𝑒𝑒𝑖𝑛,𝑠,𝑦)
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑒𝑟𝑖𝑜𝑑
𝑦 with 𝑎𝑒𝑒𝑖_𝑓𝑎𝑐𝑡𝑜𝑟𝑛,𝑠,𝑦=1 = 1. Therefore, choosing the 𝑎𝑒𝑒𝑖𝑛,𝑠,𝑦

coefficients appropriately offers the possibility to calibrate MACRO to a certain energy demand trajectory from MES-
SAGE.

Equation COST_ENERGY

Energy system costs are based on a previous MESSAGE model run. The approximation of energy system costs in
vicinity of the MESSAGE solution are approximated by a Taylor expansion with the first order term using shadow
prices 𝑒𝑛𝑒𝑝𝑟𝑖𝑐𝑒𝑠,𝑦,𝑛 of the MESSAGE model’s solution and a quadratic second-order term.

𝐸𝐶𝑛,𝑦 =𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡𝑛,𝑟

+
∑︁
𝑠

𝑒𝑛𝑒𝑝𝑟𝑖𝑐𝑒𝑠,𝑦,𝑛 · (𝑃𝐻𝑌 𝑆𝐸𝑁𝐸𝑛,𝑠,𝑦 − 𝑒𝑛𝑒𝑠𝑡𝑎𝑟𝑡𝑠,𝑦,𝑛)

+
∑︁
𝑠

𝑒𝑛𝑒𝑝𝑟𝑖𝑐𝑒𝑠,𝑦,𝑛
𝑒𝑛𝑒𝑠𝑡𝑎𝑟𝑡𝑠,𝑦,𝑛

· (𝑃𝐻𝑌 𝑆𝐸𝑁𝐸𝑛,𝑠,𝑦 − 𝑒𝑛𝑒𝑠𝑡𝑎𝑟𝑡𝑠,𝑦,𝑛)
2 ∀𝑛, 𝑦 > 1

Equation TERMINAL_CONDITION

Given the finite time horizon of MACRO, a terminal constraint needs to be applied to ensure that investments are
chosen at an appropriate level, i.e. to replace depriciated capital and provide net growth of capital stock beyond
MACRO’s time horizon [4]. The goal is to avoid to the extend possible model artifacts resulting from this finite time
horizon cutoff.

𝐾𝑛,𝑦 · (𝑔𝑟𝑜𝑤𝑛,𝑦 + 𝑑𝑒𝑝𝑟𝑛) ≤ 𝐼𝑛,𝑦 ∀𝑛, 𝑦 = 𝑙𝑎𝑠𝑡𝑦𝑒𝑎𝑟

3.4 Developing MESSAGEix models

Developing a valid, scientific MESSAGEix model requires careful use of the framework features. This section provides
guidelines for how to make some common model design choices.

56 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

3.4.1 Efficiency - output- vs. input defined technologies

There is no obvious approach whether a model should be formulated in a way that treats technologies as parametrized
to input or output commodities/fuels - power plant parameters are usually understood as output-based (per unit of elec-
tricity generated), while refinery parameters are usually based on input fuels (per unit of input commodity processed.
Things become even trickier when technologies have multiple inputs or outputs. Standardizing the methodology and
assumptions can become quite a challenge.

For the implementation of MESSAGEix, we opted to formulate the model in an agnostic manner, so that for each
technology, the most “appropriate” parametrization can be applied. As an additional benefit, we do not need to define
an explicit efficiency parameter or “main” input and output fuels.

The recommended approach is illustrated below for multiple examples. The decision variables 𝐶𝐴𝑃_𝑁𝐸𝑊 , 𝐶𝐴𝑃
and 𝐴𝐶𝑇 as well as all bounds are always understood to be in the same units. All cost parameters also have to be
provided in monetary units per these units - there is no “automatic rescaling” done either within the ixmp API or in
the GAMS implementation pre- or postprocessing.

Example 1 - Power plants

Technical specifications of power plants are commonly stated in terms of electricity generated (output). Therefore, the
decision variables should be understood as outputs, with the parameter 𝑜𝑢𝑡𝑝𝑢𝑡 = 1 and parameter 𝑖𝑛𝑝𝑢𝑡 = 1

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 .
This may seem counter-intuitive at first, but the clear advantage is that all technical parameters can be immediately
related to values found in the literature.

Example 2 - Refineries

For crude oil refineries, it is more common to scale costs and emissions in terms of crude oil input quantities. Hence,
the parameter 𝑖𝑛𝑝𝑢𝑡 = 1 and the output parameters (usually for multiple different oil products) should be set accord-
ingly.

The decision variables and bounds are then implicitly understood as input-based.

An alternative would be to parametrize a refinery based on outputs, but considering that there are multiple outputs (in
fixed proportions), the sum of output parameters over all products should be set to 1, i.e.,

∑︀
𝑐 𝑜𝑢𝑡𝑝𝑢𝑡𝑐 = 1. The input

of crude oil should then include the losses during the refining process, 𝑖𝑛𝑝𝑢𝑡 > 1.

Example 3 - Combined power- and heat plants

As a third option, technical specifications of combined heat- and power plants are usually also given with regard to
electricity generated under the assumption that the electricity generated is maximized. Then, as in example 1, the
capacity and activity variables should be understood as electricity generated.

Assuming that such a plant usually has (at least) two modes of operation, these modes could be parametrized as
follows:

𝑖𝑛𝑝𝑢𝑡 = 1
𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

𝑜𝑢𝑡𝑝𝑢𝑡′𝑀1′,′𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦′ = 1 and 𝑜𝑢𝑡𝑝𝑢𝑡′𝑀1′,′ℎ𝑒𝑎𝑡′ = 0.2

𝑜𝑢𝑡𝑝𝑢𝑡′𝑀2′,′𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦′ = 0.5 and 𝑜𝑢𝑡𝑝𝑢𝑡′𝑀2′,′ℎ𝑒𝑎𝑡′ = 3.

Note that the activity level in mode ‘M2’ has an odd interpretation - the amount of electricity generated if electricity
generation were maximized. The sum of outputs is greater than 1 in either mode. However, we believe that this
approach at least has the benefit of a parametrization that can be directly related to technical reports.

3.4. Developing MESSAGEix models 57

message Documentation, Release 1.2.0

3.4.2 Debugging and data validation

Finding the cause for infeasibilities or counter-intuitive results in large-scale numerical models is not trivial. For this
reason, the MESSAGEix framework includes a number of features to simplify debugging and pre-processing data
validation.

Pre-processing data validation

The data validation checks are included in the file model/MESSAGE/data_load.gms. If the data validation fails,
an error message is written to the log file.

Identification of infeasibilities

The MESSAGEix framework includes the option to “relax” the most common constraints, simultaneously adding a
penalty term for the relaxation to the objective function. Solving the relaxed version of the model can help to identify
incompatible constraints or input data errors causing infeasible models.

The relaxations can be activated by blocks/types of equations by setting the respective global variables ($SETGLOBAL
in GAMS) in MESSAGE_master.gms or by calling MESSAGE_run.gms passing the global variables as
command-line arguments.

3.4.3 Postprocessing and reporting

Warning: message_ix.reporting is experimental in message_ix 1.2 and only supports Python 3. The
API and functionality may change without advance notice or a deprecation period in subsequent releases.

The ix modeling platform provides powerful features to perform calculations and other postprocessing after a
message_ix.Scenario has been solved by the associated model. The MESSAGEix framework uses these fea-
tures to provide zero-configuration reporting of models built on the framework.

These features are accessible through Reporter, which can produce multiple reports from one or more Scenarios.
A report is identified by a key (usually a string), and may. . .

• perform arbitrarily complex calculations while intelligently handling units;

• read and make use of data that is ‘exogenous’ to (not included in) a Scenario;

• produce output as Python or R objects (in code), or to files or databases;

• calculate only a requested subset of quantities; and

• much, much more!

Contents:

• Terminology

• Basic usage

• Customization

• Reporters

• Computations

58 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

– Computations from ixmp

• Configuration

• Utilities

Terminology

ixmp.reporting handles numerical quantities, which are scalar (0-dimensional) or array (1 or more dimensions)
data with optional associated units. ixmp parameters, scalars, equations, and time-series data all become quantities for
the purpose of reporting.

Every quantity and report is identified by a key, which is a str or other hashable object. Special keys are used for mul-
tidimensional quantities. For instance: the MESSAGEix parameter resource_cost, defined with the dimensions
(node n, commodity c, grade g, year y) is identified by the key 'resource_cost:n-c-g-y'. When summed
across the grade/g dimension, it has dimensions n, c, y and is identified by the key 'resource_cost:n-c-y'.

Non-model1 quantities and reports are produced by computations, which are atomic tasks that build on other computa-
tions. The most basic computations—for instance, resource_cost:n-c-g-y—simply retrieve raw/unprocessed
data from a message_ix.Scenario and return it as a Quantity. Advanced computations can depend on many
quantities, and/or combine quantities together into a structure like a document or spreadsheet. Computations are
defined in ixmp.reporting.computations and message_ix.reporting.computations, but most
common computations can be added using the methods of Reporter.

Basic usage

A basic reporting workflow has the following steps:

1. Obtain a message_ix.Scenario object from an ixmp.Platform.

2. Use from_scenario() to create a Reporter object.

3. (optionally) Use Reporter built-in methods or advanced features to add computations to the reporter.

4. Use get() to retrieve the results (or trigger the effects) of one or more computations.

>>> from ixmp import Platform
>>> from message_ix import Scenario, Reporter
>>>
>>> mp = Platform()
>>> scen = Scenario(scen)
>>> rep = Reporter.from_scenario(scen)
>>> rep.get('all')

Note: Reporter stores defined computations, but these are not executed until get() is called—or the results of
one computation are required by another. This allows the Reporter to skip unneeded (and potentially slow) compu-
tations. A Reporter may contain computations for thousands of model quantities and derived quantities, but a call to
get() may only execute a few of these.

1 i.e. quantities that do not exist within the mathematical formulation of the model itself, and do not affect its solution.

3.4. Developing MESSAGEix models 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/glossary.html#term-hashable
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Platform

message Documentation, Release 1.2.0

Customization

A Reporter prepared with from_scenario() always contains a key scenario, referring to the Scenario to be
reported.

The method Reporter.add() can be used to add arbitrary Python code that operates directly on the Scenario
object:

>>> def my_custom_report(scenario):
>>> """Function with custom code that manipulates the *scenario*."""
>>> print('foo')
>>>
>>> rep.add('custom', (my_custom_report, 'scenario'))
>>> rep.get('custom')
foo

In this example, the function my_custom_report() could run to thousands of lines; read to and write from
multiple files; invoke other programs or Python scripts; etc.

In order to take advantage of the performance-optimizing features of the Reporter, however, such calculations can be
instead composed from atomic (i.e. small, indivisible) computations.

Reporters

message_ix.reporting.Reporter(**kwargs) MESSAGEix Reporter.
ixmp.reporting.Reporter(**kwargs) Class for generating reports on ixmp.Scenario ob-

jects.
ixmp.reporting.Key(name[, dims, tag]) A hashable key for a quantity that includes its dimen-

sionality.

class message_ix.reporting.Reporter(**kwargs)
Bases: ixmp.reporting.Reporter

MESSAGEix Reporter.

classmethod from_scenario(scenario, **kwargs)
Create a Reporter by introspecting scenario.

Returns A reporter for scenario.

Return type message_ix.reporting.Reporter

In addition to the keys automatically added by ixmp.reporting.Reporter.from_scenario(),
keys are added for derived quantities specific to the MESSAGEix framework, as defined in PRODUCTS
and DERIVED.

• out: the product of output (output efficiency) and ACT (activity).

• out_hist: output × ref_activity (historical reference activity),

• in: input × ACT,

• in_hist: input × ref_activity,

• emi: emission_factor × ACT,

• emi_hist: emission_factor × ref_activity,

• inv: inv_cost × CAP_NEW,

60 Chapter 3. Detailed documentation

https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario

message Documentation, Release 1.2.0

• inv_hist: inv_cost × ref_new_capacity,

• fom: fix_cost × CAP,

• fom_hist: fix_cost × ref_capacity,

• vom: var_cost × ACT, and

• vom_hist: var_cost × ref_activity.

• tom: fom + vom.

Tip: Use full_key() to retrieve the full-dimensionality Key for these quantities.

Other added keys include:

• <name>:pyam for the above quantities, plus:

– cap:pyam (from CAP)

– new_cap:pyam (from CAP_NEW)

. . . according to PYAM_CONVERT.

• Standard reports according to REPORTS.

• The report message:default, collecting all of the above reports.

as_pyam(quantities, year_time_dim, key=None, drop={}, collapse=None)
Add conversion of quantities to pyam.IamDataFrame.

Parameters

• quantities (str or Key or list of (str, Key)) – Quantities to trans-
form to pyam format.

• year_time_dim (str) – Label of the dimension use for the year or time column of the
pyam.IamDataFrame. The column is labelled “Time” if year_time_dim is h, otherwise
“Year”.

• drop (iterable of str, optional) – Label of additional dimensions to drop
from the resulting data frame. Dimensions h, y, ya, yr, and yv— except for the one
named by year_time_dim—are automatically dropped.

• collapse (callable, optional) – Callback to handle additional dimensions of
the data frame.

Returns Keys for the reporting targets that create the IamDataFrames corresponding to quanti-
ties. The keys have the added tag ‘iamc’.

Return type list of Key

The IAMC data format includes columns named ‘Model’, ‘Scenario’, ‘Region’, ‘Variable’, ‘Unit’; one of
‘Year’ or ‘Time’; and ‘value’.

Using as_pyam() :

• ‘Model’ and ‘Scenario’ are populated from the attributes of the Scenario identified by the key
scenario;

• ‘Variable’ contains the name(s) of the quantities;

• ‘Unit’ contains the units associated with the quantities; and

• ‘Year’ or ‘Time’ is created according to year_time_dim.

3.4. Developing MESSAGEix models 61

https://pyam-iamc.readthedocs.io/en/stable/api.html#pyam.IamDataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/stable/api.html#pyam.IamDataFrame
https://pyam-iamc.readthedocs.io/en/stable/data.html

message Documentation, Release 1.2.0

Additional dimensions of quantities pass through as_pyam() and appear as additional columns in the re-
sulting IamDataFrame. While this is valid IAMC data, as_pyam() also supports dropping additional
columns (with drop), and a custom callback (collapse) that can be used to manipulate values along other
dimensions.

For example, here the values for the MESSAGEix technology and mode dimensions are appended to
the ‘Variable’ column:

def m_t(df):
"""Callback for collapsing ACT columns."""
.pop() removes the named column from the returned row
df['variable'] = Activity + '|' + df['t'] + '|' + df['m']
return df

ACT = rep.full_key('ACT')
keys = rep.as_pyam(ACT, 'ya', collapse=m_t, drop=['t', 'm'])

write(key, path)
Write the report key to the file path.

In addition to the formats handled by ixmp.Reporter.write(), this version will write pyam.
IamDataFrame to CSV or Excel files using built-in methods.

class ixmp.reporting.Reporter(**kwargs)
Class for generating reports on ixmp.Scenario objects.

A Reporter is used to postprocess data from from one or more ixmp.Scenario objects. The get() method
can be used to:

• Retrieve individual quantities. A quantity has zero or more dimensions and optional units. Quantities
include the ‘parameters’, ‘variables’, ‘equations’, and ‘scalars’ available in an ixmp.Scenario.

• Generate an entire report composed of multiple quantities. A report may:

– Read in non-model or exogenous data,

– Trigger output to files(s) or a database, or

– Execute user-defined methods.

Every report and quantity (including the results of intermediate steps) is identified by a utils.Key; all the
keys in a Reporter can be listed with keys().

Reporter uses a graph data structure to keep track of computations, the atomic steps in postprocessing: for
example, a single calculation that multiplies two quantities to create a third. The graph allows get() to perform
only the requested computations. Advanced users may manipulate the graph directly; but common reporting
tasks can be handled by using Reporter methods:

add(key, computation[, strict, index, sums]) Add computation to the Reporter under key.
add_file(path[, key]) Add exogenous quantities from path.
aggregate(qty, tag, dims_or_groups[, . . .]) Add a computation that aggregates qty.
apply(generator, *keys) Add computations from generator applied to key.
configure([path]) Configure the Reporter.
describe([key]) Return a string describing the computations that pro-

duce key.
disaggregate(qty, new_dim[, method, args]) Add a computation that disaggregates var using

method.
finalize(scenario) Prepare the Reporter to act on scenario.
full_key(name_or_key) Return the full-dimensionality key for name_or_key.

Continued on next page

62 Chapter 3. Detailed documentation

https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
http://docs.dask.org/en/stable/graphs.html

message Documentation, Release 1.2.0

Table 5 – continued from previous page
get([key]) Execute and return the result of the computation key.
read_config(path) Configure the Reporter with information from a

YAML file at path.
visualize(filename, **kwargs) Generate an image describing the reporting structure.
write(key, path) Write the report key to the file path.

graph = {'filters': None}
A dask-format graph.

add(key, computation, strict=False, index=False, sums=False)
Add computation to the Reporter under key.

Parameters

• key (hashable) – A string, Key, or other value identifying the output of task.

• computation (object) – One of:

1. any existing key in the Reporter.

2. any other literal value or constant.

3. a task, i.e. a tuple with a callable followed by one or more computations.

4. A list containing one or more of #1, #2, and/or #3.

• strict (bool, optional) – If True, key must not already exist in the Reporter, and
any keys referred to by computation must exist.

• index (bool, optional) – If True, key is added to the index as a full-resolution key,
so it can be later retrieved with full_key().

• sums (bool, optional) – If True, all partial sums of key are also added to the Re-
porter.

Raises KeyError – If key is already in the Reporter; any key referred to by computation does
not exist; or sums=True and the key for one of the partial sums of key is already in the
Reporter.

add() may be used to:

• Provide an alias from one key to another:

>>> r.add('aliased name', 'original name')

• Define an arbitrarily complex computation in a Python function that operates directly on the ixmp.
Scenario:

>>> def my_report(scenario):
>>> # many lines of code
>>> return 'foo'
>>> r.add('my report', (my_report, 'scenario'))
>>> r.finalize(scenario)
>>> r.get('my report')
foo

Note: Use care when adding literal str values (2); these may conflict with keys that identify the results
of other computations.

3.4. Developing MESSAGEix models 63

http://docs.dask.org/en/stable/graphs.html
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://docs.python.org/3/library/stdtypes.html#str

message Documentation, Release 1.2.0

add_file(path, key=None)
Add exogenous quantities from path.

A file at a path like ‘/path/to/foo.ext’ is added at the key 'file:foo.ext'.

See also:

ixmp.reporting.computations.load_file()

add_product(name, *quantities, sums=True)
Add a computation that takes the product of quantities.

Parameters

• name (str) – Name of the new quantity.

• sums (bool, optional) – If True, all partial sums of the new quantity are also
added.

Returns The full key of the new quantity.

Return type Key

aggregate(qty, tag, dims_or_groups, weights=None, keep=True)
Add a computation that aggregates qty.

Parameters

• qty (Key or str) – Key of the quantity to be disaggregated.

• tag (str) – Additional string to add to the end the key for the aggregated quantity.

• dims_or_groups (str or iterable of str or dict) – Name(s) of the di-
mension(s) to sum over, or nested dict.

• weights (xr.DataArray) – Weights for weighted aggregation.

Returns The key of the newly-added node.

Return type Key

apply(generator, *keys)
Add computations from generator applied to key.

Parameters

• generator (callable) – Function to apply to keys. Must yield a sequence (0 or more)
of (key, computation), which are added to the graph.

• keys (hashable) – The starting key(s)

check_keys(*keys)
Check that keys are in the Reporter.

If any of keys is not in the Reporter, KeyError is raised. Otherwise, a list is returned with either the key
from keys, or the corresponding full_key().

configure(path=None, **config)
Configure the Reporter.

Accepts a path to a configuration file and/or keyword arguments. Configuration keys loaded from file are
replaced by keyword arguments.

Valid configuration keys include:

• default: the default reporting key; sets default_key .

• filters: a dict, passed to set_filters().

64 Chapter 3. Detailed documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

message Documentation, Release 1.2.0

• files: a dict mapping keys to file paths.

• alias: a dict mapping aliases to original keys.

Warns UserWarning – If config contains unrecognized keys.

default_key = None
The default reporting key.

describe(key=None)
Return a string describing the computations that produce key.

If key is not provided, all keys in the Reporter are described.

disaggregate(qty, new_dim, method=’shares’, args=[])
Add a computation that disaggregates var using method.

Parameters

• var (hashable) – Key of the variable to be disaggregated.

• new_dim (str) – Name of the new dimension of the disaggregated variable.

• method (callable or str) – Disaggregation method. If a callable, then it is applied
to var with any extra args. If then a method named ‘disaggregate_{method}’ is used.

• args (list, optional) – Additional arguments to the method. The first element
should be the key for a quantity giving shares for disaggregation.

Returns The key of the newly-added node.

Return type Key

finalize(scenario)
Prepare the Reporter to act on scenario.

The Scenario object scenario is associated with the key 'scenario'. All subsequent processing will
act on data from this scenario.

classmethod from_scenario(scenario, **kwargs)
Create a Reporter by introspecting scenario.

Parameters

• scenario (ixmp.Scenario) – Scenario to introspect in creating the Reporter.

• kwargs (optional) – Passed to Scenario.configure().

Returns

A Reporter instance containing:

• A ‘scenario’ key referring to the scenario object.

• Each parameter, equation, and variable in the scenario.

• All possible aggregations across different sets of dimensions.

• Each set in the scenario.

Return type Reporter

full_key(name_or_key)
Return the full-dimensionality key for name_or_key.

An ixmp variable ‘foo’ with dimensions (a, c, n, q, x) is available in the Reporter as 'foo:a-c-n-q-x'.
This Key can be retrieved with:

3.4. Developing MESSAGEix models 65

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario

message Documentation, Release 1.2.0

rep.full_key('foo')
rep.full_key('foo:c')
etc.

get(key=None)
Execute and return the result of the computation key.

Only key and its dependencies are computed.

Parameters key (str, optional) – If not provided, default_key is used.

Raises ValueError – If key and default_key are both None.

read_config(path)
Configure the Reporter with information from a YAML file at path.

See configure().

set_filters(**filters)
Apply filters ex ante (before computations occur).

filters has the same form as the argument of the same name to ixmp.Scenario.par() and analogous
methods. A value of None will clear the filter for the named dimension.

visualize(filename, **kwargs)
Generate an image describing the reporting structure.

This is a shorthand for dask.visualize(). Requires graphviz.

write(key, path)
Write the report key to the file path.

class ixmp.reporting.Key(name, dims=[], tag=None)
A hashable key for a quantity that includes its dimensionality.

Quantities in a Scenario can be indexed by one or more dimensions. For example, a parameter with three
dimensions can be initialized with:

>>> scenario.init_par('foo', ['a', 'b', 'c'], ['apple', 'bird', 'car'])

Computations for this scenario might use the quantity foo in different ways:

1. in its full resolution, i.e. indexed by a, b, and c;

2. aggregated (e.g. summed) over any one dimension, e.g. aggregated over c and thus indexed by a and b;

3. aggregated over any two dimensions; etc.

A Key for (1) will hash, display, and evaluate as equal to 'foo:a-b-c'. A Key for (2) corresponds to
'foo:a-b', and so forth.

Keys may be generated concisely by defining a convenience method:

>>> def foo(dims):
>>> return Key('foo', dims.split(''))
>>> foo('a b')
foo:a-b

add_tag(tag)
Return a new Key with tag appended.

append(*dims)
Return a new Key with additional dimensions dims.

66 Chapter 3. Detailed documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario.par
https://pypi.org/project/graphviz/

message Documentation, Release 1.2.0

dims
Dimensions of the quantity, tuple of str.

drop(*dims)
Return a new Key with dims dropped.

classmethod from_str_or_key(value, drop=[], append=[], tag=None)
Return a new Key from value.

Parameters

• value (str or Key) – Value to use to generate a new Key.

• drop (list of str, optional) – Existing dimensions of value to drop. See
drop().

• append (list of str, optional.) – New dimensions to append to the returned
Key. See append().

• tag (str, optional) – Tag for returned Key. If value has a tag, the two are joined
using a ‘+’ character. See add_tag().

Returns

Return type Key

iter_sums()
Generate (key, task) for all possible partial sums of the Key.

name
Name of the quantity, str.

classmethod product(new_name, *keys)
Return a new Key that has the union of dimensions on keys.

Dimensions are ordered by their first appearance:

1. First, the dimensions of the first of the keys.

2. Next, any additional dimensions in the second of the keys that were not already added in step 1.

3. etc.

Parameters new_name (str) – Name for the new Key. The names of keys are discarded.

tag
Quantity tag, str.

Computations

message_ix.reporting.computations.add(a, b, fill_value=0.0)
Sum of a and b.

message_ix.reporting.computations.as_pyam(scenario, year_time_dim, quantities, drop=[],
collapse=None)

Return a pyam.IamDataFrame containing quantities.

See also:

Reporter.as_pyam()

message_ix.reporting.computations.concat(*args)
Concatenate args, which must be pyam.IamDataFrame.

3.4. Developing MESSAGEix models 67

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pyam-iamc.readthedocs.io/en/stable/api.html#pyam.IamDataFrame
https://pyam-iamc.readthedocs.io/en/stable/api.html#pyam.IamDataFrame

message Documentation, Release 1.2.0

message_ix.reporting.computations.write_report(quantity, path)
Write the report identified by key to the file at path.

If quantity is a pyam.IamDataFrame and path ends with ‘.csv’ or ‘.xlsx’, use pyam methods to write the
file to CSV or Excel format, respectively. Otherwise, equivalent to ixmp.reporting.computations.
write_report().

Computations from ixmp

Elementary computations for reporting.

Unless otherwise specified, these methods accept and return Quantity objects for data arguments/return values.

Calculations:

aggregate(quantity, groups, keep) Aggregate quantity by groups.
concat(*args, **kwargs)
disaggregate_shares(quantity, shares) Disaggregate quantity by shares.
product(*quantities[, drop]) Return the product of any number of quantities.
ratio(numerator, denominator[, drop]) Return the ratio numerator / denominator.
sum(quantity[, weights, dimensions]) Sum quantity over dimensions, with optional weights.

Input and output:

load_file(path) Read the file at path and return its contents.
write_report(quantity, path) Write a quantity to a file.

Conversion:

make_dataframe(*quantities) Concatenate quantities into a single pd.DataFrame.

ixmp.reporting.computations.aggregate(quantity, groups, keep)
Aggregate quantity by groups.

Parameters

• quantity (Quantity) –

• groups (dict of dict) – Top-level keys are the names of dimensions in quantity.
Second-level keys are group names; second-level values are lists of labels along the dimen-
sion to sum into a group.

• keep (bool) – If True, the members that are aggregated into a group are returned with the
group sums. If False, they are discarded.

Returns Same dimensionality as quantity.

Return type Quantity

ixmp.reporting.computations.disaggregate_shares(quantity, shares)
Disaggregate quantity by shares.

ixmp.reporting.computations.make_dataframe(*quantities)
Concatenate quantities into a single pd.DataFrame.

ixmp.reporting.computations.load_file(path)
Read the file at path and return its contents.

68 Chapter 3. Detailed documentation

https://pyam-iamc.readthedocs.io/en/stable/api.html#pyam.IamDataFrame
https://docs.python.org/3/library/functions.html#bool

message Documentation, Release 1.2.0

Some file formats are automatically converted into objects for direct use in reporting code:

• csv: converted to xarray.DataArray. CSV files must have a ‘value’ column; all others are treated as
indices.

ixmp.reporting.computations.sum(quantity, weights=None, dimensions=None)
Sum quantity over dimensions, with optional weights.

ixmp.reporting.computations.write_report(quantity, path)
Write a quantity to a file.

Parameters path (str or Path) – Path to the file to be written.

Configuration

ixmp.reporting.configure([path]) Configure reporting globally.
ixmp.reporting.utils.RENAME_DIMS Dimensions to rename when extracting raw data from

Scenario objects.
ixmp.reporting.utils.REPLACE_UNITS Replacements to apply to quantity units before parsing

by pint.
ixmp.reporting.utils.UNITS pint unit registry for processing quantity units.
message_ix.reporting.PRODUCTS Basic derived quantities that are the product of two oth-

ers.
message_ix.reporting.DERIVED Other standard derived quantities.
message_ix.reporting.PYAM_CONVERT Quantities to automatically convert to pyam format.
message_ix.reporting.REPORTS Standard reports that collect quantities converted to

pyam format.

reporting.configure(**config)
Configure reporting globally.

Modifies global variables that affect the behaviour of all Reporters and computations, namely RENAME_DIMS,
REPLACE_UNITS, and UNITS.

Valid configuration keys—passed as config keyword arguments—include:

Other Parameters

• units (mapping) – Configuration for handling of units. Valid sub-keys include:

– replace (mapping of str -> str): replace units before they are parsed by pint. Added to
REPLACE_UNITS.

– define (str): block of unit definitions, added to UNITS so that units are recognized by
pint. See the pint documentation.

• rename_dims (mapping of str -> str) – Update RENAME_DIMS.

Warns UserWarning – If config contains unrecognized keys.

message_ix.reporting.PRODUCTS = (('out', ('output', 'ACT')), ('in', ('input', 'ACT')), ('rel', ('relation_activity', 'ACT')), ('emi', ('emission_factor', 'ACT')), ('inv', ('inv_cost', 'CAP_NEW')), ('fom', ('fix_cost', 'CAP')), ('vom', ('var_cost', 'ACT')), ('land_out', ('land_output', 'LAND')), ('land_use_qty', ('land_use', 'LAND')), ('land_emi', ('land_emission', 'LAND')))
Basic derived quantities that are the product of two others.

message_ix.reporting.DERIVED = [('tom:nl-t-yv-ya', (<function add>, 'fom:nl-t-yv-ya', 'vom:nl-t-yv-ya')), ('tom:nl-t-ya', (<function sum>, 'tom:nl-t-yv-ya', None, ['yv']))]
Other standard derived quantities.

message_ix.reporting.PYAM_CONVERT = {'cap': ('CAP:nl-t-ya', 'ya', {'var': 'capacity'}), 'emis': ('emi:nl-t-ya-m-e', 'ya', {'kind': 'emi', 'var': 'emis'}), 'fom': ('fom:nl-t-ya', 'ya', {'var': 'fom cost'}), 'in': ('in:nl-t-ya-m-no-c-l', 'ya', {'kind': 'ene', 'var': 'in'}), 'inv': ('inv:nl-t-yv', 'yv', {'var': 'inv cost'}), 'new_cap': ('CAP_NEW:nl-t-yv', 'yv', {'var': 'new capacity'}), 'out': ('out:nl-t-ya-m-nd-c-l', 'ya', {'kind': 'ene', 'var': 'out'}), 'tom': ('tom:nl-t-ya', 'ya', {'var': 'total om cost'}), 'vom': ('vom:nl-t-ya', 'ya', {'var': 'vom cost'})}
Quantities to automatically convert to pyam format.

3.4. Developing MESSAGEix models 69

https://docs.python.org/3/library/stdtypes.html#str
https://pint.readthedocs.io/en/stable/index.html
https://pint.readthedocs.io/en/stable/index.html
https://pint.readthedocs.io/en/stable/index.html
https://docs.python.org/3/library/stdtypes.html#str
https://pint.readthedocs.io/en/stable/defining.html#defining

message Documentation, Release 1.2.0

message_ix.reporting.REPORTS = {'message:costs': ['inv:pyam', 'fom:pyam', 'vom:pyam', 'tom:pyam'], 'message:emissions': ['emis:pyam'], 'message:system': ['out:pyam', 'in:pyam', 'cap:pyam', 'new_cap:pyam']}
Standard reports that collect quantities converted to pyam format.

ixmp.reporting.utils.RENAME_DIMS = {'commodity': 'c', 'emission': 'e', 'grade': 'g', 'land_scenario': 's', 'land_type': 'u', 'level': 'l', 'mode': 'm', 'node': 'n', 'node_dest': 'nd', 'node_loc': 'nl', 'node_origin': 'no', 'node_rel': 'nr', 'node_share': 'ns', 'rating': 'q', 'relation': 'r', 'technology': 't', 'time': 'h', 'time_dest': 'hd', 'time_origin': 'ho', 'year': 'y', 'year_act': 'ya', 'year_rel': 'yr', 'year_vtg': 'yv'}
Dimensions to rename when extracting raw data from Scenario objects. Mapping from Scenario dimension
name -> preferred dimension name. message_ix adds the standard short symbols for MESSAGE sets to this
variable.

ixmp.reporting.utils.REPLACE_UNITS = {'%': 'percent'}
Replacements to apply to quantity units before parsing by pint. Mapping from original unit -> preferred unit.

ixmp.reporting.utils.UNITS = <pint.registry.UnitRegistry object>
pint unit registry for processing quantity units. All units handled by imxp.reportingmust be either standard
SI units, or added to this registry.

Utilities

class ixmp.reporting.attrseries.AttrSeries(*args, **kwargs)
pandas.Series subclass imitating xarray.DataArray.

Future versions of ixmp.reporting will use xarray.DataArray as Quantity; however, because
xarray currently lacks sparse matrix support, ixmp quantities may be too large for available memory.

The AttrSeries class provides similar methods and behaviour to xarray.DataArray, such as an attrs dictio-
nary for metadata, so that ixmp.reporting.computations methods can use xarray-like syntax.

ixmp.reporting.utils.clean_units(input_string)
Tolerate messy strings for units.

Handles two specific cases found in MESSAGEix test cases:

• Dimensions enclosed in ‘[]’ have these characters stripped.

• The ‘%’ symbol cannot be supported by pint, because it is a Python operator; it is translated to ‘percent’.

ixmp.reporting.utils.collect_units(*args)
Return an list of ‘_unit’ attributes for args.

ixmp.reporting.utils.data_for_quantity(ix_type, name, column, scenario, filters=None)
Retrieve data from scenario.

Parameters

• ix_type ('equ' or 'par' or 'var') – Type of the ixmp object.

• name (str) – Name of the ixmp object.

• column ('mrg' or 'lvl' or 'value') – Data to retrieve. ‘mrg’ and ‘lvl’ are valid
only for ix_type='equ', and ‘level’ otherwise.

• scenario (ixmp.Scenario) – Scenario containing data to be retrieved.

• filters (dict, optional) – Mapping from dimensions to iterables of allowed values
along each dimension.

Returns Data for name.

Return type Quantity

ixmp.reporting.utils.dims_for_qty(data)
Return the list of dimensions for data.

If data is a pandas.DataFrame, its columns are processed; otherwise it must be a list.

70 Chapter 3. Detailed documentation

https://pint.readthedocs.io/en/stable/index.html
https://pint.readthedocs.io/en/stable/index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3/library/stdtypes.html#str
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://docs.python.org/3/library/stdtypes.html#dict
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

message Documentation, Release 1.2.0

ixmp.reporting.RENAME_DIMS is used to rename dimensions.

ixmp.reporting.utils.keys_for_quantity(ix_type, name, scenario)
Iterate over keys for name in scenario.

message_ix.reporting.pyam.collapse_message_cols(df, var, kind=None)
as_pyam() collapse=. . . callback for MESSAGE quantities.

Parameters

• var (str) – Name for ‘variable’ column.

• kind (None or 'ene' or 'emi', optional) – Determines which other columns
are combined into the ‘region’ and ‘variable’ columns:

– ’ene’: ‘variable’ is '<var>|<level>|<commodity>|<technology>|<mode>'
and ‘region’ is '<region>|<node_dest>' (if var=’out’) or
'<region>|<node_origin>' (if ‘var=’in’).

– ’emi’: ‘variable’ is '<var>|<emission>|<technology>|<mode>'.

– Otherwise: ‘variable’ is '<var>|<technology>'.

The referenced columns are also dropped, so it is not necessary to provide the drop argument
of as_pyam().

3.4.4 Model-building tools

Add model years to an existing Scenario

Description

This tool adds new modeling years to an existing ixmp.Scenario (hereafter “reference scenario”). For instance,
in a scenario define with:

history = [690]
model_horizon = [700, 710, 720]
sc_ref.add_horizon({'year': history + model_horizon,

'firstmodelyear': model_horizon[0]})

. . . additional years can be added:

sc_new = message_ix.Scenario(mp, sc_ref.model, sc_ref.scenario,
version='new')

add_year(sc_ref, sc_new, [705, 712, 718, 725])

At this point, sc_new will have the years [700, 705, 710, 712, 718, 720, 725], and original or interpolated data for all
these years in all parameters.

The tool operates by creating a new empty Scenario (hereafter “new scenario”) and:

• Copying all sets from the reference scenario, adding new time steps to relevant sets (e.g., adding 2025 between
2020 and 2030 in the set year)

• Copying all parameters from the reference scenario, adding new years to relevant parameters, and calculating
missing values for the added years.

3.4. Developing MESSAGEix models 71

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario

message Documentation, Release 1.2.0

Features

• It can be used for any MESSAGE scenario, from tutorials, country-level, and global models.

• The new years can be consecutive, between existing years, and/or after the model horizon.

• The user can define for what regions and parameters the new years should be added. This saves time when
adding the new years to only one parameter of the reference scenario, when other parameters have previously
been successfully added to the new scenario.

Usage

The tool can be used either:

1. Directly from the command line:

$ python -m message_ix.tools.add_year \
--model_ref MESSAGE_Model \
--scen_ref baseline \
--years_new 2015,2025,2035,2045

For the full list of input arguments, run:

$ python -m message_ix.tools.add_year --help

2. By calling the function message_ix.tools.add_year.add_year() from a Python script.

Technical details

1. An existing scenario is loaded and the desired new years are specified.

2. A new (empty) scenario is created for adding the new years.

3. The new years are added to the relevant sets, year and type_year.

• The sets firstmodelyear, lastmodelyear, baseyear_macro, and
initializeyear_macro are modified, if needed.

• The set cat_year is modified for the new years.

4. The new years are added to the index sets of relevant parameters, and the missing data for the new years are
calculated based on interpolation of adjacent data points. The following steps are applied:

a. Each non-empty parameter is loaded from the reference scenario.

b. The year-related indexes (0, 1, or 2) of the parameter are identified.

c. The new years are added to the parameter, and the missing data is calculated based on the number of
year-related indexes. For example:

• The parameter inv_cost has index year_vtg, to which the new years are added.

• The parameter output has indices year_act and year_vtg. The new years are added to both
of these dimensions.

d. Missing data is calculated by interpolation.

e. For parameters with 2 year-related indices (e.g. output), a final check is applied so ensure that the
vintaging is correct. This step is done based on the lifetime of each technology.

72 Chapter 3. Detailed documentation

message Documentation, Release 1.2.0

5. The changes are committed and saved to the new scenario.

Warning: The tool does not ensure that the new scenario will solve after adding the new years. The user needs to
load the new scenario, check some key parameters (like bounds) and solve the new scenario.

API reference

Add model years to an existing Scenario.

message_ix.tools.add_year.add_year(sc_ref, sc_new, years_new, firstyear_new=None,
lastyear_new=None, macro=False,
baseyear_macro=None, parameter=’all’, region=’all’,
rewrite=True, unit_check=True, extrapol_neg=None,
bound_extend=True)

Add years to sc_ref to produce sc_new.

add_year() does the following:

1. calls add_year_set() to add and modify required sets.

2. calls add_year_par() to add new years and modifications to each parameter if needed.

Parameters

• sc_ref (ixmp.Scenario) – Reference scenario.

• sc_new (ixmp.Scenario) – New scenario.

• yrs_new (list of int) – New years to be added.

• firstyear_new (int, optional) – New first model year for new scenario.

• macro (bool) – Add new years to parameters of the MACRO model.

• baseyear_macro (int) – New base year for the MACRO model.

• parameter (list of str or 'all') – Parameters for adding new years.

• rewrite (bool) – Permit rewriting a parameter in new scenario when adding new years.

• check_unit (bool) – Harmonize the units for each commodity, if there is inconsistency
across model years.

• extrapol_neg (float) – When extrapolation produces negative values, replace with a
multiple of the value for the previous timestep.

• bound_extend (bool) – Duplicate data from the previous timestep when there is only
one data point for interpolation (e.g., permitting the extension of a bound to 2025, when
there is only one value in 2020).

message_ix.tools.add_year.add_year_par(sc_ref, sc_new, yrs_new, parname, region_list,
firstyear_new, extrapolate=False, rewrite=True,
unit_check=True, extrapol_neg=None,
bound_extend=True)

Add new years to parameters.

This function adds additional years to a parameter. The value of the parameter for additional years is calculated
mainly by interpolating and extrapolating data from existing years.

See add_year() for parameter descriptions.

3.4. Developing MESSAGEix models 73

https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

message Documentation, Release 1.2.0

message_ix.tools.add_year.add_year_set(sc_ref, sc_new, years_new, firstyear_new=None,
lastyear_new=None, baseyear_macro=None)

Add new years to sets.

add_year_set() adds additional years to an existing scenario, by starting to make a new scenario from
scratch. After modification of the year-related sets, all other sets are copied from sc_ref to sc_new.

See add_year() for parameter descriptions.

message_ix.tools.add_year.interpolate_1d(df, yrs_new, horizon, year_col,
value_col=’value’, extrapolate=False, ex-
trapol_neg=None, bound_extend=True)

Interpolate data with one year dimension.

This function receives a parameter data as a dataframe, and adds new data for the additonal years by interpolation
and extrapolation.

Parameters

• df (pandas.DataFrame) – The dataframe of the parameter to which new years to be
added.

• yrs_new (list of int) – New years to be added.

• horizon (list of int) – The horizon of the reference scenario.

• year_col (str) – The header of the column to which the new years should be added, e.g.
‘year_act’.

• value_col (str) – The header of the column containing values.

• extrapolate (bool) – Allow extrapolation when a new year is outside the parameter
years.

• extrapol_neg (bool) – Allow negative values obtained by extrapolation.

• bound_extend (bool) – Allow extrapolation of bounds for new years

message_ix.tools.add_year.interpolate_2d(df, yrs_new, horizon, year_ref, year_col,
tec_list, par_tec, value_col=’value’, extrapo-
late=False, extrapol_neg=None, year_diff=None,
bound_extend=True)

Interpolate parameters with two dimensions related year.

This function receives a dataframe that has 2 time-related columns (e.g., “input” or “relation_activity”), and
adds new data for the additonal years in both time-related columns by interpolation and extrapolation.

Parameters

• df (pandas.DataFrame) – The dataframe of the parameter to which new years to be
added.

• yrs_new (list of int) – New years to be added.

• horizon (list of int) – The horizon of the reference scenario.

• year_ref (str) – The header of the first column to which the new years should be added,
e.g. ‘year_vtg’.

• year_col (str) – The header of the column to which the new years should be added, e.g.
‘year_act’.

• tec_list (list of str) – List of technologies in the parameter
technical_lifetime.

• par_tec (pandas.DataFrame) – Parameter technical_lifetime.

74 Chapter 3. Detailed documentation

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

message Documentation, Release 1.2.0

• value_col (str) – The header of the column containing values.

• extrapolate (bool) – Allow extrapolation when a new year is outside the parameter
years.

• extrapol_neg (bool) – Allow negative values obtained by extrapolation.

• year_diff (list of int) – List of model years with different time intervals before
and after them

• bound_extend (bool) – Allow extrapolation of bounds for new years

message_ix.tools.add_year.intpol(y1, y2, x1, x2, x)
Interpolate between (x1, y1) and (x2, y2) at x.

Parameters

• y2 (y1,) –

• x2, x (x1,) –

message_ix.tools.add_year.mask_df(df, index, count, value)
Create a mask for removing extra values from df.

message_ix.tools.add_year.slice_df(df, idx, level, locator, value)
Slice a MultiIndex DataFrame and set a value to a specific level.

Parameters

• df (pd.DataFrame) –

• idx (list of indices) –

• level (str) –

• locator (list) –

• value (int or str) –

message_ix.tools.add_year.unit_uniform(df)
Make units in df uniform.

3.4. Developing MESSAGEix models 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

message Documentation, Release 1.2.0

76 Chapter 3. Detailed documentation

CHAPTER 4

Using and contributing to MESSAGEix

MESSAGEix and the ix modeling platform are licensed under the APACHE 2.0 open-source license.

Anyone is encouraged to use the framework to develop energy system and integrated assessment models! Please see
the User guidelines and notice for using the framework in scientific research. Contributions to the framework itself,
which enable new features across all models, are also welcome.

4.1 User guidelines and notice

We ask that you take the following four actions whenever you:

• use the MESSAGEix framework, ix modeling platform, or any model(s) you have built using these tools

• to produce any scientific publication, technical report, website, or other publicly-available material.

The aim of this request is to ensure good scientific practice and collaborative development of the platform.

4.1.1 1. Understand the code license

Use the most recent version of MESSAGEix from the Github repository. Specify clearly which version (e.g. re-
lease tag, such as v1.1.0, or commit hash, such as 26cc08f) you have used, and whether you have made any
modifications to the code.

Read and understand the file LICENSE; in particular, clause 7 (“Disclaimer of Warranty”), which states:

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contrib-
utor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PUR-
POSE. You are solely responsible for determining the appropriateness of using or redistributing the Work
and assume any risks associated with Your exercise of permissions under this License.

77

https://github.com/iiasa/message_ix/blob/master/LICENSE

message Documentation, Release 1.2.0

4.1.2 2. Cite the scientific publication

Cite the following manuscript:

Daniel Huppmann, Matthew Gidden, Oliver Fricko, Peter Kolp, Clara Orthofer, Michael Pimmer,
Nikolay Kushin, Adriano Vinca, Alessio Mastrucci, Keywan Riahi, and Volker Krey.
“The MESSAGEix Integrated Assessment Model and the ix modeling platform”.
Environmental Modelling & Software 112:143-156, 2019.
doi: 10.1016/j.envsoft.2018.11.012
electronic pre-print available at pure.iiasa.ac.at/15157/.

In addition, include a hyperlink to the online resource MESSAGEix.iiasa.ac.at.

4.1.3 3. Use the naming convention for new model instances

For any new model instance under the MESSAGEix framework, choose a name of the form “MESSAGEix [xxx]” or
“MESSAGEix-[xxx]”, where [xxx] is replaced by:

• the institution or organization developing the model,

• the name of a country/region represented in the model, or

• a similar identifier.

For example, the national model for South Africa developed by Orthofer et al. [1] is named “MESSAGEix South
Africa”.

Ensure there is no naming conflict with existing versions of the MESSAGEix model family. When in doubt, contact
the IIASA Energy Program at <message_ix@iiasa.ac.at> for a list of existing model instances.

4.1.4 4. Give notice of publication

E-mail <message_ix@iiasa.ac.at> with notice of notice of any new or pending publication.

4.1.5 References

[1] Clara Orthofer, Daniel Huppmann, and Volker Krey (2019).
“South Africa’s shale gas resources - chance or challenge?”
Frontiers in Energy Research 7:20. doi: 10.3389/fenrg.2019.00020

4.2 Contributing to MESSAGEix development

We welcome contributions to the code base and development of new features for the MESSAGEix framework. This
page contains guidelines for making these contributions.

• Filing issues for bugs and enhancements

• Contributing code via Github PRs

– 1. Choose a repository

– 2. Fork, branch, and open a pull request

78 Chapter 4. Using and contributing to MESSAGEix

https://doi.org/10.1016/j.envsoft.2018.11.012
https://pure.iiasa.ac.at/15157/
https://MESSAGEix.iiasa.ac.at/
mailto:message_ix@iiasa.ac.at
mailto:message_ix@iiasa.ac.at
https://doi.org/10.3389/fenrg.2019.00020

message Documentation, Release 1.2.0

– 3. Ensure checks pass

– 4. Review

– Other tips

• Code style

• Versions and releases

• Contributing tutorials

– Coding & writing style

– Structure

– Location

4.2.1 Filing issues for bugs and enhancements

We use Github issues for several purposes:

• Ask and answer questions about intended behaviour or issues running the framework or related models.

• Report bugs, i.e. unintended or undocumented behaviour.

• Request changes to behaviour.

• Request specific enhancements and new features, both urgent and long-term/low-priority.

• Discuss and design of other improvements.

Please search through open and closed issues for both the message_ix and ixmp repositories. Review any related
issues. Then, if your issue is not found, open a new one.

4.2.2 Contributing code via Github PRs

See the short introduction to the Github flow, which describes a pull request and how it is used. Use online documen-
tation for git, Github, and Python to ensure you are able to complete the process below. Register a Github account, if
you do not already have one.

1. Choose a repository

Decide: to which part of the MESSAGEix software stack should your code be added?

ixmp Contributions not specific to MESSAGEix model framework, e.g. that could be used for other, non-MESSAGE
models.

message_ix Contributions not specific to any particular MESSAGEix model instance. Additions to message_ix
should be usable in any MESSAGE-scheme model.

message_data or message_doc Contributions to the MESSAGE-GLOBIOM family of models, including the
global model; and its documentation, respectively.

ixmp_source Java / JDBC backend for ixmp.

4.2. Contributing to MESSAGEix development 79

https://github.com/iiasa/message_ix/issues?q=is:issue
https://github.com/iiasa/ixmp/issues?q=is:issue
https://github.com/iiasa/message_ix/issues/new
https://guides.github.com/introduction/flow/

message Documentation, Release 1.2.0

2. Fork, branch, and open a pull request

Fork the chosen repository to your own Github account. Create a branch with an appropriate name:

• all-lower-case-with-hyphens.

• issue/1234 if you are addressing a specific issue.

• feature/do-something if you are adding a new feature.

Open a PR (e.g. on message_ix) to merge your code into the master branch. The message_ix and ixmp reposi-
tories each have a template for the text of the PR, including the minimum requirements:

• A title and one-sentence summary of the change. This is like the abstract of a publication: it should help a
developer/reviewer/user quickly learn what the PR is about.

• Confirm that unit or integration tests have been added or revised to cover the changed code, and that the tests
pass (see below).

• Confirm that documentation of the API and its usage is added or revised as necessary.

• Add a line to the file RELEASE_NOTES.md describing the changes (use the same title or one-sentence summary
as above) and linking to the PR.

Optionally:

• Include a longer description of the design, or any changes whose purpose is not clear by inspecting code.

• Put “WIP:” at the start of the PR title to indicate “work in progress” while you continue to add commits. This is
good development practice: it ensures the automatic checks pass as you add to the code on your branch.

3. Ensure checks pass

MESSAGEix currently has three kinds of automatic, or “continuous integration” checks:

• The CLA Assistant ensures you have signed the Contributor License Agreement (text below). All contributors
are required to sign the CLA before any pull request can be reviewed. This ensures that all future users can
benefit from your contribution, and that your contributions do not infringe on anyone else’s rights.

• The Stickler service reviews Python code style (see below).

• Travis (Linux, macOS) and AppVeyor (Windows) run the test suite in tests/.

Resolve any non-passing checks—seeking help if needed.

If your PR updates the documentation, manually check that it can be built. See doc/README.rst.

4. Review

Using the GitHub sidebar on your PR, request a review from another MESSAGEix contributor. GitHub suggests
reviewers; optionally, contact the IIASA Energy Program to ask who should review your code. Address any comments
raised by the reviewer, who will also merge your PR when it is ready.

Other tips

• If other PRs are merged before yours, a merge conflict may arise and must be addressed to complete the above
steps. This means that your PR, and the other PR, both modify the same file(s) in the same location(s), and git
cannot automatically determine which changes to use. Learn how to:

80 Chapter 4. Using and contributing to MESSAGEix

https://github.com/iiasa/message_ix/pulls
https://github.com/cla-assistant/
https://stickler-ci.com/
https://travis-ci.org/iiasa/message_ix/
https://ci.appveyor.com/project/danielhuppmann/message-ix

message Documentation, Release 1.2.0

– git merge. This brings all updates from the master branch into your PR branch, giving you a chance to
fix conflicts and make a new commit.

– git rebase. This replays your PR branch commits one-by-one, starting from the tip of the master branch
(rather than the original starting commit).

4.2.3 Code style

• Python: follow PEP 8.

• R: follow the style of the existing code base.

• Jupyter notebooks (.ipynb): see below, under Contributing tutorials.

• Documentation (.rst, .md):

– Do not hard-wrap lines.

– Start each sentence on a new line.

• Other (file names, CLI, etc.): follow the style of the existing code base.

4.2.4 Versions and releases

• We use semantic versioning.

• We keep at least two active milestones on each of the message_ix and ixmp repositories:

– The next minor version. E.g. if the latest release was 3.5, the next minor release/milestone is 3.6.

– The next major version. E.g. 4.0.

• The milestones are closed at the time a new version is released. If a major release (e.g. 4.0) is made without the
preceding minor release (e.g. 3.6), both are closed together.

• Every issue and PR must be assigned to a milestone to record the decision/intent to release it at a certain time.

• New releases are made by Energy Program staff using the Release procedure, and appear on Github, PyPI, and
conda-forge.

4.2.5 Contributing tutorials

Developers and users of the MESSAGEix framework are welcome to contribute tutorials, according to the following
guidelines. Per the license and CLA, tutorials will become part of the message_ix test suite and will be publicly
available.

Developers must ensure new features (including message_ix.tools submodules) are fully documented. This can
be done via the API documentation (this site) and, optionally, a tutorial. These have complementary purposes:

• The API documentation (built using Sphinx and ReadTheDocs) must completely, but succinctly, describe the
arguments and behaviour of every class and method in the code.

• Tutorials serve as structured learning exercises for the classroom or self-study. The intended learning outcome
for each tutorial is that students understand how the model framework API may be used for scientific research,
and can begin to implement their own models or model changes.

4.2. Contributing to MESSAGEix development 81

https://git-scm.com/docs/git-merge
https://git-scm.com/docs/git-rebase
https://www.python.org/dev/peps/pep-0008/
https://semver.org
https://github.com/iiasa/message_ix/wiki/Release-procedure

message Documentation, Release 1.2.0

Coding & writing style

• Tutorials are formatted as Jupyter notebooks in Python or R.

• Commit ‘bare’ notebooks in git, i.e. without cell output. Notebooks will be run and rendered when the docu-
mentation is generated.

• Add a line to tests/test_tutorials.py, so that the parametrized test function runs the tutorial (as noted
at #196).

• Optionally, use Jupyter notebook slide-show features so that the tutorial can be viewed as a presentation.

• When relevant, provide links to publications or sources that provide greater detail for the methodology, data, or
other packages used.

• Providing the mathematical formulation in the tutorial itself is optional.

• Framework specific variables and parameters or functions must be in italic.

• Relevant figures, tables, or diagrams should be added to the tutorial if these can help users to understand con-
cepts.

– Place rendered versions of graphics in a directory with the tutorial (see Location below). Use SVG, PNG,
JPG, or other web-ready formats.

Structure

Generally, a tutorial should have the following elements or sections.

• Tutorial introduction:

– The general overview of tutorial.

– The intended learning outcome.

– An explanation of which features are covered.

– Reference and provide links to any tutorials that are interlinked or part of a series.

• Description of individual steps:

– A brief explanation of the step.

– A link to any relevant mathematical documentation.

• Modeling results and visualizations:

– Model outputs and post-processing calculations in tutorials should demonstrate usage of the mes-
sage_ix.reporting module.

– Plots to depict results should use pyam.

– Include a brief discussion of insights from the results, in line with the learning objectives.

• Exercises: include self-test questions, small activities, and exercises at the end of a tutorial so that users (and
instructors, if any) can check their learning.

Location

Place notebooks in an appropriate location:

tutorial/name.ipynb: Stand-alone tutorial.

82 Chapter 4. Using and contributing to MESSAGEix

https://github.com/iiasa/message_ix/pull/196
https://github.com/IAMconsortium/pyam/

message Documentation, Release 1.2.0

tutorial/example/example_baseline.ipynb: Group of tutorials named “example.” Each notebook’s
file name begins with the group name, followed by a name beginning with underscores. The group name
can refer to a specific RES shared across multiple tutorials. Some example names include:

<group>_baseline.ipynb

<group>_basic.ipynb # Basic modeling features, e.g.:
<group>_emmission_bounds.ipynb
<group>_emission_taxes.ipynb
<group>_fossil_resources.ipynb

<group>_adv.ipynb # Advanced modeling features, e.g.:
<group>_addon_technologies.ipynb
<group>_share_constraints.ipynb

<group>_renewables.ipynb # Features related to renewable energy, e.g.:
<group>_firm_capacity.ipynb
<group>_flexible_generation.ipynb
<group>_renewable_resources.ipynb

4.3 Contributor License Agreement

4.3.1 Summary and scope

It may seem self-evident that contributing to a project distributed under an open-source license is an implicit per-
mission to anyone for using the contributed code. However, a formal Contributor License Agreements (CLA) makes
contribution terms explicit and provides the project maintainers a record of your agreement to those terms.

A wide range of terms exist in other CLAs, including waiver of moral rights, consequential damages waiver, as-is
disclaimer, etc. For this project, we follow the more bare-boned GitHub CLA, which focuses on the three most
important clauses: copyright, patent, and source of contribution.

In short, by signing this Contributor License Agreement, you confirm that:

1. Anyone can use your contributions anywhere, for free, forever.

2. Your contributions do not infringe on anyone else’s rights.

4.3.2 Definition of terms

The following terms are used throughout this agreement:

• You - the person or legal entity including its affiliates asked to accept this agreement. An affiliate is any entity
that controls or is controlled by the legal entity, or is under common control with it.

• Project - the repositories message_ix and ixmp, and any derived repositories, projects, or software/code
packages.

• Contribution - any type of work that is submitted to a Project, including any modifications or additions to
existing work.

• Submitted - conveyed to a Project via a pull request, commit, issue, or any form of electronic, written, or verbal
communication with GitHub, contributors or maintainers.

4.3. Contributor License Agreement 83

message Documentation, Release 1.2.0

4.3.3 1. Grant of Copyright License

Subject to the terms and conditions of this agreement, You grant to the Projects’ maintainers, contributors and users
a perpetual, worldwide, unlimited in scope, non-exclusive, no-charge, royalty-free, irrevocable copyright license to,
in particular without being limited to, reproduce, prepare derivative works of, publicly display, make available, sub-
license, and distribute Your contributions and such derivative works in whole or in part. Except for this license, You
reserve all moral rights, title, and interest in your contributions.

4.3.4 2. Grant of Patent License

Subject to the terms and conditions of this agreement, You grant to the Projects’ maintainers, contributors and users a
perpetual, worldwide, unlimited in scope, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this
section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer your contributions, in
whole or in part, where such license applies only to those patent claims licensable by you that are necessarily infringed
by your contribution or by combination of your contribution with the project to which this contribution was submitted.

If any entity institutes patent litigation - including cross-claim or counterclaim in a lawsuit - against You alleging
that your contribution or any project it was submitted to constitutes or is responsible for direct or contributory patent
infringement, then any patent licenses granted to that entity under this agreement shall terminate as of the date such
litigation is filed.

4.3.5 3. Source of Contribution

Your contribution is either your original creation or based upon previous work that, to the best of your knowledge, is
covered under an appropriate open source license. You assure that you are legally entitled to submit your contribution
and grant the above license, or you have clearly identified the source of the contribution and any license or other
restriction (like related patents, trademarks, and license agreements) of which you are personally aware. If your
employer(s) or employee(s) have rights to intellectual property that you create, you represent that you have received
permission to make the contributions on behalf of that employer/employee, or that your employer/employee has waived
such rights for your contributions.

Should the licensor be held responsible for any violation of intellectual property right in relation to your contribution,
you shall be fully liable for damages that may arise.

4.3.6 Reference and License

This Contributor License Agreement and the introductory text is adapted from the GitHub Contributor License Agree-
ment, Version 298f3afd updated August 9, 2017. GitHub granted a CC-BY-4.0 License to IIASA to use and modify
the text of the CLA.

4.4 Frequently asked questions

4.4.1 What’s included in a ‘typical’ MESSAGEix model?

A typical MESSAGEix model instance is based on a suite of technologies such as power plants, which represent a ref-
erence energy system (RES). Each technology is characterised by its input and output commodities, costs (investment,
fixed and variable components), and other technical/engineering parameters. The model minimizes the total system
cost while meeting a given demand for energy services or commodities.

84 Chapter 4. Using and contributing to MESSAGEix

https://cla.github.com/agreement
https://cla.github.com/agreement
https://creativecommons.org/licenses/by/4.0/

message Documentation, Release 1.2.0

4.4.2 Which policies and regulatory measures can be included?

The MESSAGEix framework can represent a wide range of mitigation options and policies to analyse transformation
pathways. For example, bounds or taxes on emissions can be defined to shift the system towards a low-emission
technology mix. Upper or lower bounds on deployment of new technologies can also be easily included.

4.4.3 Answered elsewhere

• Under which license is MESSAGEix released? → see README.md or the the documentation index.

• Can I use MESSAGEix for my own analysis? → see User guidelines and notice.

• How can I contribute to the development of the MESSAGEix framework? → see Contributing to MESSAGEix
development.

• I have a question not answered here → see the documentation index for information on the community mailing
list.

4.5 References

4.5. References 85

message Documentation, Release 1.2.0

86 Chapter 4. Using and contributing to MESSAGEix

Bibliography

[1] Daniel Huppmann, Matthew Gidden, Oliver Fricko, Peter Kolp, Clara Orthofer, Michael Pimmer, Nikolay Kushin,
Adriano Vinca, Alessio Mastrucci, Keywan Riahi, and Volker Krey. The MESSAGEix Integrated Assessment
Model and the ix modeling platform (ixmp): An open framework for integrated and cross-cutting analysis of en-
ergy, climate, the environment, and sustainable development. Environmental Modelling & Software, 112:143–156,
2019. doi:10.1016/j.envsoft.2018.11.012.

[2] Nils Johnson, Manfred Strubegger, Madeleine McPherson, Simon C. Parkinson, Volker Krey, and Patrick Sullivan.
A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and
operation of the electricity system. Energy Economics, 64:651–664, 2016. doi:10.1016/j.eneco.2016.07.010.

[3] Ilkka Keppo and Manfred Strubegger. Short term decisions for long term problems – The effect of foresight on
model based energy systems analysis. Energy, 35(5):2033–2042, 2010. doi:10.1016/j.energy.2010.01.019.

[4] Alan Sussmann Manne and Richard G Richels. Buying greenhouse insurance: the economic costs of carbon
dioxide emission limits. MIT press, 1992. ISBN 0-262-13280-X.

[5] Sabine Messner and Manfred Strubegger. User’s Guide for MESSAGE III. 1995. URL: http://webarchive.iiasa.ac.
at/Admin/PUB/Documents/WP-95-069.pdf.

[6] Patrick Sullivan, Volker Krey, and Keywan Riahi. Impacts of considering electric sector variability and reliability
in the MESSAGE model. Energy Strategy Reviews, 1(3):157 – 163, 2013. doi:10.1016/j.esr.2013.01.001.

87

https://doi.org/10.1016/j.envsoft.2018.11.012
https://doi.org/10.1016/j.eneco.2016.07.010
https://doi.org/10.1016/j.energy.2010.01.019
http://webarchive.iiasa.ac.at/Admin/PUB/Documents/WP-95-069.pdf
http://webarchive.iiasa.ac.at/Admin/PUB/Documents/WP-95-069.pdf
https://doi.org/10.1016/j.esr.2013.01.001

message Documentation, Release 1.2.0

88 Bibliography

Python Module Index

i
ixmp.reporting.computations, 68
ixmp.reporting.utils, 70

m
message_ix.models, 22
message_ix.reporting.computations, 67
message_ix.reporting.pyam, 71
message_ix.testing, 23
message_ix.tools.add_year, 73
message_ix.utils, 23

89

message Documentation, Release 1.2.0

90 Python Module Index

Index

A
add() (in module message_ix.reporting.computations),

67
add() (ixmp.reporting.Reporter method), 63
add_cat() (message_ix.Scenario method), 13
add_file() (ixmp.reporting.Reporter method), 63
add_geodata() (message_ix.Scenario method), 13
add_horizon() (message_ix.Scenario method), 14
add_par() (message_ix.Scenario method), 14
add_product() (ixmp.reporting.Reporter method),

64
add_set() (message_ix.Scenario method), 14
add_spatial_sets() (message_ix.Scenario

method), 14
add_tag() (ixmp.reporting.Key method), 66
add_timeseries() (message_ix.Scenario method),

15
add_year() (in module message_ix.tools.add_year),

73
add_year_par() (in module mes-

sage_ix.tools.add_year), 73
add_year_set() (in module mes-

sage_ix.tools.add_year), 73
aggregate() (in module

ixmp.reporting.computations), 68
aggregate() (ixmp.reporting.Reporter method), 64
append() (ixmp.reporting.Key method), 66
apply() (ixmp.reporting.Reporter method), 64
as_pyam() (in module mes-

sage_ix.reporting.computations), 67
as_pyam() (message_ix.reporting.Reporter method),

61
AttrSeries (class in ixmp.reporting.attrseries), 70

C
cat() (message_ix.Scenario method), 15
cat_list() (message_ix.Scenario method), 15
change_scalar() (message_ix.Scenario method), 15
check_keys() (ixmp.reporting.Reporter method), 64

check_out() (message_ix.Scenario method), 15
clean_units() (in module ixmp.reporting.utils), 70
clear_cache() (message_ix.Scenario method), 15
clone() (message_ix.Scenario method), 16
collapse_message_cols() (in module mes-

sage_ix.reporting.pyam), 71
collect_units() (in module ixmp.reporting.utils),

70
commit() (message_ix.Scenario method), 16
concat() (in module mes-

sage_ix.reporting.computations), 67
configure() (ixmp.reporting method), 69
configure() (ixmp.reporting.Reporter method), 64

D
data_for_quantity() (in module

ixmp.reporting.utils), 70
DEFAULT_CPLEX_OPTIONS (in module mes-

sage_ix.models), 22
default_key (ixmp.reporting.Reporter attribute), 65
defaults (message_ix.models.MESSAGE attribute),

22
DERIVED (in module message_ix.reporting), 69
describe() (ixmp.reporting.Reporter method), 65
dims (ixmp.reporting.Key attribute), 66
dims_for_qty() (in module ixmp.reporting.utils), 70
disaggregate() (ixmp.reporting.Reporter method),

65
disaggregate_shares() (in module

ixmp.reporting.computations), 68
discard_changes() (message_ix.Scenario method),

16
drop() (ixmp.reporting.Key method), 67

E
equ() (message_ix.Scenario method), 16
equ_list() (message_ix.Scenario method), 16

F
finalize() (ixmp.reporting.Reporter method), 65

91

message Documentation, Release 1.2.0

firstmodelyear (message_ix.Scenario attribute), 16
from_scenario() (ixmp.reporting.Reporter class

method), 65
from_scenario() (message_ix.reporting.Reporter

class method), 60
from_str_or_key() (ixmp.reporting.Key class

method), 67
full_key() (ixmp.reporting.Reporter method), 65

G
get() (ixmp.reporting.Reporter method), 66
get_geodata() (message_ix.Scenario method), 16
get_meta() (message_ix.Scenario method), 16
graph (ixmp.reporting.Reporter attribute), 63

H
has_equ() (message_ix.Scenario method), 17
has_par() (message_ix.Scenario method), 17
has_set() (message_ix.Scenario method), 17
has_solution() (message_ix.Scenario method), 17
has_var() (message_ix.Scenario method), 17

I
idx_names() (message_ix.Scenario method), 17
idx_sets() (message_ix.Scenario method), 17
init_equ() (message_ix.Scenario method), 17
init_par() (message_ix.Scenario method), 17
init_scalar() (message_ix.Scenario method), 17
init_set() (message_ix.Scenario method), 17
init_var() (message_ix.Scenario method), 18
interpolate_1d() (in module mes-

sage_ix.tools.add_year), 74
interpolate_2d() (in module mes-

sage_ix.tools.add_year), 74
intpol() (in module message_ix.tools.add_year), 75
is_default() (message_ix.Scenario method), 18
iter_sums() (ixmp.reporting.Key method), 67
ixmp.reporting.computations (module), 68
ixmp.reporting.utils (module), 70

K
Key (class in ixmp.reporting), 66
keys_for_quantity() (in module

ixmp.reporting.utils), 71

L
last_update() (message_ix.Scenario method), 18
load_file() (in module

ixmp.reporting.computations), 68
load_scenario_data() (message_ix.Scenario

method), 18

M
make_dantzig() (in module message_ix.testing), 23

make_dataframe() (in module
ixmp.reporting.computations), 68

make_df() (in module message_ix.utils), 23
make_ts() (in module message_ix.utils), 23
make_westeros() (in module message_ix.testing), 23
mask_df() (in module message_ix.tools.add_year), 75
matching_rows() (in module message_ix.utils), 23
MESSAGE (class in message_ix.models), 22
message_ix.models (module), 22
message_ix.reporting.computations (mod-

ule), 67
message_ix.reporting.pyam (module), 71
message_ix.testing (module), 23
message_ix.tools.add_year (module), 73
message_ix.utils (module), 23
MESSAGE_MACRO (class in message_ix.models), 22
multiply_df() (in module message_ix.utils), 23

N
name (ixmp.reporting.Key attribute), 67
name (message_ix.models.MESSAGE attribute), 22
name (message_ix.models.MESSAGE_MACRO at-

tribute), 22

P
par() (message_ix.Scenario method), 18
par_list() (message_ix.Scenario method), 18
preload_timeseries() (message_ix.Scenario

method), 18
product() (ixmp.reporting.Key class method), 67
PRODUCTS (in module message_ix.reporting), 69
PYAM_CONVERT (in module message_ix.reporting), 69

R
read_config() (ixmp.reporting.Reporter method),

66
read_excel() (message_ix.Scenario method), 18
read_version() (message_ix.models.MESSAGE

class method), 22
remove_geodata() (message_ix.Scenario method),

18
remove_par() (message_ix.Scenario method), 19
remove_set() (message_ix.Scenario method), 19
remove_solution() (message_ix.Scenario method),

19
remove_timeseries() (message_ix.Scenario

method), 19
rename() (message_ix.Scenario method), 19
RENAME_DIMS (in module ixmp.reporting.utils), 70
REPLACE_UNITS (in module ixmp.reporting.utils), 70
Reporter (class in ixmp.reporting), 62
Reporter (class in message_ix.reporting), 60
REPORTS (in module message_ix.reporting), 69
run() (message_ix.models.MESSAGE method), 22

92 Index

message Documentation, Release 1.2.0

run_id() (message_ix.Scenario method), 19

S
scalar() (message_ix.Scenario method), 19
Scenario (class in message_ix), 13
set() (message_ix.Scenario method), 20
set_as_default() (message_ix.Scenario method),

20
set_filters() (ixmp.reporting.Reporter method),

66
set_list() (message_ix.Scenario method), 20
set_meta() (message_ix.Scenario method), 20
slice_df() (in module message_ix.tools.add_year),

75
solve() (message_ix.Scenario method), 20
sum() (in module ixmp.reporting.computations), 69

T
tag (ixmp.reporting.Key attribute), 67
timeseries() (message_ix.Scenario method), 20
to_excel() (message_ix.Scenario method), 21

U
unit_uniform() (in module mes-

sage_ix.tools.add_year), 75
UNITS (in module ixmp.reporting.utils), 70

V
var() (message_ix.Scenario method), 21
var_list() (message_ix.Scenario method), 21
vintage_and_active_years() (mes-

sage_ix.Scenario method), 21
visualize() (ixmp.reporting.Reporter method), 66

W
write() (ixmp.reporting.Reporter method), 66
write() (message_ix.reporting.Reporter method), 62
write_report() (in module

ixmp.reporting.computations), 69
write_report() (in module mes-

sage_ix.reporting.computations), 67

Y
years_active() (message_ix.Scenario method), 21

Index 93

	Overview and scope
	Getting Started
	Installation
	Tutorials

	Detailed documentation
	MESSAGEix framework overview
	Python & R API
	Mathematical specification
	Developing MESSAGEix models

	Using and contributing to MESSAGEix
	User guidelines and notice
	Contributing to MESSAGEix development
	Contributor License Agreement
	Frequently asked questions
	References

	Bibliography
	Python Module Index
	Index

