

The MESSAGEix framework

[image: _images/ix_features.png]
The ix modeling platform (source: [huppmann_messageix_2018])

Overview and scope

MESSAGEix is a versatile, open-source, dynamic systems-optimization modelling framework.
It was developed for strategic energy planning and integrated assessment of energy-engineering-economy-environment systems (E4).
The framework can be applied to analyse scenarios of the energy system transformation under technical-engineering constraints and political-societal considerations.
The optimization model can be linked to the general-economy MACRO model to incorporate feedback between prices and demand levels for energy and commodities.
The equations are implemented in the mathematical programming system GAMS [http://www.gams.com] for numerical solution of a model instance.

The MESSAGEix framework is fully integrated with IIASA’s ix modeling platform (ixmp), a data warehouse for high-powered numerical scenario analysis.
The platform supports an efficient workflow between original input data sources, the implementation of the mathematical model formulation, and the analysis of numerical results.
The platform can be accessed via a web-based user interface and application programming interfaces (API) to the scientific programming languages Python and R.
The platform also includes a generic data exchange API to GAMS [http://www.gams.com] for numerical computation.

This documentation provides an introduction and the mathematical formulation of the MESSAGEix equations and auxiliary functions.
For the scientific reference of the framework, see Huppmann et al. (2019) [huppmann_messageix_2018].
The formulation of MESSAGEix is a re-implementation and extension of ‘MESSAGE V’ (Messner and Strubegger, 1995 [messner_users_1995]), the Integrated Assessment model developed at the International Institute for Applied Systems Analysis (IIASA) since the 1980s.
For an overview of the MESSAGEix model used at the IIASA Energy Program and a list of recent publications, please refer to the MESSAGE-GLOBIOM documentation website [http://data.ene.iiasa.ac.at/message-globiom/].

Getting Started

	Installation
	Install GAMS

	Install MESSAGEix via Anaconda

	Install MESSAGEix from source

	Configure model files

	Tutorials
	Preparation

	Westeros Electrified

	Austrian energy system

Have a question? First, check the Frequently asked questions, then try the community Google group:

	on the Web at https://groups.google.com/d/forum/message_ix, or

	via e-mail at <message_ix@googlegroups.com>.

Detailed documentation

	MESSAGEix framework overview
	Supported features

	Running a model
	Run script for MESSAGEix (stand-alone)

	Run script for MESSAGEix and MACRO

	Python & R API
	ixmp package

	message_ix package

	Model classes

	Utility methods

	Testing utilities

	Mathematical specification
	Sets and mappings definition
	Sets in the MESSAGEix implementation

	Category types and mappings

	Mappings sets

	Mapping sets (flags) for bounds

	Mapping sets (flags) for fixed variables

	Parameter definition
	General parameters of the MESSAGEix implementation

	Parameters of the Resources section

	Parameters of the Demand section

	Parameters of the Technology section

	Parameters of the Emission section

	Parameters of the Land-Use model emulator section

	Parameters of the Share Constraints section

	Parameters of the Relations section

	Fixed variable values

	Mathematical formulation (core model)
	Notation declaration

	Objective function

	Regional system cost accounting function

	Resource and commodity section

	Technology section

	System reliability and flexibility requirements

	Constraints on shares of technologies and commodities

	Emission section

	Land-use model emulator section

	Section of generic relations (linear constraints)

	Solve statement workflow
	Perfect-foresight model

	Recursive-dynamic and myopic model

	Standard output reports

	Auxiliary investment parameters
	Levelized capital costs

	Construction time accounting

	Investment costs beyond the model horizon

	Remaining installed capacity

	MACRO - Mathematical formulation
	Notation declaration

	Decision variables

	Developing MESSAGEix models
	Efficiency - output- vs. input defined technologies
	Example 1 - Power plants

	Example 2 - Refineries

	Example 3 - Combined power- and heat plants

	Debugging and data validation
	Pre-processing data validation

	Identification of infeasibilities

	Postprocessing and reporting
	Terminology

	Basic usage

	Customization

	Reporters

	Computations

	Configuration

	Utilities

	Model-building tools
	Add model years to an existing Scenario

Using and contributing to MESSAGEix

MESSAGEix and the ix modeling platform are licensed under the APACHE 2.0 open-source license [https://github.com/iiasa/message_ix/blob/master/LICENSE].

Anyone is encouraged to use the framework to develop energy system and integrated assessment models! Please see the User guidelines and notice for using the framework in scientific research. Contributions to the framework itself, which enable new features across all models, are also welcome.

	User guidelines and notice

	Contributing to MESSAGEix development

	Contributor License Agreement

	References

Installation

Install GAMS

MESSAGEix requires GAMS [http://www.gams.com].

	Download the latest version of GAMS [http://www.gams.com] for your operating system; run the
installer.

	Add GAMS to the PATH environment variable. This is required in order
for MESSAGEix to run the mathematical model core:

	
	on Windows, in the GAMS installer…

	
	Check the box labeled “Use advanced installation mode.”

	Check the box labeled “Add GAMS directory to PATH environment variable”
on the Advanced Options page.

	on macOS or Linux, add the following line to your .bash_profile (Mac) or .bashrc (Linux):

export PATH=$PATH:/path/to/gams-directory-with-gams-binary

Install MESSAGEix via Anaconda

After installing GAMS, we recommend that new users install Anaconda, and then
use it to install MESSAGEix. Advanced users may choose to install MESSAGEix
from source code (next section).

	Install Python via Anaconda [https://www.anaconda.com/distribution/#download-section]. We recommend the latest version, i.e.,
Python 3.6+.

	Open a command prompt. We recommend Windows users use the “Anaconda Prompt”
to avoid permissions issues when installing and using MESSAGEix. This
program is available in the Windows Start menu after installing Anaconda.

	Install the message-ix package:

$ conda install -c conda-forge message-ix

Install MESSAGEix from source

	Install ixmp [https://message.iiasa.ac.at/projects/ixmp/en/latest/install.html] from source.

	(Optional) If you intend to contribute changes to MESSAGEix, first register
a Github account, and fork the message_ix repository [https://github.com/iiasa/message_ix]. This will create a new repository <user>/message_ix.
(Please also see Contributing to MESSAGEix development.)

	Clone either the main repository, or your fork; using the Github Desktop [https://desktop.github.com]
client, or the command line:

$ git clone git@github.com:iiasa/message_ix.git

or:
$ git clone git@github.com:USER/message_ix.git

	Open a command prompt in the message_ix directory and type:

$ pip install .

	(Optional) Run the built-in test suite to check that MESSAGEix functions
correctly on your system:

$ pip install .[tests]
$ py.test tests

Configure model files

By default, the GAMS files containing the mathematical model core are installed
with message_ix (e.g., in your Python site-packages directory). Many
users will simply want to run MESSAGEix, or use the Python or R APIs to
manipulate data, parameters and scenarios. For these uses, direct editing of the
GAMS files is not necessary.

To edit the files directly—to change the mathematical formulation, such as
adding new types of parameters, constraints, etc.—use the messageix-config
utility to place the model files in a directory of your choice:

$ messageix-config --model_path /path/to/model

Note

If you installed from source on Windows using install.bat, this
command was run automatically, pointing to message_ix/model.

Tutorials

To get started with MESSAGEix, the following tutorials are provided as
Jupyter notebooks [https://jupyter.org/], which combine code, sample output,
and explanatory text.

A static, non-interactive version of each notebook can be viewed online using
the links below. In order to execute the tutorial code or make modifications,
read the Preparation section, next.

Preparation

Getting tutorial files

If you installed MESSAGEix from source, all notebooks are in the tutorial
directory.

If you installed MESSAGEix using Anaconda, download the notebooks using the
messageix-dl utility. In a command prompt:

$ messageix-dl --local_path /path/to/tutorials

Running tutorials

Using Anaconda

The nb_conda package is required. It should be installed by default with
Anaconda. If it was not, install it:

$ conda install nb_conda

	Open “Jupyter Notebooks” from Anaconda’s “Home” tab (or directly if you have
the option).

	Choose and open a tutorial notebook.

	Each notebook requires a kernel that executes code interactively. Check
that the kernel matches your conda environment, and if necessary change
kernels with the menu, e.g. Kernel → Change Kernel → Python
[conda root].

From the command line

	Navigate to the tutorial folder. For instance, if messageix-dl was used
above:

$ cd /path/to/tutorials

	Start the Jupyter notebook:

$ jupyter notebook

Westeros Electrified

This tutorial demonstrates how to model a very simple energy system, and then
uses it to illustrate a range of framework features.

	Build the baseline model [https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_baseline.ipynb].

	Introduce emissions [https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_emissions_bounds.ipynb] and a bound on the emissions.

	Limit emissions using a tax [https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_emissions_taxes.ipynb] instead of a bound.

	Represent both coal and wind electricity [https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_firm_capacity.ipynb], using a “firm capacity” formulation: each generation technology can supply some firm capacity, but the variable, renewable technology (wind) supplies less than coal.

	Represent coal and wind electricity using a different, “flexibility requirement” formulation [https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_flexible_generation.ipynb], wherein wind requires and coal supplies flexibility.

	Variablity in energy supply and demand [https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_seasonality.ipynb], by adding two sub-annual time steps (winter and summer).

	Use ixmp and message_ix reporting features [https://github.com/iiasa/message_ix/blob/master/tutorial/westeros/westeros_report.ipynb] to post-process the raw results from a solved model.

Austrian energy system

This tutorial demonstrates a stylized representation of a national electricity
sector model, with several fossil and renewable power plant types.

	Prepare the base model version, in Python [https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria.ipynb] or in R [https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_reticulate.ipynb].

	Plot results, in Python [https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_load_scenario.ipynb] or in R [https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_load_scenario_R.ipynb].

	Run a single policy scenario [https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_single_policy.ipynb].

	Run multiple policy scenarios. This tutorial has two notebooks: an introduction with some exercises [https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_multiple_policies.ipynb] and completed code for the exercises [https://github.com/iiasa/message_ix/blob/master/tutorial/Austrian_energy_system/austria_multiple_policies-answers.ipynb].

MESSAGEix framework overview

MESSAGEix is a framework that can be used to develop and run many different
models, each describing a different energy system. Models in the MESSAGEix
framework can range from very simple (as in the Tutorials) to highly
detailed (e.g. the MESSAGE-GLOBIOM global model).

[image: _images/ix_components.png]
Components and their interlinkages in the ix modeling platform (source
[huppmann_messageix_2018]): web-based user interface, scientific
programming interface, modeling platform, database backend, implementation
of the MESSAGEix mathematical model formulation.

Supported features

The framework allows direct and explicit representation of:

	Energy technologies with arbitrary inputs and outputs, that can be used
to describe a “reference energy system,” including:

	the fuel supply chain,

	conversion technologies from primary to secondary energy forms,

	transmission and distribution (e.g. of electricity), and

	final demand for energy services.

	Vintaging of capacity, early retirement and decommissioning of
technologies.

	System integration of variable renewable energy sources (based on
Sullivan et al., 2013 [sullivan_VRE_2013] and Johnson et al., 2016
[johnson_VRE_2016]).

	Soft relaxation of dynamic constraints on new capacity and activity
(Keppo and Strubegger, 2010 [keppo_short_2010]).

	Perfect-foresight and dynamic-recursive (myopic) solution algorithms.

Running a model

There are three ways to run a MESSAGEix model:

	Via Python or R APIs using the packages/libraries ixmp and
message_ix, calling message_ix.Scenario.solve(). (See the
Tutorials.)

	Using the file MESSAGE_master.gms, where the scenario name (i.e., the
gdx input file), the optimization horizon (perfect foresight or myopic/
rolling-horizon version), and other options can be defined explicitly.

This approach is recommended for users who prefer to work via GAMS IDE or
other text editors to set the model specifications.

	Directly from the command line calling the file MESSAGE_run.gms (see the
auto-doc page). The scenario name and other arguments can be passed as
command line parameters:

$ gams MESSAGE_run.gms --in="<data-file>" --out="<output-file>"

Auto-generated documentation for the model run scripts is provided:

	Run script for MESSAGEix (stand-alone)

	Run script for MESSAGEix and MACRO

Note

This page is generated from inline documentation in MESSAGE_run.gms.

Run script for MESSAGEix (stand-alone)

This is MESSAGEix version 1.2.0. The version number must match the version number
of the ixmp MESSAGE-scheme specifications used for exporting data and importing results.

	This file contains the workflow of a MESSAGEix-standalone run. It can be called:

	
	Via the scientific programming API’s using the packages/libraries ixmp and message_ix,
calling the method solve() of the message_ix.Scenario class (see the tutorials).

	using the file MESSAGE_master.gms with the option $SETGLOBAL macromode "none",
where the input data file name and other options are stated explicitly, or

	directly from the command line, with the input data file name
and other options specific as command line parameters, e.g.

gams MESSAGE_run.gms --in="<data-file>" [--out="<output-file>"]

By default, the data file (in gdx format) should be located in the model/data folder
and be named in the format MsgData_<name>.gdx. Upon completion of the GAMS execution,
a results file <output-file> will be written
(or model\output\MsgOutput.gdx if --out is not provided).

Note

This page is generated from inline documentation in MESSAGE-MACRO_run.gms.

Run script for MESSAGEix and MACRO

This is MESSAGEix-MACRO version 1.2.0. The version number must match the version number
of the ixmp MESSAGE-scheme specifications used for exporting data and importing results.

	This file contains the workflow of a MESSAGEix-MACRO run. It can be called:

	
	Via the scientific programming API’s using the packages/libraries ixmp and message_ix,
calling the method solve() of the message_ix.Scenario class (see the tutorials).

	using the file MESSAGE_master.gms with the option $SETGLOBAL macromode "linked",
where the input data file name and other options are stated explicitly, or

	directly from the command line, with the input data file name
and other options specific as command line parameters, e.g.

gams MESSAGE-MACRO_run.gms --in="<data-file>" [--out="<output-file>"]

By default, the data file (in gdx format) should be located in the model/data folder
and be named in the format MsgData_<name>.gdx. Upon completion of the GAMS execution,
a results file <output-file> will be written
(or model\output\MsgOutput.gdx if --out is not provided).

Python & R API

The application programming interface (API) for MESSAGEix model developers is implemented in Python:

	ixmp package

	message_ix package

	Model classes

	Utility methods

	Testing utilities

Support for R usage of the core classes is provided through the reticulate [https://rstudio.github.io/reticulate/] package. For instance:

> library(reticulate)
> ixmp <- import('ixmp')
> message_ix <- import('message_ix')
> mp <- ixmp$Platform(...)
> scen <- message_ix$Scenario(mp, ...)

ixmp package

ixmp provides three classes. These are fully described by the ixmp documentation [https://message.iiasa.ac.at/projects/ixmp/en/latest/index.html], which is cross-linked from many places in the MESSAGEix documentation.

	Platform [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Platform](*args[, backend])

	Instance of the modeling platform.

	TimeSeries [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.TimeSeries](mp, model, scenario[, version, …])

	Collection of data in time series format.

	Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario](mp, model, scenario[, version, …])

	Collection of model-related data.

ixmp also provides some utility classes and methods:

	ixmp.config.Config [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.config.Config]([read])

	Configuration for ixmp.

	ixmp.model.MODELS [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-model.html#ixmp.model.MODELS]

	Mapping from names to available models.

	ixmp.model.get_model [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-model.html#ixmp.model.get_model](name, **model_options)

	Return a model for name (or the default) with model_options.

	ixmp.testing.make_dantzig [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.testing.make_dantzig]

	

message_ix package

MESSAGEix models are created using the message_ix.Scenario class. Several utility methods are also provided in the module message_ix.utils.

	
class message_ix.Scenario(mp, model, scenario=None, version=None, annotation=None, cache=False)

	Bases: ixmp.core.Scenario

MESSAGEix Scenario.

See ixmp.TimeSeries [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.TimeSeries] for the meaning of arguments mp, model,
scenario, version, and annotation; ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario] for the
meaning of cache. The scheme of a newly-created Scenario is always
‘MESSAGE’.

This class extends ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario] and ixmp.TimeSeries [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.TimeSeries] and
inherits all their methods. Documentation of these inherited methods is
included here for convenience. message_ix.Scenario defines
additional methods specific to MESSAGEix:

	add_cat(name, cat, keys[, is_unique])

	Map elements from keys to category cat within set name.

	add_horizon(data)

	Add sets related to temporal dimensions of the model.

	add_spatial_sets(data)

	Add sets related to spatial dimensions of the model.

	cat(name, cat)

	Return a list of all set elements mapped to a category.

	cat_list(name)

	Return a list of all categories for a mapping set.

	firstmodelyear

	The first model year of the scenario.

	read_excel(fname[, add_units, commit_steps])

	Read Excel file data and load into the scenario.

	rename(name, mapping[, keep])

	Rename an element in a set

	to_excel(fname)

	Save a scenario as an Excel file.

	vintage_and_active_years([ya_args, in_horizon])

	Return sets of vintage and active years for use in data input.

	years_active(node, tec, yr_vtg)

	Return years in which tec of yr_vtg can be active in node.

	
add_cat(name, cat, keys, is_unique=False)

	Map elements from keys to category cat within set name.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	cat (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the category.

	keys (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str) – Element keys to be added to the category mapping.

	is_unique (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, then cat must have only one element. An exception is
raised if cat already has an element, or if len(keys) > 1.

	
add_geodata(df)

	Add geodata (layers) to the TimeSeries.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data to add. df must have the following columns:

	region

	variable

	time

	unit

	year

	value

	meta

	
add_horizon(data)

	Add sets related to temporal dimensions of the model.

	Parameters

	data (dict-like) – Year sets. “year” is a required key. “firstmodelyear” is optional;
if not provided, the first element of “year” is used.

Examples

>>> s = message_ix.Scenario()
>>> s.add_horizon({'year': [2010, 2020]})
>>> s.add_horizon({'year': [2010, 2020], 'firstmodelyear': 2020})

	
add_par(name, key_or_data=None, value=None, unit=None, comment=None, key=None, val=None)

	Set the values of a parameter.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter.

	key_or_data (str [https://docs.python.org/3/library/stdtypes.html#str] or iterable of str or range [https://docs.python.org/3/library/stdtypes.html#range] or dict [https://docs.python.org/3/library/stdtypes.html#dict] or pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Element(s) to be added.

	value (numeric or iterable of numeric, optional) – Values.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str] or iterable of str, optional) – Unit symbols.

	comment (str [https://docs.python.org/3/library/stdtypes.html#str] or iterable of str, optional) – Comment(s) for the added values.

	
add_set(name, key, comment=None)

	Add elements to an existing set.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	key (str or iterable of str or dict or pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Element(s) to be added. If name exists, the elements are
appended to existing elements.

	comment (str [https://docs.python.org/3/library/stdtypes.html#str] or iterable of str, optional) – Comment describing the element(s). If given, there must be the
same number of comments as elements.

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the set name does not exist. init_set() must be called
before add_set().

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – For invalid forms or combinations of key and comment.

	
add_spatial_sets(data)

	Add sets related to spatial dimensions of the model.

	Parameters

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Mapping of level → member. Each member may be:

	A single label for elements.

	An iterable of labels for elements.

	A recursive dict [https://docs.python.org/3/library/stdtypes.html#dict] following the same convention, defining
sub-levels and their members.

Examples

>>> s = message_ix.Scenario()
>>> s.add_spatial_sets({'country': 'Austria'})
>>> s.add_spatial_sets({'country': ['Austria', 'Germany']})
>>> s.add_spatial_sets({'country': {
... 'Austria': {'state': ['Vienna', 'Lower Austria']}}})

	
add_timeseries(df, meta=False)

	Add data to the TimeSeries.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data to add. df must have the following columns:

	region or node

	variable

	unit

Additional column names may be either of:

	year and value—long, or ‘tabular’, format.

	one or more specific years—wide, or ‘IAMC’ format.

	meta (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True], store df as metadata. Metadata is treated
specially when Scenario.clone() is called for Scenarios
created with scheme='MESSAGE'.

	
cat(name, cat)

	Return a list of all set elements mapped to a category.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	cat (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the category.

	Returns

	

	Return type

	list of str

	
cat_list(name)

	Return a list of all categories for a mapping set.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	
change_scalar(name, val, unit, comment=None)

	Set the value and unit of a scalar.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the scalar.

	val (number) – New value of the scalar.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – New unit of the scalar.

	comment (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Description of the change.

	
check_out(timeseries_only=False)

	Check out the TimeSeries for modification.

	
clear_cache(name=None, ix_type=None)

	clear the Python cache of item elements

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – item name (None clears entire Python cache)

	ix_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – type of item (if provided, cache clearing is faster)

	
clone(*args, **kwargs)

	Clone the current scenario and return the clone.

See ixmp.Scenario.clone() [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario.clone] for other parameters.

	Parameters

	
	keep_solution (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, include all timeseries data and the solution
(vars and equs) from the source scenario in the clone.
Otherwise, only timeseries data marked as meta=True (see
TimeSeries.add_timeseries()) or prior to first_model_year
(see TimeSeries.add_timeseries()) are cloned.

	shift_first_model_year (int [https://docs.python.org/3/library/functions.html#int], optional) – If given, the values of the solution are transfered to parameters
historical_*, parameter resource_volume is updated, and the
first_model_year is shifted. The solution is then discarded,
see TimeSeries.remove_solution().

	
commit(comment)

	Commit all changed data to the database.

If the TimeSeries was newly created (with version='new'),
version is updated with a new version number assigned by the
backend. Otherwise, commit() does not change the version.

	Parameters

	comment (str [https://docs.python.org/3/library/stdtypes.html#str]) – Description of the changes being committed.

	
discard_changes()

	Discard all changes and reload from the database.

	
equ(name, filters=None, **kwargs)

	return a dataframe of (filtered) elements for a specific equation

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the equation

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – index names mapped list of index set elements

	
equ_list()

	List all defined equations.

	
firstmodelyear

	The first model year of the scenario.

	Returns

	

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
get_geodata()

	Fetch geodata and return it as dataframe.

	Returns

	Specified data.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
get_meta(name=None)

	get scenario metadata

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – metadata attribute name

	
has_equ(name)

	check whether the scenario has an equation with that name

	
has_par(name)

	check whether the scenario has a parameter with that name

	
has_set(name)

	Check whether the scenario has a set name.

	
has_solution()

	Return True [https://docs.python.org/3/library/constants.html#True] if the Scenario has been solved.

If has_solution() == True, model solution data exists in the db.

	
has_var(name)

	check whether the scenario has a variable with that name

	
idx_names(name)

	return the list of index names for an item (set, par, var, equ)

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the item

	
idx_sets(name)

	Return the list of index sets for an item (set, par, var, equ)

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the item

	
init_equ(name, idx_sets=None, idx_names=None)

	Initialize a new equation.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the item

	idx_sets (list of str) – index set list

	idx_names (list of str, optional) – index name list

	
init_par(name, idx_sets, idx_names=None)

	Initialize a new parameter.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter.

	idx_sets (list of str) – Names of sets that index this parameter.

	idx_names (list of str, optional) – Names of the dimensions indexed by idx_sets.

	
init_scalar(name, val, unit, comment=None)

	Initialize a new scalar.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the scalar

	val (number) – Initial value of the scalar.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unit of the scalar.

	comment (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Description of the scalar.

	
init_set(name, idx_sets=None, idx_names=None)

	Initialize a new set.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	idx_sets (list of str, optional) – Names of other sets that index this set.

	idx_names (list of str, optional) – Names of the dimensions indexed by idx_sets.

	Raises

	jpype.JavaException – If the set (or another object with the same name) already exists.

	
init_var(name, idx_sets=None, idx_names=None)

	initialize a new variable in the scenario

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the item

	idx_sets (list of str) – index set list

	idx_names (list of str, optional) – index name list

	
is_default()

	Return True [https://docs.python.org/3/library/constants.html#True] if the version is the default version.

	
last_update()

	get the timestamp of the last update/edit of this TimeSeries

	
load_scenario_data()

	Load all Scenario data into memory.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the Scenario was instantiated with cache=False.

	
par(name, filters=None, **kwargs)

	return a dataframe of (filtered) elements for a specific parameter

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the parameter

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – index names mapped list of index set elements

	
par_list()

	List all defined parameters.

	
preload_timeseries()

	Preload timeseries data to in-memory cache. Useful for bulk updates.

	
read_excel(fname, add_units=False, commit_steps=False)

	Read Excel file data and load into the scenario.

	Parameters

	
	fname (string) – path to file

	add_units (bool [https://docs.python.org/3/library/functions.html#bool]) – add missing units, if any, to the platform instance.
default: False

	commit_steps (bool [https://docs.python.org/3/library/functions.html#bool]) – commit changes after every data addition.
default: False

	
remove_geodata(df)

	Remove geodata from the TimeSeries instance.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data to remove. df must have the following columns:

	region

	variable

	unit

	time

	year

	
remove_par(name, key=None)

	Remove parameter values or an entire parameter.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the parameter.

	key (dataframe or key list or concatenated string, optional) – elements to be removed

	
remove_set(name, key=None)

	delete a set from the scenario
or remove an element from a set (if key is specified)

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the set

	key (dataframe or key list or concatenated string) – elements to be removed

	
remove_solution(first_model_year=None)

	Remove the solution from the scenario

This function removes the solution (variables and equations) and
timeseries data marked as meta=False from the scenario
(see TimeSeries.add_timeseries()).

	Parameters

	first_model_year (int [https://docs.python.org/3/library/functions.html#int], optional) – If given, timeseries data marked as meta=False is removed
only for years from first_model_year onwards.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If Scenario has no solution or if first_model_year is not int.

	
remove_timeseries(df)

	Remove timeseries data from the TimeSeries instance.

	Parameters

	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data to remove. df must have the following columns:

	region or node

	variable

	unit

	year

	
rename(name, mapping, keep=False)

	Rename an element in a set

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the set to change (e.g., ‘technology’)

	mapping (str [https://docs.python.org/3/library/stdtypes.html#str]) – mapping of old (current) to new set element names

	keep (bool [https://docs.python.org/3/library/functions.html#bool], optional, default: False) – keep the old values in the model

	
run_id()

	get the run id of this TimeSeries

	
scalar(name)

	Return the value and unit of a scalar.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the scalar.

	Returns

	{‘value’

	Return type

	value, ‘unit’: unit}

	
set(name, filters=None, **kwargs)

	Return the (filtered) elements of a set.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the set.

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Mapping of dimension_name → elements, where dimension_name
is one of the idx_names given when the set was initialized (see
init_set()), and elements is an iterable of labels to
include in the return value.

	Returns

	

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
set_as_default()

	Set the current version as the default.

	
set_list()

	List all defined sets.

	
set_meta(name, value)

	set scenario metadata

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – metadata attribute name

	value (str [https://docs.python.org/3/library/stdtypes.html#str] or number or bool [https://docs.python.org/3/library/functions.html#bool]) – metadata attribute value

	
solve(model='MESSAGE', solve_options={}, **kwargs)

	Solve MESSAGE or MESSAGE-MACRO for the Scenario.

By default, ixmp.Scenario.solve() [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario.solve] is called with ‘MESSAGE’ as the
model argument. model may also be overwritten, e.g.:

>>> s.solve(model='MESSAGE-MACRO')

	Parameters

	
	model (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Type of model to solve, e.g. ‘MESSAGE’ or ‘MESSAGE-MACRO’.

	solve_options (dict [https://docs.python.org/3/library/stdtypes.html#dict] (str -> str), optional) – Name to value mapping to use for GAMS CPLEX solver options file.
See MESSAGE and DEFAULT_CPLEX_OPTIONS.

	kwargs – Many other options control the execution of the underlying GAMS
code; see GAMSModel.

	
timeseries(region=None, variable=None, unit=None, year=None, iamc=False)

	Retrieve TimeSeries data.

	Parameters

	
	iamc (bool [https://docs.python.org/3/library/functions.html#bool], default: False) – Return data in wide/’IAMC’ format. If False [https://docs.python.org/3/library/constants.html#False], return data in
long/’tabular’ format; see add_timeseries().

	region (str [https://docs.python.org/3/library/stdtypes.html#str] or list of strings) – Regions to include in returned data.

	variable (str [https://docs.python.org/3/library/stdtypes.html#str] or list of strings) – Variables to include in returned data.

	unit (str [https://docs.python.org/3/library/stdtypes.html#str] or list of strings) – Units to include in returned data.

	year (str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int] or list of strings or integers) – Years to include in returned data.

	Returns

	Specified data.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
to_excel(fname)

	Save a scenario as an Excel file. NOTE: Cannot export
solution currently (only model data) due to limitations in excel sheet
names (cannot have multiple sheet names which are identical except for
upper/lower case).

	Parameters

	fname (string) – path to file

	
var(name, filters=None, **kwargs)

	return a dataframe of (filtered) elements for a specific variable

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the variable

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – index names mapped list of index set elements

	
var_list()

	List all defined variables.

	
vintage_and_active_years(ya_args=None, in_horizon=True)

	Return sets of vintage and active years for use in data input.

For a valid pair (year_vtg, year_act), the following conditions are
satisfied:

	Both the vintage year (year_vtg) and active year (year_act) are
in the model’s year set.

	year_vtg <= year_act.

	year_act <= the model’s first year or year_act is in the
smaller subset ixmp.Scenario.years_active() for the given
ya_args.

	Parameters

	
	ya_args (tuple of (node, technology, year_vtg), optional) – Arguments to ixmp.Scenario.years_active().

	in_horizon (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Restrict years returned to be within the current model horizon.

	Returns

	with columns, “year_vtg” and “year_act”, in which each row is a
valid pair.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
years_active(node, tec, yr_vtg)

	Return years in which tec of yr_vtg can be active in node.

	Parameters

	
	node (str [https://docs.python.org/3/library/stdtypes.html#str]) – Node name.

	tec (str [https://docs.python.org/3/library/stdtypes.html#str]) – Technology name.

	yr_vtg (str [https://docs.python.org/3/library/stdtypes.html#str]) – Vintage year.

	Returns

	

	Return type

	list of int

Model classes

	
message_ix.models.DEFAULT_CPLEX_OPTIONS = {'advind': 0, 'epopt': 1e-06, 'lpmethod': 2, 'threads': 4}

	Solver options used by message_ix.Scenario.solve().
These configure the GAMS CPLEX solver (or another solver, if selected); see the solver documentation [https://www.gams.com/latest/docs/S_CPLEX.html] for possible values.

	
class message_ix.models.MESSAGE(name=None, **model_options)

	Bases: ixmp.model.gams.GAMSModel [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-model.html#ixmp.model.gams.GAMSModel]

The MESSAGE Python class encapsulates the GAMS code for the core MESSAGE mathematical formulation.
The model_options arguments are received from Scenario.solve(), and—except for solve_options—are passed on to the parent class GAMSModel [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-model.html#ixmp.model.gams.GAMSModel]; see there for a full list of options.

	
name = 'MESSAGE'

	

	
defaults = dict(...)

	Default model options.
The paths to MESSAGE GAMS source files use the MODEL_PATH configuration setting.
MODEL_PATH, in turn, defaults to “message_ix/model” inside the directory where message_ix is installed.

	Key

	Value

	MESSAGE defaults

	model_file

	'{MODEL_PATH}/{model_name}_run.gms'

	in_file

	'{MODEL_PATH}/data/MsgData_{case}.gdx'

	out_file

	'{MODEL_PATH}/output/MsgOutput_{case}.gdx'

	solve_args

	['--in="{in_file}"', '--out="{out_file}"', '--iter="{MODEL_PATH}/output/MsgIterationReport_{case}.gdx"']

	Inherited from GAMSModel [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-model.html#ixmp.model.gams.GAMSModel]

	case

	'{scenario.model}_{scenario.scenario}'

	gams_args

	['LogOption=4']

	check_solution

	True [https://docs.python.org/3/library/constants.html#True]

	comment

	None [https://docs.python.org/3/library/constants.html#None]

	equ_list

	None [https://docs.python.org/3/library/constants.html#None]

	var_list

	None [https://docs.python.org/3/library/constants.html#None]

	
classmethod read_version()

	Retrieve MESSAGE version string from version.gms.

	
run(scenario)

	Execute the model.

MESSAGE creates a file named cplex.opt in the model
directory, containing the options in DEFAULT_CPLEX_OPTIONS,
or any overrides passed to solve().

	
class message_ix.models.MESSAGE_MACRO(name=None, **model_options)

	Bases: message_ix.models.MESSAGE

	
name = 'MESSAGE-MACRO'

	

Utility methods

	
message_ix.utils.make_df(base, **kwargs)

	Extend or overwrite base with new values from kwargs.

	Parameters

	
	base (dict, pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series], or pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Existing dataset to append to.

	**kwargs – Additional values to append to base.

	Returns

	base modified with kwargs.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

Examples

Scalar values in base or kwargs are broadcast. The number of rows in
the returned pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] equals the length of the longest
item in either argument.

>>> base = {'foo': 'bar'}
>>> make_df(base, baz=[42, 43, 44])
 foo baz
0 bar 42
1 bar 43
2 bar 44

	
message_ix.utils.make_ts(df, time_col, value_col, metadata={})

	The function groups the dataframe by the year specified in year_col_name
(year_act Vs. year_vtg). It then reshapes the dataframe df to reseble the
timeseries requirements: sets the unit, the variable name, and the
value column to the one specified in value_col_name. it further drops all
all additional columns.

	
message_ix.utils.matching_rows(df, row, match_columns=[])

	The function finds all the columns in a dataframe that are specified
in the match columns list.

	
message_ix.utils.multiply_df(df1, column1, df2, column2)

	The function merges dataframe df1 with df2 and multiplies column1 with
column2. The function returns the new merged dataframe with the result
of the muliplication in the column ‘product’.

Testing utilities

	
message_ix.testing.make_dantzig(mp, solve=False, multi_year=False)

	Return an message_ix.Scenario for Dantzig’s canning problem.

	Parameters

	
	mp (ixmp.Platform [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Platform]) – Platform on which to create the scenario.

	solve (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the scenario is solved.

	multi_year (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the scenario has years 1963–1965 inclusive. Otherwise, the
scenario has the single year 1963.

	
message_ix.testing.make_westeros(mp, emissions=False, solve=False)

	Return an message_ix.Scenario for the Westeros model.

This is the same model used in the westeros_baseline.ipynb tutorial.

	Parameters

	
	mp (ixmp.Platform [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Platform]) – Platform on which to create the scenario.

	emissions (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the emissions_factor parameter is also populated for CO2.

	solve (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the scenario is solved.

Mathematical specification

These pages provide comprehensive description of the variables and equations in
the core MESSAGEix mathematical implementation.

	Sets and mappings definition
	Sets in the MESSAGEix implementation

	Category types and mappings

	Mappings sets

	Mapping sets (flags) for bounds

	Mapping sets (flags) for fixed variables

	Parameter definition
	General parameters of the MESSAGEix implementation

	Parameters of the Resources section

	Parameters of the Demand section

	Parameters of the Technology section

	Parameters of the Emission section

	Parameters of the Land-Use model emulator section

	Parameters of the Share Constraints section

	Parameters of the Relations section

	Fixed variable values

	Mathematical formulation (core model)
	Notation declaration

	Objective function

	Regional system cost accounting function

	Resource and commodity section

	Technology section

	System reliability and flexibility requirements

	Constraints on shares of technologies and commodities

	Emission section

	Land-use model emulator section

	Section of generic relations (linear constraints)

	Solve statement workflow
	Perfect-foresight model

	Recursive-dynamic and myopic model

	Standard output reports

	Auxiliary investment parameters
	Levelized capital costs

	Construction time accounting

	Investment costs beyond the model horizon

	Remaining installed capacity

	MACRO - Mathematical formulation
	Notation declaration

	Decision variables

Note

This page is generated from inline documentation in MESSAGE/sets_maps_def.gms.

Sets and mappings definition

This file contains the definition of all sets and mappings used in MESSAGEix.

Sets in the MESSAGEix implementation

	Set name

	Notation

	Explanatory comments

	node 1

	\(n \in N\)

	regions, countries, grid cells

	commodity

	\(c \in C\)

	resources, electricity, water, land availability, etc.

	level

	\(l \in L\)

	levels of the reference energy system or supply chain (primary, secondary, … , useful)

	grade

	\(g \in G\)

	grades of resource quality in the extraction & mining sector

	technology [tec]

	\(t \in T\)

	
technologies that use input commodities to produce outputs;

the short-hand notation “tec” is used in the GAMS implementation

	mode 2

	\(m \in M\)

	modes of operation for specific technologies

	emission

	\(e \in E\)

	greenhouse gases, pollutants, etc.

	land_scenario

	\(s \in S\)

	scenarios of land use (for land-use model emulator)

	land_type

	\(u \in U\)

	land-use types (e.g., field, forest, pasture)

	year [year_all] 3 4

	\(y \in Y\)

	model horizon (including historical periods for vintage structure of installed capacity
and dynamic constraints)

	time 5

	\(h \in H\)

	subannual time periods (seasons, days, hours)

	relation 6

	\(r \in R\)

	set of generic linear constraints

	rating

	\(q \in Q\)

	identifies the ‘quality’ of the renewable energy potential

	lvl_spatial

	
	set of spatial hierarchy levels (global, region, country, grid cell)

	lvl_temporal

	
	set of temporal hierarchy levels (year, season, day, hour)

	1

	The set node includes spatial units across all levels of spatial disaggregation
(global, regions, countries, basins, grid cells).
The hierarchical mapping is implemented via the mapping set map_spatial_hierarchy.
This set always includes an element ‘World’ when initializing a MESSAGE-scheme message_ix.Scenario.

	2

	For example, high electricity or high heat production modes of operation for combined heat and power plants.

	3

	In the MESSAGEix implementation in GAMS, the set year_all denotes the “superset”
of the entire horizon (historical and model horizon), and the set year is a dynamic subset of year_all.
This facilitates an efficient implementation of the historical capacity build-up and
the (optional) recursive-dynamic solution approach.
When working with a message_ix.Scenario via the scientific programming API, the set of all periods is
called year for a more concise notation.
The specification of the model horizon is implemented using the mapping set cat_year
and the type “firstmodelyear”.

	4

	In MESSAGEix, the key of an element in set year identifies the last year of the period,
i.e., in a set \(year = [2000, 2005, 2010, 2015]\),
the period ‘2010’ comprises the years \([2006, .. ,2010]\).

	5

	The set time collects all sub-annual temporal units across all levels of temporal disaggregation.
In a MESSAGE-scheme ixmp.Scenario, this set always includes an element “year”,
and the duration of that element is 1 (\(duration_time_{'year'} = 1\)).

	6

	A generic formulation of linear constraints is implemented in MESSAGEix,
see Section of generic relations (linear constraints). These constraints can be used for testing and development,
but specific new features should be implemented by specific equations and parameters.

Category types and mappings

This feature is used to easily implement aggregation across groups of set elements.
For example, by setting an upper bound over an emission type, the constraint enforces
that the sum over all emission species mapped to that type via the mapping set cat_emission
satisfies that upper bound.

	Set name

	Notation

	Explanatory comments

	level_resource (level) 7

	\(l \in L^{RES} \subseteq L\)

	levels related to fossil resources representation

	level_renewable (level) 7

	\(l \in L^{REN} \subseteq L\)

	levels related to renewables representation

	type_node 8

	\(\widehat{n} \in \widehat{N}\)

	Category types for nodes

	cat_node (type_node,node)

	\(n \in N(\widehat{n})\)

	Category mapping between node types and nodes

	type_tec 9

	\(\widehat{t} \in \widehat{T}\)

	Category types for technologies

	cat_tec (type_tec,tec)

	\(t \in T(\widehat{t})\)

	Category mapping between tec types and technologies

	inv_tec (tec) 10

	\(t \in T^{INV} \subseteq T\)

	Specific subset of investment technologies

	renewable_tec (tec) 11

	\(t \in T^{REN} \subseteq T\)

	Specific subset of renewable-energy technologies

	type_emission

	\(\widehat{e} \in \widehat{E}\)

	Category types for emissions (greenhouse gases, pollutants, etc.)

	cat_emission (type_emission,emission)

	\(e \in E(\widehat{e})\)

	Category mapping between emission types and emissions

	type_tec_land (type_tec) 12

	\(\widehat{t} \in \widehat{T}^{LAND} \subseteq \widehat{T}\)

	Mapping set of technology types and land use

	balance_equality (commodity,level)

	\(c \in C, l \in L\)

	Commodities and level related to Equation COMMODITY_BALANCE_LT

	7(1,2)

	The constraint EXTRACTION_EQUIVALENCE is active only for the levels included in this set,
and the constraint COMMODITY_BALANCE is deactivated for these levels.

	8

	The element “economy” is added by default as part of the MESSAGE-scheme ixmp.Scenario.

	9

	The element “all” in type_tec and the associated mapping to all technologies in the set cat_tec
are added by default as part of the MESSAGE-scheme message_ix.Scenario.

	10

	The auxiliary set inv_tec (subset of technology) is a short-hand notation for all technologies
with defined investment costs. This activates the investment cost part in the objective function and the
constraints for all technologies where investment decisions are relevant.
It is added by default when exporting MESSAGE-scheme message_ix.Scenario to gdx.

	11

	The auxiliary set renewable_tec (subset of technology) is a short-hand notation
for all technologies with defined parameters relevant for the equations in the “Renewable” section.
It is added by default when exporting MESSAGE-scheme message_ix.Scenario to gdx.

	12

	The mapping set type_tec_land is a dynamic subset of type_tec and specifies whether
emissions from the land-use model emulator module are included when aggregrating over a specific technology type.
The element “all” is added by default in a MESSAGE-scheme message_ix.Scenario.

Mappings sets

These sets are generated automatically when exporting a MESSAGE-scheme ixmp.Scenario to gdx using the API.
They are used in the GAMS model to reduce model size by excluding non-relevant variables and equations
(e.g., actitivity of a technology outside of its technical lifetime).

	Set name

	Notation

	Explanatory comments

	map_node(node,location)

	
	mapping of nodes across hierarchy levels (location is in node)

Mapping sets (flags) for bounds

There are a number of mappings sets generated when exporting a message_ix.Scenario to gdx.
They are used as ‘flags’ to indicate whether a constraint is active.
The names of these sets follow the format is_<constraint>_<dir>.

Such mapping sets are necessary because GAMS does not distinguish between 0 and ‘no value assigned’,
i.e., it cannot differentiate between a bound of 0 and ‘no bound assigned’.

Mapping sets (flags) for fixed variables

Similar to the mapping sets for bounds, there are mapping sets to indicate whether decision variables
are pre-defined to a specific value, usually taken from a solution of another model instance.
This can be used to represent imperfect foresight where a policy shift or parameter change is introduced in later
years. The names of these sets follow the format is_fixed_<variable>.

Note

This page is generated from inline documentation in MESSAGE/parameter_def.gms.

Parameter definition

This file contains the definition of all parameters used in MESSAGEix.

In MESSAGEix, all parameters are understood as yearly values, not as per (multi-year) period.
This provides flexibility when changing the resolution of the model horizon (i.e., the set year).

Parameters written in italics are auxiliary parameters
that are either generated automatically when exporting a message_ix.Scenario to gdx
or that are computed during the pre-processing stage in GAMS.

General parameters of the MESSAGEix implementation

	Parameter name

	Index dimensions

	Explanatory comments

	duration_period (\(|y|\)) 1

	year

	duration of multi-year period (in number of years) 2

	duration_time

	time

	duration of sub-annual time slices (relative to 1) 3

	duration_time_rel

	time | time

	relative duration between sub-annual time slices 4

	interestrate

	year

	economy-wide interest rate or social discount rate

	df_period

	year

	cumulative discount factor over period duration 4

	df_year

	year

	discount factor of the last year in the period 4

	1

	The short-hand notation \(|y|\) is used for the parameters \(duration_period_y\)
in the mathematical model documentation for exponents.

	2

	The values for this parameter are computed automatically when exporting a MESSAGE-scheme
ixmp.Scenario to gdx.
Note that in MESSAGEix, the elements of the year set are understood to be the last year in a period,
see this footnote.

	3

	The element ‘year’ in the set of subannual time slices time has the value of 1.
This value is assigned by default when creating a new ixmp.Scenario based on the MESSAGE scheme.

	4(1,2,3)

	These parameters are computed during the GAMS execution.

Parameters of the Resources section

	Parameter name

	Index dimensions

	resource_volume

	node | commodity | grade

	resource_cost

	node | commodity | grade | year

	resource_remaining

	node | commodity | grade | year

	bound_extraction_up

	node | commodity | level | year

	commodity_stock 5

	node | commodity | level | year

	historical_extraction 6

	node | commodity | grade | year

	5

	This parameter allows (exogenous) additions to the commodity stock over the model horizon,
e.g., precipitation that replenishes the water table.

	6(1,2,3,4,5)

	Historical values of new capacity and activity can be used for parametrising the vintage structure
of existing capacity and implement dynamic constraints in the first model period.

Parameters of the Demand section

	Parameter name

	Index dimensions

	demand [demand_fixed] 7

	node | commodity | level | year | time

	peak_load_factor 8

	node | commodity | year

	7

	The parameter demand in a MESSAGE-scheme ixmp.Scenario is translated
to the parameter demand_fixed in the MESSAGE implementation in GAMS. The variable DEMAND is introduced
as an auxiliary reporting variable; it equals demand_fixed in a MESSAGE-standalone run and reports
the final demand including the price response in an iterative MESSAGE-MACRO solution.

	8(1,2)

	The parameters peak_load_factor and reliability_factor are based on the formulation proposed
by Sullivan et al., 2013 [sullivan_VRE_2013]. It is used in Reliability of installed capacity.

Parameters of the Technology section

Input/output mapping, costs and engineering specifications

	Parameter name

	Index names

	input 9

	node_loc | tec | year_vtg | year_act | mode |
node_origin | commodity | level | time | time_origin

	output 9

	node_loc | tec | year_vtg | year_act | mode |
node_dest | commodity | level | time | time_dest

	inv_cost 9

	node_loc | tec | year_vtg

	fix_cost 9

	node_loc | tec | year_vtg | year_act

	var_cost 9

	node_loc | tec | year_vtg | year_act | mode | time

	levelized_cost 10

	node_loc | tec | year_vtg | time

	construction_time

	node_loc | tec | year_vtg

	technical_lifetime

	node_loc | tec | year_vtg

	capacity_factor 9

	node_loc | tec | year_vtg | year_act | time

	operation_factor 9

	node_loc | tec | year_vtg | year_act

	min_utilization_factor 9

	node_loc | tec | year_vtg | year_act

	rating_bin 12

	node | technology | year_act | commodity | level | time | rating

	reliability_factor 8

	node | technology | year_act | commodity | level | time | rating

	flexibility_factor

	node_loc | technology | year_vtg | year_act | mode | commodity | level | time | rating

	renewable_capacity_factor

	node_loc | commodity | grade | level | year

	renewable_potential

	node | commodity | grade | level | year

	emission_factor

	node_loc | tec | year_vtg | year_act | mode | emission

	9(1,2,3,4,5,6,7,8)

	Fixed and variable cost parameters and technical specifications are indexed over both
the year of construction (vintage) and the year of operation (actual).
This allows to represent changing technology characteristics depending on the age of the plant.

	10

	The parameter levelized_cost is computed in the GAMS pre-processing under the assumption of
full capacity utilization until the end of the technical lifetime.

	11

	The construction time only has an effect on the investment costs; in MESSAGEix,
each unit of new-built capacity is available instantaneously at the beginning of the model period.

	12

	The upper bound of a contribution by any technology to the constraints on system reliability
(Reliability of installed capacity) and flexibility (Equation SYSTEM_FLEXIBILITY_CONSTRAINT) can depend on the share
of the technology output in the total commodity use at a specific level.

Bounds on capacity and activity

The following parameters specify upper and lower bounds on new capacity, total installed capacity, and activity.

	Parameter name

	Index names

	bound_new_capacity_up

	node_loc | tec | year_vtg

	bound_new_capacity_lo

	node_loc | tec | year_vtg

	bound_total_capacity_up

	node_loc | tec | year_act

	bound_total_capacity_lo

	node_loc | tec | year_act

	bound_activity_up

	node_loc | tec | year_act | mode | time

	bound_activity_lo

	node_loc | tec | year_act | mode | time

The bounds on activity are implemented as the aggregate over all vintages in a specific period
(cf. Equation ACTIVITY_BOUND_UP and ACTIVITY_BOUND_LO).

Dynamic constraints on capacity and activity

The following parameters specify constraints on the growth of new capacity and activity, i.e., market penetration.

	Parameter name

	Index names

	initial_new_capacity_up

	node_loc | tec | year_vtg

	growth_new_capacity_up 13

	node_loc | tec | year_vtg

	soft_new_capacity_up 13

	node_loc | tec | year_vtg

	initial_new_capacity_lo

	node_loc | tec | year_vtg

	growth_new_capacity_lo 13

	node_loc | tec_actual | year_vtg

	soft_new_capacity_lo 13

	node_loc | tec | year_vtg

	initial_activity_up 14

	node_loc | tec | year_act | time

	growth_activity_up 13 14

	node_loc | tec | year_act | time

	soft_activity_up 13

	node_loc | tec | year_act | time

	initial_activity_lo 14

	node_loc | tec | year_act | time

	growth_activity_lo 13 14

	node_loc | tec | year_act | time

	soft_activity_lo 13

	node_loc | tec | year_act | time

	13(1,2,3,4,5,6,7,8)

	All parameters related to the dynamic constraints are understood as the bound on the rate
of growth/decrease, not as in percentage points and not as (1+growth rate).

	14(1,2,3,4)

	The dynamic constraints are not indexed over modes in the MESSAGEix implementation.

Parameters for the add-on technologies

The implementation of MESSAGEix includes the functionality to introduce “add-on technologies” that are specifically
linked to parent technologies. This feature can be used to model mitigation options (scrubber, cooling).
Note, that no default addon_conversion is set, to avoid default conversion factors of 1 being set for technologies
with mutiple modes, of which only a single mode should be linked to the add-on technology.

	Parameter name

	Index names

	addon_conversion

	node | tec | year_vtg | year_act | mode | time | type_addon

	addon_up

	node | tec | vintage | year | mode | time | type_addon

	addon_lo

	node | tec | vintage | year | mode | time | type_addon

The upper bound of

Cost parameters for ‘soft’ relaxations of dynamic constraints

The implementation of MESSAGEix includes the functionality for ‘soft’ relaxations of dynamic constraints on
new-built capacity and activity (see Keppo and Strubegger, 2010 [keppo_short_2010]).
Refer to the section Dynamic constraints on market penetration.

	Parameter name

	Index names

	abs_cost_new_capacity_soft_up

	node_loc | tec | year_vtg

	abs_cost_new_capacity_soft_lo

	node_loc | tec | year_vtg

	level_cost_new_capacity_soft_up

	node_loc | tec | year_vtg

	level_cost_new_capacity_soft_lo

	node_loc | tec | year_vtg

	abs_cost_activity_soft_up

	node_loc | tec | year_act | time

	abs_cost_activity_soft_lo

	node_loc | tec | year_act | time

	level_cost_activity_soft_up

	node_loc | tec | year_act | time

	level_cost_activity_soft_lo

	node_loc | tec | year_act | time

Historical capacity and activity values

Historical data on new capacity and activity levels are included in MESSAGEix for
correct accounting of the vintage portfolio and a seamless implementation of dynamic constraints from
historical years to model periods.

	Parameter name

	Index names

	historical_new_capacity 6

	node_loc | tec | year_vtg

	historical_activity 6

	node_loc | tec | year_act | mode | time

Auxiliary investment cost parameters and multipliers

Documentation not yet included.

Parameters of the Emission section

The implementation of MESSAGEix includes a flexible and versatile accounting of emissions across different
categories and species, with the option to define upper bounds and taxes on various (aggregates of) emissions
and pollutants), (sets of) technologies, and (sets of) years.

	Parameter name

	Index dimensions

	historical_emission 6

	node | emission | type_tec | year

	emission_scaling 15

	type_emission | emission

	bound_emission

	node | type_emission | type_tec | type_year

	tax_emission

	node | type_emission | type_tec | type_year

	15

	The parameters emission_scaling allows to efficiently aggregate different emissions/pollutants
and set bounds or taxes on various categories.

Parameters of the Land-Use model emulator section

The implementation of MESSAGEix includes a land-use model emulator, which draws on exogenous land-use scenarios
(provided by another model) to derive supply of commodities (e.g., biomass) and emissions
from agriculture and forestry.

	Parameter name

	Index dimensions

	historical_land 6

	node | land_scenario | year

	land_cost

	node | land_scenario | year

	land_input

	node | land_scenario | year | commodity | level | time

	land_output

	node | land_scenario | year | commodity | level | time

	land_use

	node | land_scenario | year | land_type

	land_emission

	node | land_scenario | year | emission

	initial_land_scen_up

	node | land_scenario | year

	growth_land_scen_up

	node | land_scenario | year

	initial_land_scen_lo

	node | land_scenario | year

	growth_land_scen_lo

	node | land_scenario | year

	initial_land_up

	node | year | land_type

	dynamic_land_up

	node | land_scenario | year | land_type

	growth_land_up

	node | year | land_type

	initial_land_lo

	node | year | land_type

	dynamic_land_lo

	node | land_scenario | year | land_type

	growth_land_lo

	node | year | land_type

Parameters of the Share Constraints section

Share constraints define the share of a given commodity to be active on a certain level

	Parameter name

	Index dimensions

	share_commodity_up

	shares | node_share | year_act | time

	share_commodity_lo

	shares | node | year_act | time

	share_mode_up

	shares | node_loc | technology | mode | year_act | time

	share_mode_lo

	shares | node_loc | technology | mode | year_act | time

Parameters of the Relations section

Generic linear relations are implemented in MESSAGEix.
This feature is intended for development and testing only - all new features should be implemented
as specific new mathematical formulations and associated sets & parameters.

	Parameter name

	Index dimensions

	relation_upper

	relation | node_rel | year_rel

	relation_lower

	relation | node_rel | year_rel

	relation_cost

	relation | node_rel | year_rel

	relation_new_capacity

	relation | node_rel | year_rel | tec

	relation_total_capacity

	relation | node_rel | year_rel | tec

	relation_activity

	relation | node_rel | year_rel | node_loc | tec | year_act | mode

Fixed variable values

The following parameters allow to set variable values to a specific value.
The value is usually taken from a solution of another model instance
(e.g., scenarios where a shock sets in later to mimick imperfect foresight).

The fixed values do not override any upper or lower bounds that may be defined,
so fixing variables to values outside of that range will yield an infeasible model.

	Parameter name

	Index dimensions

	fixed_extraction

	node | commodity | grade | year

	fixed_stock

	node | commodity | level | year

	fixed_new_capacity

	node | technology | year_vtg

	fixed_capacity

	node | technology | year_vtg | year_act

	fixed_activity

	node | technology | year_vtg | year_act | mode | time

	fixed_land

	node | land_scenario | year

Note that the variable \(STOCK_CHG\) is determined implicitly by the \(STOCK\) variable
and therefore does not need to be explicitly fixed.

Note

This page is generated from inline documentation in MESSAGE/model_core.gms.

Mathematical formulation (core model)

The MESSAGEix systems-optimization model minimizes total costs
while satisfying given demand levels for commodities/services
and considering a broad range of technical/engineering constraints and societal restrictions
(e.g. bounds on greenhouse gas emissions, pollutants, system reliability).
Demand levels are static (i.e. non-elastic), but the demand response can be integrated by linking MESSAGEix
to the single sector general-economy MACRO model included in this framework.

For the complete list of sets, mappings and parameters,
refer to the auto-documentation pages Sets and mappings definition and Parameter definition.

Notation declaration

The following short notation is used in the mathematical description relative to the GAMS code:

Mathematical notation of sets

	Math notation

	GAMS set & index notation

	\(n \in N\)

	node (across spatial hierarchy levels)

	\(y \in Y\)

	year (all periods including historical and model horizon)

	\(y \in Y^M \subset Y\)

	time periods included in model horizon

	\(y \in Y^H \subset Y\)

	historical time periods (prior to first model period)

	\(c \in C\)

	commodity

	\(l \in L\)

	level

	\(g \in G\)

	grade

	\(t \in T\)

	technology (a.k.a tec)

	\(h \in H\)

	time (subannual time periods)

	\(m \in M\)

	mode

	\(q \in Q\)

	rating of non-dispatchable technologies relative to aggregate commodity use

	\(e \in E\)

	emission, pollutants

	\(s \in S\)

	scenarios of land use (for land-use model emulator)

	\(u \in U\)

	land-use types

	\(r \in R\)

	set of generic relations (linear constraints)

	\(t \in T^{INV} \subseteq T\)

	all technologies with investment decisions and capacity constraints

	\(t \in T^{REN} \subseteq T\)

	all technologies which draw their input from the renewable level

	\(n \in N(\widehat{n})\)

	all nodes that are subnodes of node \(\widehat{n}\)

	\(y \in Y(\widehat{y})\)

	all years mapped to the category type_year \(\widehat{y}\)

	\(t \in T(\widehat{t})\)

	all technologies mapped to the category type_tec \(\widehat{t}\)

	\(e \in E(\widehat{e})\)

	all emissions mapped to the category type_emission \(\widehat{e}\)

Decision variables

	Variable

	Explanatory text

	\(OBJ \in \mathbb{R}\)

	Objective value of the optimization program

	\(EXT_{n,c,g,y} \in \mathbb{R}_+\)

	Extraction of non-renewable/exhaustible resources from reserves

	\(STOCK_{n,c,l,y} \in \mathbb{R}_+\)

	Quantity in stock (storage) at start of period \(y\)

	\(STOCK_CHG_{n,c,l,y,h} \in \mathbb{R}\)

	Input or output quantity into intertemporal commodity stock (storage)

	\(REN_{n,t,c,g,y,h}\)

	Activity of renewable technologies per grade

	\(CAP_NEW_{n,t,y} \in \mathbb{R}_+\)

	Newly installed capacity (yearly average over period duration)

	\(CAP_{n,t,y^V,y} \in \mathbb{R}_+\)

	Maintained capacity in year \(y\) of vintage \(y^V\)

	\(CAP_FIRM_{n,t,c,l,y,q}\)

	Capacity counting towards firm (dispatchable)

	\(ACT_{n,t,y^V,y,m,h} \in \mathbb{R}\)

	Activity of a technology (by vintage, mode, subannual time)

	\(ACT_RATING_{n,t,y^V,y,c,l,h,q}\)

	Activity attributed to a particular rating bin 1

	\(CAP_NEW_UP_{n,t,y} \in \mathbb{R}_+\)

	Relaxation of upper dynamic constraint on new capacity

	\(CAP_NEW_LO_{n,t,y} \in \mathbb{R}_+\)

	Relaxation of lower dynamic constraint on new capacity

	\(ACT_UP_{n,t,y,h} \in \mathbb{R}_+\)

	Relaxation of upper dynamic constraint on activity 2

	\(ACT_LO_{n,t,y,h} \in \mathbb{R}_+\)

	Relaxation of lower dynamic constraint on activity 2

	\(LAND_{n,s,y} \in [0,1]\)

	Relative share of land-use scenario (for land-use model emulator)

	\(EMISS_{n,e,\widehat{t},y}\)

	Auxiliary variable for aggregate emissions by technology type

	\(REL_{r,n,y} \in \mathbb{R}\)

	Auxiliary variable for left-hand side of relations (linear constraints)

	\(COMMODITY_USE_{n,c,l,y}\)

	Auxiliary variable for amount of commodity used at specific level

The index \(y^V\) is the year of construction (vintage) wherever it is necessary to
clearly distinguish between year of construction and the year of operation.

All decision variables are by year, not by (multi-year) period, except \(STOCK_{n,c,l,y}\).
In particular, the new capacity variable \(CAP_NEW_{n,t,y}\) has to be multiplied by the number of years
in a period \(|y| = duration_period_{y}\) to determine the available capacity in subsequent periods.
This formulation gives more flexibility when it comes to using periods of different duration
(more intuitive comparison across different periods).

The current model framework allows both input or output normalized formulation.
This will affect the parametrization, see Section Efficiency - output- vs. input defined technologies for more details.

	1

	The auxiliary variable \(ACT_RATING_{n,t,y^V,y,c,l,h,q}\) is defined in terms of input or
output of the technology.

	2(1,2)

	The dynamic activity constraints are implemented as summed over all modes;
therefore, the variables for the relaxation are not indexed over the set mode.

Auxiliary variables

	Variable

	Explanatory text

	\(DEMAND_{n,c,l,y,h} \in \mathbb{R}\)

	Demand level (in equilibrium with MACRO integration)

	\(PRICE_COMMODITY_{n,c,l,y,h}\)

	Commodity price (undiscounted marginals of the commodity balances)

	\(PRICE_EMISSION_{n,e,\widehat{t},y}\)

	Emission price (undiscounted marginals of EMISSION_BOUND constraint)

	\(COST_NODAL_NET_{n,y} \in \mathbb{R}\)

	System costs at the node level net of energy trade revenues/cost

	\(GDP_{n,y} \in \mathbb{R}\)

	gross domestic product (GDP) in market exchange rates for MACRO reporting

Objective function

The objective function of the MESSAGEix core model

Equation OBJECTIVE

The objective function (of the core model) minimizes total discounted systems costs including costs for emissions,
relaxations of dynamic constraints

\[OBJ = \sum_{n,y \in Y^{M}} df_year_{y} \cdot COST_NODAL_{n,y}\]

Regional system cost accounting function

Accounting of regional system costs over time

Equation COST_ACCOUNTING_NODAL

Accounting of regional systems costs over time as well as costs for emissions (taxes),
land use (from the model land-use model emulator), relaxations of dynamic constraints,
and linear relations.

\[\begin{split}COST_NODAL_{n,y} & = \sum_{c,g} \ resource_cost_{n,c,g,y} \cdot EXT_{n,c,g,y} \\
 & + \sum_{t} \
 \bigg(inv_cost_{n,t,y} \cdot construction_time_factor_{n,t,y} \\
 & \quad \quad \quad \cdot end_of_horizon_factor_{n,t,y} \cdot CAP_NEW_{n,t,y} \\[4 pt]
 & \quad \quad + \sum_{y^V \leq y} \ fix_cost_{n,t,y^V,y} \cdot CAP_{n,t,y^V,y} \\
 & \quad \quad + \sum_{\substack{y^V \leq y \\ m,h}} \ var_cost_{n,t,y^V,y,m,h} \cdot ACT_{n,t,y^V,y,m,h} \\
 & \quad \quad + \Big(abs_cost_new_capacity_soft_up_{n,t,y} \\
 & \quad \quad \quad
 + level_cost_new_capacity_soft_up_{n,t,y} \cdot\ inv_cost_{n,t,y}
 \Big) \cdot CAP_NEW_UP_{n,t,y} \\[4pt]
 & \quad \quad + \Big(abs_cost_new_capacity_soft_lo_{n,t,y} \\
 & \quad \quad \quad
 + level_cost_new_capacity_soft_lo_{n,t,y} \cdot\ inv_cost_{n,t,y}
 \Big) \cdot CAP_NEW_LO_{n,t,y} \\[4pt]
 & \quad \quad + \sum_{m,h} \ \Big(abs_cost_activity_soft_up_{n,t,y,m,h} \\
 & \quad \quad \quad
 + level_cost_activity_soft_up_{n,t,y,m,h} \cdot\ levelized_cost_{n,t,y,m,h}
 \Big) \cdot ACT_UP_{n,t,y,h} \\
 & \quad \quad + \sum_{m,h} \ \Big(abs_cost_activity_soft_lo_{n,t,y,m,h} \\
 & \quad \quad \quad
 + level_cost_activity_soft_lo_{n,t,y,m,h} \cdot\ levelized_cost_{n,t,y,m,h}
 \Big) \cdot ACT_LO_{n,t,y,h} \bigg) \\
 & + \sum_{\substack{\widehat{e},\widehat{t} \\ e \in E(\widehat{e})}}
 emission_scaling_{\widehat{e},e} \cdot \ emission_tax_{n,\widehat{e},\widehat{t},y}
 \cdot EMISS_{n,e,\widehat{t},y} \\
 & + \sum_{s} land_cost_{n,s,y} \cdot LAND_{n,s,y} \\
 & + \sum_{r} relation_cost_{r,n,y} \cdot REL_{r,n,y}\end{split}\]

Here, \(n^L \in N(n)\) are all nodes \(n^L\) that are sub-nodes of node \(n\).
The subset of technologies \(t \in T(\widehat{t})\) are all tecs that belong to category \(\widehat{t}\),
and similar notation is used for emissions \(e \in E\).

Resource and commodity section

Constraints on resource extraction

Equation EXTRACTION_EQUIVALENCE

This constraint translates the quantity of resources extracted (summed over all grades) to the input used by
all technologies (drawing from that node). It is introduced to simplify subsequent notation in input/output relations
and nodal balance constraints.

\[\begin{split}\sum_{g} EXT_{n,c,g,y} =
\sum_{\substack{n^L,t,m,h,h^{OD} \\ y^V \leq y \\ \ l \in L^{RES} \subseteq L }}
 input_{n^L,t,y^V,y,m,n,c,l,h,h^{OD}} \cdot ACT_{n^L,t,m,y,h}\end{split}\]

The set \(L^{RES} \subseteq L\) denotes all levels for which the detailed representation of resources applies.

Equation EXTRACTION_BOUND_UP

This constraint specifies an upper bound on resource extraction by grade.

\[EXT_{n,c,g,y} \leq bound_extraction_up_{n,c,g,y}\]

Equation RESOURCE_CONSTRAINT

This constraint restricts that resource extraction in a year guarantees the “remaining resources” constraint,
i.e., only a given fraction of remaining resources can be extracted per year.

\[\begin{split}EXT_{n,c,g,y} \leq
resource_remaining_{n,c,g,y} \cdot
 \Big(& resource_volume_{n,c,g} \\
 & - \sum_{y' < y} duration_period_{y'} \cdot EXT_{n,c,g,y'} \Big)\end{split}\]

Equation RESOURCE_HORIZON

This constraint ensures that total resource extraction over the model horizon does not exceed the available resources.

\[\sum_{y} duration_period_{y} \cdot EXT_{n,c,g,y} \leq resource_volume_{n,c,g}\]

Constraints on commodities and stocks

Auxiliary COMMODITY_BALANCE

For the commodity balance constraints below, we introduce an auxiliary COMMODITY_BALANCE. This is implemented
as a GAMS $macro function.

\[\begin{split}\sum_{\substack{n^L,t,m,h^A \\ y^V \leq y}} output_{n^L,t,y^V,y,m,n,c,l,h^A,h}
 \cdot duration_time_rel_{h,h^A} \cdot & ACT_{n^L,t,y^V,y,m,h^A} \\
- \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y}} input_{n^L,t,y^V,y,m,n,c,l,h^A,h}
 \cdot duration_time_rel_{h,h^A} \cdot & ACT_{n^L,t,m,y,h^A} \\
+ \ STOCK_CHG_{n,c,l,y,h} & \\[4pt]
+ \ \sum_s \Big(land_output_{n,s,y,c,l,h} - land_input_{n,s,y,c,l,h} \Big) \cdot & LAND_{n,s,y} \\[4pt]
- \ demand_fixed_{n,c,l,y,h}
& = COMMODITY_BALANCE{n,c,l,y,h} \quad \forall \ l \notin (L^{RES}, l^{REN} \subseteq L\end{split}\]

The commodity balance constraint at the resource level is included in the Equation RESOURCE_CONSTRAINT,
while at the renewable level, it is included in the Equation RENEWABLES_EQUIVALENCE.

Equation COMMODITY_BALANCE_GT

This constraint ensures that supply is greater or equal than demand for every commodity-level combination.

\[COMMODITY_BALANCE_{n,c,l,y,h} \geq 0\]

Equation COMMODITY_BALANCE_LT

This constraint ensures the supply is smaller than or equal to the demand for all commodity-level combinatio
given in the \(balance_equality_{c,l}\). In combination withe constraint above, it ensures that supply
is (exactly) equal to demand.

\[COMMODITY_BALANCE_{n,c,l,y,h} \leq 0\]

Equation STOCKS_BALANCE

This constraint ensures the inter-temporal balance of commodity stocks.
The parameter \(commodity_stocks_{n,c,l}\) can be used to model exogenous additions to the stock

\[\begin{split}STOCK_{n,c,l,y} + commodity_stock_{n,c,l,y} =
 duration_period_{y} \cdot & \sum_{h} STOCK_CHG_{n,c,l,y,h} \\
 & + STOCK_{n,c,l,y+1}\end{split}\]

Technology section

Technical and engineering constraints

The first set of constraints concern technologies that have explicit investment decisions
and where installed/maintained capacity is relevant for operational decisions.
The set where \(T^{INV} \subseteq T\) is the set of all these technologies.

Equation CAPACITY_CONSTRAINT

This constraint ensures that the actual activity of a technology at a node cannot exceed available (maintained)
capacity summed over all vintages, including the technology capacity factor \(capacity_factor_{n,t,y,t}\).

\[\sum_{m} ACT_{n,t,y^V,y,m,h}
 \leq duration_time_{h} \cdot capacity_factor_{n,t,y^V,y,h} \cdot CAP_{n,t,y^V,y}
 \quad \forall \ t \ \in \ T^{INV}\]

Equation CAPACITY_MAINTENANCE_HIST

The following three constraints implement technology capacity maintenance over time to allow early retirment.
The optimization problem determines the optimal timing of retirement, when fixed operation-and-maintenance costs
exceed the benefit in the objective function.

The first constraint ensures that historical capacity (built prior to the model horizon) is available
as installed capacity in the first model period.

\[\begin{split}CAP_{n,t,y^V,'first_period'} & \leq
 remaining_capacity_{n,t,y^V,'first_period'} \cdot
 duration_period_{y^V} \cdot
 historical_new_capacity_{n,t,y^V} \\
& \text{if } y^V < 'first_period' \text{ and } |y| - |y^V| < technical_lifetime_{n,t,y^V}
\quad \forall \ t \in T^{INV}\end{split}\]

Equation CAPACITY_MAINTENANCE_NEW

The second constraint ensures that capacity is fully maintained throughout the model period
in which it was constructed (no early retirement in the period of construction).

\[CAP_{n,t,y^V,y^V} =
 remaining_capacity_{n,t,y^V,y^V} \cdot
 duration_period_{y^V} \cdot
 CAP_NEW{n,t,y^V}
\quad \forall \ t \in T^{INV}\]

The current formulation does not account for construction time in the constraints, but only adds a mark-up
to the investment costs in the objective function.

Equation CAPACITY_MAINTENANCE

The third constraint implements the dynamics of capacity maintenance throughout the model horizon.
Installed capacity can be maintained over time until decommissioning, which is irreversible.

\[\begin{split}CAP_{n,t,y^V,y} & \leq
 remaining_capacity_{n,t,y^V,y} \cdot
 CAP_{n,t,y^V,y-1} \\
\quad & \text{if } y > y^V \text{ and } y^V > 'first_period' \text{ and } |y| - |y^V| < technical_lifetime_{n,t,y^V}
\quad \forall \ t \in T^{INV}\end{split}\]

Equation OPERATION_CONSTRAINT

This constraint provides an upper bound on the total operation of installed capacity over a year.
It can be used to represent reuqired scheduled unavailability of installed capacity.

\[\sum_{m,h} ACT_{n,t,y^V,y,m,h}
 \leq operation_factor_{n,t,y^V,y} \cdot capacity_factor_{n,t,y^V,y,m,\text{'year'}} \cdot CAP_{n,t,y^V,y}
\quad \forall \ t \in T^{INV}\]

This constraint is only active if \(operation_factor_{n,t,y^V,y} < 1\).

Equation MIN_UTILIZATION_CONSTRAINT

This constraint provides a lower bound on the total utilization of installed capacity over a year.

\[\sum_{m,h} ACT_{n,t,y^V,y,m,h} \geq min_utilization_factor_{n,t,y^V,y} \cdot CAP_{n,t,y^V,y}
\quad \forall \ t \in T^{INV}\]

This constraint is only active if \(min_utilization_factor_{n,t,y^V,y}\) is defined.

Constraints representing renewable integration

Equation RENEWABLES_EQUIVALENCE

This constraint defines the auxiliary variables \(REN\)
to be equal to the output of renewable technologies (summed over grades).

\[\begin{split}\sum_{g} REN_{n,t,c,g,y,h} \leq
\sum_{\substack{n,t,m,l,h,h^{OD} \\ y^V \leq y \\ \ l \in L^{REN} \subseteq L }}
 input_{n^L,t,y^V,y,m,n,c,l,h,h^{OD}} \cdot ACT_{n^L,t,m,y,h}\end{split}\]

The set \(L^{REN} \subseteq L\) denotes all levels for which the detailed representation of renewables applies.

Equation RENEWABLES_POTENTIAL_CONSTRAINT

This constraint sets the potential potential by grade as the upper bound for the auxiliary variable \(REN\).

\[\begin{split}\sum_{\substack{t,h \\ \ t \in T^{R} \subseteq t }} REN_{n,t,c,g,y,h}
 \leq \sum_{\substack{l \\ l \in L^{R} \subseteq L }} renewable_potential_{n,c,g,l,y}\end{split}\]

Equation RENEWABLES_CAPACITY_REQUIREMENT

This constraint connects the capacity factor of a renewable grade to the
installed capacity of a technology. It sets the lower limit for the capacity
of a renewable technology to the summed activity over all grades (REN) devided
by the capactiy factor of this grade.
It represents the fact that different renewable grades require different installed
capacities to provide their full potential.

\[\begin{split}\sum_{y^V, h} & CAP_{n,t,y^V,y} \cdot operation_factor_{n,t,y^V,y} \cdot capacity_factor_{n,t,y^V,y,h} \\
 & \quad \geq \sum_{g,h,l} \frac{1}{renewable_capacity_factor_{n,c,g,l,y}} \cdot REN_{n,t,c,g,y,h}\end{split}\]

This constraint is only active if \(renewable_capacity_factor_{n,c,g,l,y}\) is defined.

Constraints for addon technologies

Equation ADDON_ACTIVITY_UP

This constraint provides an upper bound on the activity of an addon technology that can only be operated
jointly with a parent technology (e.g., abatement option, SO2 scrubber, power plant cooling technology).

\[\sum_{\substack{t' \sim t^A, y^V \leq y}} ACT_{n,t',y^V,y,m,h}
\leq
\sum_{\substack{t, y^V \leq y}}
 addon_up_{n,t^a,y,m,h,t^A} \cdot
 addon_conversion_{n,t',y^V,y,m,h} \cdot
 ACT_{n,t,y^V,y,m,h}\]

Equation ADDON_ACTIVITY_LO

This constraint provides a lower bound on the activity of an addon technology that has to be operated
jointly with a parent technology (e.g., power plant cooling technology). The parameter addon_lo allows to define
a minimum level of operation of addon technologies relative to the activity of the parent technology.
If addon_minimum = 1, this means that it is mandatory to operate the addon technology at the same level as the
parent technology (i.e., full mitigation).

\[\sum_{\substack{t' \sim t^A, y^V \leq y}} ACT_{n,t',y^V,y,m,h}
\geq
\sum_{\substack{t, y^V \leq y}}
 addon_lo_{n,t^a,y,m,h,t^A} \cdot
 addon_conversion_{n,t',y^V,y,m,h} \cdot
 ACT_{n,t,y^V,y,m,h}\]

System reliability and flexibility requirements

This section followi allows to include system-wide reliability and flexility considerations.
The current formulation is based on Sullivan et al., 2013 [sullivan_VRE_2013].

Aggregate use of a commodity

The system reliability and flexibility constraints are implemented using an auxiliary variable representing
the total use (i.e., input of each commodity per level).

Equation COMMODITY_USE_LEVEL

This constraint defines the auxiliary variable \(COMMODITY_USE_{n,c,l,y}\), which is used to define
the rating bins and the peak-load that needs to be offset with firm (dispatchable) capacity.

\[\begin{split}COMMODITY_USE_{n,c,l,y}
= & \sum_{n^L,t,y^V,m,h} input_{n^L,t,y^V,y,m,n,c,l,h,h} \\
 & \quad \cdot duration_time_rel_{h,h} \cdot ACT_{n^L,t,y^V,y,m,h}\end{split}\]

This constraint and the auxiliary variable is only active if \(peak_load_factor_{n,c,l,y,h}\) or
\(flexibility_factor_{n,t,y^V,y,m,c,l,h,r}\) is defined.

Auxilary variables for technology activity by “rating bins”

The capacity and activity of certain (usually non-dispatchable) technologies
can be assumed to only partially contribute to the system reliability and flexibility requirements.

Equation ACTIVITY_RATING_BIN

The auxiliary variable for rating-specific activity of each technology cannot exceed
the share of the rating bin in relation to the total commodity use.

\[ACT_RATING_{n,t,y^V,y,c,l,h,q}
\leq rating_bin_{n,t,y,c,l,h,q} \cdot COMMODITY_USE_{n,c,l,y}\]

Equation ACTIVITY_SHARE_TOTAL

The sum of the auxiliary rating-specific activity variables need to equal the total input and/or output
of the technology.

\[\begin{split}\sum_q ACT_RATING_{n,t,y^V,y,c,l,h,q}
= \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y}} &
 (input_{n^L,t,y^V,y,m,n,c,l,h^A,h} + output_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
 & \quad \cdot duration_time_rel_{h,h^A} \cdot ACT_{n^L,t,y^V,y,m,h^A} \\\end{split}\]

Reliability of installed capacity

The “firm capacity” that a technology can contribute to system reliability depends on its dispatch characteristics.
For dispatchable technologies, the total installed capacity counts toward the firm capacity constraint.
This is active if the parameter is defined over \(reliability_factor_{n,t,y,c,l,h,'firm'}\).
For non-dispatchable technologies, or those that do not have explicit investment decisions,
the contribution to system reliability is calculated
by using the auxiliary variable \(ACT_RATING_{n,t,y^V,y,c,l,h,q}\) as a proxy,
with the \(reliability_factor_{n,t,y,c,l,h,q}\) defined per rating bin \(q\).

Equation FIRM_CAPACITY_PROVISION

Technologies where the reliability factor is defined with the rating firm
have an auxiliary variable \(CAP_FIRM_{n,t,c,l,y,q}\), defined in terms of output.

\[\begin{split}\sum_q CAP_FIRM_{n,t,c,l,y,q}
= \sum_{y^V \leq y} & output_{n^L,t,y^V,y,m,n,c,l,h^A,h} \cdot duration_time_h \\
 & \quad \cdot capacity_factor_{n,t,y^V,y,h} \cdot CAP_{n,t,y^Y,y}
\quad \forall \ t \in T^{INV}\end{split}\]

Equation SYSTEM_RELIABILITY_CONSTRAINT

This constraint ensures that there is sufficient firm (dispatchable) capacity in each period.
The formulation is based on Sullivan et al., 2013 [sullivan_VRE_2013].

\[\begin{split}\sum_{t, q \substack{t \in T^{INV} \\ y^V \leq y} } &
 reliability_factor_{n,t,y,c,l,h,'firm'}
 \cdot CAP_FIRM_{n,t,c,l,y} \\
+ \sum_{t,q,y^V \leq y} &
 reliability_factor_{n,t,y,c,l,h,q}
 \cdot ACT_RATING_{n,t,y^V,y,c,l,h,q} \\
 & \quad \geq peak_load_factor_{n,c,l,y,h} \cdot COMMODITY_USE_{n,c,l,y}\end{split}\]

This constraint is only active if \(peak_load_factor_{n,c,l,y,h}\) is defined.

Equation SYSTEM_FLEXIBILITY_CONSTRAINT

This constraint ensures that, in each sub-annual time slice, there is a sufficient
contribution from flexible technologies to ensure smooth system operation.

\[\begin{split}\sum_{\substack{n^L,t,m,h^A \\ y^V \leq y}} &
 flexibility_factor_{n^L,t,y^V,y,m,c,l,h,'unrated'} \\
& \quad \cdot (output_{n^L,t,y^V,y,m,n,c,l,h^A,h} + input_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot duration_time_rel_{h,h^A}
 \cdot ACT_{n,t,y^V,y,m,h} \\
+ \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y}} &
 flexibility_factor_{n^L,t,y^V,y,m,c,l,h,1} \\
& \quad \cdot (output_{n^L,t,y^V,y,m,n,c,l,h^A,h} + input_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot duration_time_rel_{h,h^A}
 \cdot ACT_RATING_{n,t,y^V,y,c,l,h,q}
\geq 0\end{split}\]

Bounds on capacity and activity

Equation NEW_CAPACITY_BOUND_UP

This constraint provides upper bounds on new capacity installation.

\[CAP_NEW_{n,t,y} \leq bound_new_capacity_up_{n,t,y} \quad \forall \ t \ \in \ T^{INV}\]

Equation NEW_CAPACITY_BOUND_LO

This constraint provides lower bounds on new capacity installation.

\[CAP_NEW_{n,t,y} \geq bound_new_capacity_lo_{n,t,y} \quad \forall \ t \ \in \ T^{INV}\]

Equation TOTAL_CAPACITY_BOUND_UP

This constraint gives upper bounds on the total installed capacity of a technology in a specific year of operation
summed over all vintages.

\[\sum_{y^V \leq y} CAP_{n,t,y,y^V} \leq bound_total_capacity_up_{n,t,y} \quad \forall \ t \ \in \ T^{INV}\]

Equation TOTAL_CAPACITY_BOUND_LO

This constraint gives lower bounds on the total installed capacity of a technology.

\[\sum_{y^V \leq y} CAP_{n,t,y,y^V} \geq bound_total_capacity_lo_{n,t,y} \quad \forall \ t \ \in \ T^{INV}\]

Equation ACTIVITY_BOUND_UP

This constraint provides upper bounds by mode of a technology activity, summed over all vintages.

\[\sum_{y^V \leq y} ACT_{n,t,y^V,y,m,h} \leq bound_activity_up_{n,t,m,y,h}\]

Equation ACTIVITY_BOUND_ALL_MODES_UP

This constraint provides upper bounds of a technology activity across all modes and vintages.

\[\sum_{y^V \leq y, m} ACT_{n,t,y^V,y,m,h} \leq bound_activity_up_{n,t,y,'all',h}\]

Equation ACTIVITY_BOUND_LO

This constraint provides lower bounds by mode of a technology activity, summed over
all vintages.

\[\sum_{y^V \leq y} ACT_{n,t,y^V,y,m,h} \geq bound_activity_lo_{n,t,y,m,h}\]

We assume that \(bound_activity_lo_{n,t,y,m,h} = 0\)
unless explicitly stated otherwise.

Equation ACTIVITY_BOUND_ALL_MODES_LO

This constraint provides lower bounds of a technology activity across all modes and vintages.

\[\sum_{y^V \leq y, m} ACT_{n,t,y^V,y,m,h} \geq bound_activity_lo_{n,t,y,'all',h}\]

We assume that \(bound_activity_lo_{n,t,y,'all',h} = 0\)
unless explicitly stated otherwise.

Constraints on shares of technologies and commodities

This section allows to include upper and lower bounds on the shares of modes used by a technology
or the shares of commodities produced or consumed by groups of technologies.

Share constraints on activity by mode

Equation SHARES_MODE_UP

This constraint provides upper bounds of the share of the activity of one mode
of a technology. For example, it could limit the share of heat that can be produced
in a combined heat and electricity power plant.

\[ACT_{n^L,t,y^V,y,m,h^A}
\leq share_mode_up_{s,n,y,m,h} \cdot
\sum_{m\prime} ACT_{n^L,t,y^V,y,m\prime,h^A}\]

Equation SHARES_MODE_LO

This constraint provides lower bounds of the share of the activity of one mode of a technology.

\[ACT_{n^L,t,y^V,y,m,h^A}
\geq share_mode_lo_{s,n,y,m,h} \cdot
\sum_{m\prime} ACT_{n^L,t,y^V,y,m\prime,h^A}\]

Share constraints on commodities

These constraints allow to set upper and lower bound on the quantity of commodities produced or consumed by a group
of technologies relative to the commodities produced or consumed by another group.

The implementation is generic and flexible, so that any combination of commodities, levels, technologies and nodes
can be put in relation to any other combination.

The notation \(S^{share}\) represents the mapping set map_shares_commodity_share denoting all technology types,
nodes, commodities and levels to be included in the numerator, and \(S^{total}\) is
the equivalent mapping set map_shares_commodity_total for the denominator.

Equation SHARE_CONSTRAINT_COMMODITY_UP

\[\begin{split}& \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y, (n,\widehat{t},m,c,l) \sim S^{share}}}
 (output_{n^L,t,y^V,y,m,n,c,l,h^A,h} + input_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot duration_time_rel_{h,h^A} \cdot ACT_{n^L,t,y^V,y,m,h^A} \\
& \geq
 share_commodity_up_{s,n,y,h} \cdot
 \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y, (n,\widehat{t},m,c,l) \sim S^{total}}}
 (output_{n^L,t,y^V,y,m,n,c,l,h^A,h} + input_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot duration_time_rel_{h,h^A} \cdot ACT_{n^L,t,y^V,y,m,h^A}\end{split}\]

This constraint is only active if \(share_commodity_up_{s,n,y,h}\) is defined.

Equation SHARE_CONSTRAINT_COMMODITY_LO

\[\begin{split}& \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y, (n,\widehat{t},m,c,l) \sim S^{share}}}
 (output_{n^L,t,y^V,y,m,n,c,l,h^A,h} + input_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot duration_time_rel_{h,h^A} \cdot ACT_{n^L,t,y^V,y,m,h^A} \\
& \leq
 share_commodity_lo_{s,n,y,h} \cdot
 \sum_{\substack{n^L,t,m,h^A \\ y^V \leq y, (n,\widehat{t},m,c,l) \sim S^{total}}}
 (output_{n^L,t,y^V,y,m,n,c,l,h^A,h} + input_{n^L,t,y^V,y,m,n,c,l,h^A,h}) \\
& \quad \cdot duration_time_rel_{h,h^A} \cdot ACT_{n^L,t,y^V,y,m,h^A}\end{split}\]

This constraint is only active if \(share_commodity_lo_{s,n,y,h}\) is defined.

Dynamic constraints on market penetration

The constraints in this section specify dynamic upper and lower bounds on new capacity and activity,
i.e., constraints on market penetration and rate of expansion or phase-out of a technology.

The formulation directly includes the option for ‘soft’ relaxations of dynamic constraints
(cf. Keppo and Strubegger, 2010 [keppo_short_2010]).

Equation NEW_CAPACITY_CONSTRAINT_UP

The level of new capacity additions cannot be greater than an initial value (compounded over the period duration),
annual growth of the existing ‘capital stock’, and a “soft” relaxation of the upper bound.

\[\begin{split}CAP_NEW_{n,t,y}
 \leq & ~ initial_new_capacity_up_{n,t,y}
 \cdot \frac{ \Big(1 + growth_new_capacity_up_{n,t,y} \Big)^{|y|} - 1 }
 { growth_new_capacity_up_{n,t,y} } \\
 & + \Big(CAP_NEW_{n,t,y-1} + historical_new_capacity_{n,t,y-1} \Big) \\
 & \hspace{2 cm} \cdot \Big(1 + growth_new_capacity_up_{n,t,y} \Big)^{|y|} \\
 & + CAP_NEW_UP_{n,t,y} \cdot \Bigg(\Big(1 + soft_new_capacity_up_{n,t,y}\Big)^{|y|} - 1 \Bigg) \\
 & \quad \forall \ t \ \in \ T^{INV}\end{split}\]

Here, \(|y|\) is the number of years in period \(y\), i.e., \(duration_period_{y}\).

Equation NEW_CAPACITY_SOFT_CONSTRAINT_UP

This constraint ensures that the relaxation of the dynamic constraint on new capacity (investment) does not exceed
the level of the investment in the same period (cf. Keppo and Strubegger, 2010 [keppo_short_2010]).

\[CAP_NEW_UP_{n,t,y} \leq CAP_NEW_{n,t,y} \quad \forall \ t \ \in \ T^{INV}\]

Equation NEW_CAPACITY_CONSTRAINT_LO

This constraint gives dynamic lower bounds on new capacity.

\[\begin{split}CAP_NEW_{n,t,y}
 \geq & - initial_new_capacity_lo_{n,t,y}
 \cdot \frac{ \Big(1 + growth_new_capacity_lo_{n,t,y} \Big)^{|y|} }
 { growth_new_capacity_lo_{n,t,y} } \\
 & + \Big(CAP_NEW_{n,t,y-1} + historical_new_capacity_{n,t,y-1} \Big) \\
 & \hspace{2 cm} \cdot \Big(1 + growth_new_capacity_lo_{n,t,y} \Big)^{|y|} \\
 & - CAP_NEW_LO_{n,t,y} \cdot \Bigg(\Big(1 + soft_new_capacity_lo_{n,t,y}\Big)^{|y|} - 1 \Bigg) \\
 & \quad \forall \ t \ \in \ T^{INV}\end{split}\]

Equation NEW_CAPACITY_SOFT_CONSTRAINT_LO

This constraint ensures that the relaxation of the dynamic constraint on new capacity does not exceed
level of the investment in the same year.

\[CAP_NEW_LO_{n,t,y} \leq CAP_NEW_{n,t,y} \quad \forall \ t \ \in \ T^{INV}\]

Equation ACTIVITY_CONSTRAINT_UP

This constraint gives dynamic upper bounds on the market penetration of a technology activity.

\[\begin{split}\sum_{y^V \leq y,m} ACT_{n,t,y^V,y,m,h}
 \leq & ~ initial_activity_up_{n,t,y,h}
 \cdot \frac{ \Big(1 + growth_activity_up_{n,t,y,h} \Big)^{|y|} - 1 }
 { growth_activity_up_{n,t,y,h} } \\
 & + \bigg(\sum_{y^V \leq y-1,m} ACT_{n,t,y^V,y-1,m,h}
 + \sum_{m} historical_activity_{n,t,y-1,m,h} \bigg) \\
 & \hspace{2 cm} \cdot \Big(1 + growth_activity_up_{n,t,y,h} \Big)^{|y|} \\
 & + ACT_UP_{n,t,y,h} \cdot \Bigg(\Big(1 + soft_activity_up_{n,t,y,h} \Big)^{|y|} - 1 \Bigg)\end{split}\]

Equation ACTIVITY_SOFT_CONSTRAINT_UP

This constraint ensures that the relaxation of the dynamic activity constraint does not exceed the
level of the activity.

\[ACT_UP_{n,t,y,h} \leq \sum_{y^V \leq y,m} ACT_{n^L,t,y^V,y,m,h}\]

Equation ACTIVITY_CONSTRAINT_LO

This constraint gives dynamic lower bounds on the market penetration of a technology activity.

\[\begin{split}\sum_{y^V \leq y,m} ACT_{n,t,y^V,y,m,h}
 \geq & - initial_activity_lo_{n,t,y,h}
 \cdot \frac{ \Big(1 + growth_activity_lo_{n,t,y,h} \Big)^{|y|} - 1 }
 { growth_activity_lo_{n,t,y,h} } \\
 & + \bigg(\sum_{y^V \leq y-1,m} ACT_{n,t,y^V,y-1,m,h}
 + \sum_{m} historical_activity_{n,t,y-1,m,h} \bigg) \\
 & \hspace{2 cm} \cdot \Big(1 + growth_activity_lo_{n,t,y,h} \Big)^{|y|} \\
 & - ACT_LO_{n,t,y,h} \cdot \Bigg(\Big(1 + soft_activity_lo_{n,t,y,h} \Big)^{|y|} - 1 \Bigg)\end{split}\]

Equation ACTIVITY_SOFT_CONSTRAINT_LO

This constraint ensures that the relaxation of the dynamic activity constraint does not exceed the
level of the activity.

\[ACT_LO_{n,t,y,h} \leq \sum_{y^V \leq y,m} ACT_{n,t,y^V,y,m,h}\]

Emission section

Auxiliary variable for aggregate emissions

Equation EMISSION_EQUIVALENCE

This constraint simplifies the notation of emissions aggregated over different technology types
and the land-use model emulator. The formulation includes emissions from all sub-nodes \(n^L\) of \(n\).

\[\begin{split}EMISS_{n,e,\widehat{t},y} =
 \sum_{n^L \in N(n)} \Bigg(
 \sum_{t \in T(\widehat{t}),y^V \leq y,m,h }
 emission_factor_{n^L,t,y^V,y,m,e} \cdot ACT_{n^L,t,y^V,y,m,h} \\
 + \sum_{s} \ land_emission_{n^L,s,y,e} \cdot LAND_{n^L,s,y}
 \text{ if } \widehat{t} \in \widehat{T}^{LAND} \Bigg)\end{split}\]

Bound on emissions

Equation EMISSION_CONSTRAINT

This constraint enforces upper bounds on emissions (by emission type). For all bounds that include multiple periods,
the parameter \(bound_emission_{n,\widehat{e},\widehat{t},\widehat{y}}\) is scaled to represent average annual
emissions over all years included in the year-set \(\widehat{y}\).

The formulation includes historical emissions and allows to model constraints ranging over both the model horizon
and historical periods.

\[\begin{split}\frac{
 \sum_{y' \in Y(\widehat{y}), e \in E(\widehat{e})}
 \begin{array}{l}
 duration_period_{y'} \cdot emission_scaling_{\widehat{e},e} \cdot \\
 \Big(EMISS_{n,e,\widehat{t},y'} + \sum_{m} historical_emission_{n,e,\widehat{t},y'} \Big)
 \end{array}
 }
 { \sum_{y' \in Y(\widehat{y})} duration_period_{y'} }
\leq bound_emission_{n,\widehat{e},\widehat{t},\widehat{y}}\end{split}\]

Land-use model emulator section

Bounds on total land use

Equation LAND_CONSTRAINT

This constraint enforces a meaningful result of the land-use model emulator,
in particular a bound on the total land used in MESSAGEix.
The linear combination of land scenarios must be equal to 1.

\[\sum_{s \in S} LAND_{n,s,y} = 1\]

Dynamic constraints on land use

These constraints enforces upper and lower bounds on the change rate per land scenario.

Equation DYNAMIC_LAND_SCEN_CONSTRAINT_UP

\[\begin{split}LAND_{n,s,y}
 \leq & initial_land_scen_up_{n,s,y}
 \cdot \frac{ \Big(1 + growth_land_scen_up_{n,s,y} \Big)^{|y|} - 1 }
 { growth_land_scen_up_{n,s,y} } \\
 & + \big(LAND_{n,s,y-1} + historical_land_{n,s,y-1} \big)
 \cdot \Big(1 + growth_land_scen_up_{n,s,y} \Big)^{|y|}\end{split}\]

Equation DYNAMIC_LAND_SCEN_CONSTRAINT_LO

\[\begin{split}LAND_{n,s,y}
 \geq & - initial_land_scen_lo_{n,s,y}
 \cdot \frac{ \Big(1 + growth_land_scen_lo_{n,s,y} \Big)^{|y|} - 1 }
 { growth_land_scen_lo_{n,s,y} } \\
 & + \big(LAND_{n,s,y-1} + historical_land_{n,s,y-1} \big)
 \cdot \Big(1 + growth_land_scen_lo_{n,s,y} \Big)^{|y|}\end{split}\]

These constraints enforces upper and lower bounds on the change rate per land type
determined as a linear combination of land use scenarios.

Equation DYNAMIC_LAND_TYPE_CONSTRAINT_UP

\[\begin{split}\sum_{s \in S} land_use_{n,s,y,u} &\cdot LAND_{n,s,y}
 \leq initial_land_up_{n,y,u}
 \cdot \frac{ \Big(1 + growth_land_up_{n,y,u} \Big)^{|y|} - 1 }
 { growth_land_up_{n,y,u} } \\
 & + \Big(\sum_{s \in S} \big(land_use_{n,s,y-1,u}
 + dynamic_land_up_{n,s,y-1,u} \big) \\
 & \quad \quad \cdot \big(LAND_{n,s,y-1} + historical_land_{n,s,y-1} \big) \Big) \\
 & \quad \cdot \Big(1 + growth_land_up_{n,y,u} \Big)^{|y|}\end{split}\]

Equation DYNAMIC_LAND_TYPE_CONSTRAINT_LO

\[\begin{split}\sum_{s \in S} land_use_{n,s,y,u} &\cdot LAND_{n,s,y}
 \geq - initial_land_lo_{n,y,u}
 \cdot \frac{ \Big(1 + growth_land_lo_{n,y,u} \Big)^{|y|} - 1 }
 { growth_land_lo_{n,y,u} } \\
 & + \Big(\sum_{s \in S} \big(land_use_{n,s,y-1,u}
 + dynamic_land_lo_{n,s,y-1,u} \big) \\
 & \quad \quad \cdot \big(LAND_{n,s,y-1} + historical_land_{n,s,y-1} \big) \Big) \\
 & \quad \cdot \Big(1 + growth_land_lo_{n,y,u} \Big)^{|y|}\end{split}\]

Section of generic relations (linear constraints)

This feature is intended for development and testing only - all new features should be implemented
as specific new mathematical formulations and associated sets & parameters!

Auxiliary variable for left-hand side

Equation RELATION_EQUIVALENCE

\[\begin{split}REL_{r,n,y} = \sum_{t} \Bigg(
 & \ relation_new_capacity_{r,n,y,t} \cdot CAP_NEW_{n,t,y} \\[4 pt]
 & + relation_total_capacity_{r,n,y,t} \cdot \sum_{y^V \leq y} \ CAP_{n,t,y^V,y} \\
 & + \sum_{n^L,y',m,h} \ relation_activity_{r,n,y,n^L,t,y',m} \\
 & \quad \quad \cdot \Big(\sum_{y^V \leq y'} ACT_{n^L,t,y^V,y',m,h}
 + historical_activity_{n^L,t,y',m,h} \Big) \Bigg)\end{split}\]

The parameter \(historical_new_capacity_{r,n,y}\) is not included here, because relations can only be active
in periods included in the model horizon and there is no “writing” of capacity relation factors across periods.

Upper and lower bounds on user-defined relations

Equation RELATION_CONSTRAINT_UP

\[REL_{r,n,y} \leq relation_upper_{r,n,y}\]

Equation RELATION_CONSTRAINT_LO

\[REL_{r,n,y} \geq relation_lower_{r,n,y}\]

Note

This page is generated from inline documentation in MESSAGE/model_solve.gms.

Solve statement workflow

This part of the code includes the perfect-foresight, myopic and rolling-horizon model solve statements
including the required accounting of investment costs beyond the model horizon.

Perfect-foresight model

For the perfect foresight version of MESSAGEix, include all years in the model horizon and solve the entire model.
This is the standard option; the GAMS global variable %foresight%=0 by default.

\[\min_x OBJ = \sum_{y \in Y} OBJ_y(x_y)\]

Recursive-dynamic and myopic model

For the myopic and rolling-horizon models, loop over horizons and iteratively solve the model, keeping the decision
variables from prior periods fixed.
This option is selected by setting the GAMS global variable %foresight% to a value greater than 0,
where the value represents the number of years that the model instance is considering when iterating over the periods
of the optimization horizon.

Loop over \(\hat{y} \in Y\), solving

\[\begin{split}\min_x \ OBJ = \sum_{y \in \hat{Y}(\hat{y})} OBJ_y(x_y) \\
\text{s.t. } x_{y'} = x_{y'}^* \quad \forall \ y' < y\end{split}\]

where \(\hat{Y}(\hat{y}) = \{y \in Y | \ |\hat{y}| - |y| < optimization_horizon \}\) and
\(x_{y'}^*\) is the optimal value of \(x_{y'}\) in iteration \(|y'|\) of the iterative loop.

The advantage of this implementation is that there is no need to ‘store’ the optimal values of all decision
variables in additional reporting parameters - the last model solve automatically includes the results over the
entire model horizon and can be imported via the ixmp interface.

Note

This page is generated from inline documentation in MESSAGE/reporting.gms.

Standard output reports

This part of the code contains the definitions and scripts for a number of standard output reports.
These default reports will be created after every MESSAGE run.

Note

This page is generated from inline documentation in MESSAGE/scaling_investment_costs.gms.

Auxiliary investment parameters

Levelized capital costs

For the ‘soft’ relaxations of the dynamic constraints and the associated penalty factor in the objective function,
we need to compute the parameter \(levelized_cost_{n,t,y}\).

\[\begin{split}levelized_cost_{n,t,m,y,h} := \
 & inv_cost_{n,t,y} \cdot \frac{ interestrate_{y} \cdot \left(1 + interestrate_{y} \right)^{|y|} }
 { \left(1 + interestrate_{y} \right)^{|y|} - 1 } \\
 & + fix_cost_{n,t,y,y} \cdot \frac{ 1 }{ \sum_{h'} duration_time_{h'} \cdot capacity_factor_{n,t,y,y,h'} } \\
 & + var_cost_{n,t,y,y,m,h}\end{split}\]

where \(|y| = technical_lifetime_{n,t,y}\). This formulation implicitly assumes constant fixed
and variable costs over time.

Warning: All soft relaxations of the dynamic activity constraint are
disabled if the levelized costs are negative!

Construction time accounting

If the construction of new capacity takes a significant amount of time,
investment costs have to be scaled up accordingly to account for the higher capital costs.

\[construction_time_factor_{n,t,y} = \left(1 + interestrate_y \right)^{|y|}\]

where \(|y| = construction_time_{n,t,y}\). If no construction time is specified, the default value of the
investment cost scaling factor defaults to 1. The model assumes that the construction time only plays a role
for the investment costs, i.e., each unit of new-built capacity is available instantaneously.

Comment: This formulation applies the discount rate of the vintage year
(i.e., the year in which the new capacity becomes operational).

Investment costs beyond the model horizon

If the technical lifetime of a technology exceeds the model horizon \(Y^{model}\), the model has to add
a scaling factor to the investment costs (\(end_of_horizon_factor_{n,t,y}\)). Assuming a constant
stream of revenue (marginal value of the capacity constraint), this can be computed by annualizing investment costs
from the condition that in an optimal solution, the investment costs must equal the discounted future revenues,
if the investment variable \(CAP_NEW_{n,t,y} > 0\):

\[inv_cost_{n,t,y^V} = \sum_{y \in Y^{lifetime}_{n,t,y^V}} df_year_{y} \cdot \beta_{n,t},\]

Here, \(\beta_{n,t} > 0\) is the dual variable to the capacity constraint (assumed constant over future periods)
and \(Y^{lifetime}_{n,t,y^V}\) is the set of periods in the lifetime of a plant built in period \(y^V\).
Then, the scaling factor \(end_of_horizon_factor_{n,t,y^V}\) can be derived as follows:

\[end_of_horizon_factor_{n,t,y^V} :=
\frac{\sum_{y \in Y^{lifetime}_{n,t,y^V} \cap Y^{model}} df_year_{y} }
 {\sum_{y' \in Y^{lifetime}_{n,t,y^V}} df_year_{y'} + beyond_horizon_factor_{n,t,y^V} }
\in (0,1],\]

where the parameter \(beyond_horizon_factor_{n,t,y^V}\) accounts for the discount factor beyond the
overall model horizon (the set \(Y\) in contrast to the set \(Y^{model} \subseteq Y\) of the periods
included in the current model iteration (see the page on the recursive-dynamic model solution approach).

\[beyond_horizon_lifetime_{n,t,y^V} := \max \Big\{ 0,
 economic_lifetime_{n,t,y^V} - \sum_{y' \geq y^V} duration_period_{y'} \Big\}\]

\[beyond_horizon_factor_{n,t,y^V} :=
 df_year_{\widehat{y}} \cdot \frac{1}{ \left(1 + interestrate_{\widehat{y}} \right)^{|\widehat{y}|} }
 \cdot \frac{ 1 - \left(\frac{1}{1 + interestrate_{\widehat{y}}} \right)^{|\widetilde{y}|}}
 { 1 - \frac{1}{1 + interestrate_{\widehat{y}}}}\]

where \(\widehat{y}\) is the last period included in the overall model horizon,
\(|\widehat{y}| = period_duration_period_{\widehat{y}}\)
and \(|\widetilde{y}| = beyond_horizon_lifetime_{n,t,y^V}\).

If the interest rate is zero, i.e., \(interestrate_{\widehat{y}} = 0\),
the parameter \(beyond_horizon_factor_{n,t,y^V}\) equals the remaining technical lifetime
beyond the model horizon and the parameter \(end_of_horizon_factor_{n,t,y^V}\) equals
the share of technical lifetime within the model horizon.

Possible extension: Instead of assuming \(\beta_{n,t}\) to be constant over time, one could include
a simple (linear) projection of \(\beta_{n,t,y}\) beyond the end of the model horizon. However, this would likely
require to include the computation of dual variables endogenously, and thus a mixed-complementarity formulation of
the model.

Remaining installed capacity

The model has to take into account that the technical lifetime of a technology may not coincide with the cumulative
period duration. Therefore, the model introduces the parameter \(remaining_capacity_{n,t,y^V,y}\)
as a factor of remaining technical lifetime in the last period of operation divided by the duration of that period.

Note

This page is generated from inline documentation in MACRO/macro_core.gms.

MACRO - Mathematical formulation

MACRO is a macroeconomic model maximizing the intertemporal utility function of a single representative producer-consumer
in each node (or macro-economic region). The optimization result is a sequence of optimal savings, investment, and consumption decisions.
The main variables of the model are the capital stock, available labor, and commodity inputs, which together determine the
total output of an economy according to a nested constant elasticity of substitution (CES) production function. End-use service
demands in the (commercial) demand categories of MESSAGE is determined within the model, and is consistent with commodity
supply curves, which are inputs to the model.

Notation declaration

The following short notation is used in the mathematical description relative to the GAMS code:

	Math Notation

	GAMS set & index notation

	Description

	\(n\)

	node (or node_active in loops)

	spatial node corresponding to the macro-economic MESSAGE regions

	\(y\)

	year

	year (2005, 2010, 2020, …, 2100)

	\(s\)

	sector

	sector corresponding to the (commercial) end-use demands of MESSAGE

A listing of all parameters used in MACRO together with a decription can be found in the table below.

	Parameter

	Description

	\(duration_period_y\)

	Number of years in time period \(y\) (forward diff)

	\(total_cost_{n,y}\)

	Total system costs in region \(n\) and period \(y\) from MESSAGE model run

	\(enestart_{n,s,y}\)

	Consumption level of (commercial) end-use services \(s\) in region \(n\) and period \(y\) from MESSAGE model run

	\(eneprice_{n,s,y}\)

	Shadow prices of (commercial) end-use services \(s\) in region \(n\) and period \(y\) from MESSAGE model run

	\(\epsilon_n\)

	Elasticity of substitution between capital-labor and total energy in region \(n\)

	\(\rho_n\)

	\(\epsilon - 1 / \epsilon\) where \(\epsilon\) is the elasticity of subsitution in region \(n\)

	\(depr_n\)

	Annual depreciation rate in region \(n\)

	\(\alpha_n\)

	Capital value share parameter in region \(n\)

	\(a_n\)

	Production function coefficient of capital and labor in region \(n\)

	\(b_{n,s}\)

	Production function coefficients of the different end-use sectors in region \(n\), sector \(s\) and period \(y\)

	\(udf_{n,y}\)

	Utility discount factor in period year in region \(n\) and period \(y\)

	\(newlab_{n,y}\)

	New vintage of labor force in region \(n\) and period \(y\)

	\(grow_{n,y}\)

	Annual growth rates of potential GDP in region \(n\) and period \(y\)

	\(aeei_{n,s,y}\)

	Autonomous energy efficiency improvement (AEEI) in region \(n\), sector \(s\) and period \(y\)

	\(fin_time_{n,y}\)

	finite time horizon correction factor in utility function in region \(n\) and period \(y\)

Decision variables

	Variable

	Definition

	Description

	\(K_{n,y}\)

	\({K}_{n, y}\geq 0 ~ \forall n, y\)

	Capital stock in region \(n\) and period \(y\)

	\(KN_{n,y}\)

	\({KN}_{n, y}\geq 0 ~ \forall n, y\)

	New Capital vintage in region \(n\) and period \(y\)

	\(Y_{n,y}\)

	\({Y}_{n, y}\geq 0 ~ \forall n, y\)

	Total production in region \(n\) and period \(y\)

	\(YN_{n,y}\)

	\({YN}_{n, y}\geq 0 ~ \forall n, y\)

	New production vintage in region \(n\) and period \(y\)

	\(C_{n,y}\)

	\({C}_{n, y}\geq 0 ~ \forall n, y\)

	Consumption in region \(n\) and period \(y\)

	\(I_{n,y}\)

	\({I}_{n, y}\geq 0 ~ \forall n, y\)

	Investment in region \(n\) and period \(y\)

	\(PHYSENE_{n,s,y}\)

	\({PHYSENE}_{n, s, y}\geq 0 ~ \forall n, s, y\)

	Physical end-use service use in region \(n\), sector \(s\) and period \(y\)

	\(PRODENE_{n,s,y}\)

	\({PRODENE}_{n, s, y}\geq 0 ~ \forall n, s, y\)

	Value of end-use service in the production function in region \(n\), sector \(s\) and period \(y\)

	\(NEWENE_{n,s,y}\)

	\({NEWENE}_{n, s, y}\geq 0 ~ \forall n, s, y\)

	New end-use service in the production function in region \(n\), sector \(s\) and period \(y\)

	\(EC_{n,y}\)

	\(EC \in \left[-\infty..\infty\right]\)

	Approximation of system costs based on MESSAGE results

	\(UTILITY\)

	\(UTILITY \in \left[-\infty..\infty\right]\)

	Utility function (discounted log of consumption)

Equation UTILITY_FUNCTION

The utility function which is maximized sums up the discounted logarithm of consumption of a single representative producer-consumer over the entire time horizon
of the model.

\[\begin{split}{UTILITY} = \sum_{n} \bigg(& \sum_{y | (({ord}(y) > 1) \wedge ({ord}(y) < | y |))} {udf}_{n, y} \cdot {\log}(C_{n, y}) \cdot {duration_period}_{y} \\
+ &\sum_{y | ({ord}(y) = | y |) } {udf}_{n, y} \cdot {\log}(C_{n, y}) \cdot \big({duration_period}_{y-1} + \frac{1}{{FIN_TIME}_{n, y}} \big) \bigg)\end{split}\]

The utility discount rate for period \(y\) is set to \(drate_{n} - grow_{n,y}\), where \(drate_{n}\) is the discount rate used in MESSAGE, typically set to 5%,
and \(grow\) is the potential GDP growth rate. This choice ensures that in the steady state, the optimal growth rate is identical to the potential GDP growth rates \(grow\).
The values for the utility discount rates are chosen for descriptive rather than normative reasons. The term \(\frac{{duration_period}_{y} + {duration_period}_{y-1}}{2}\) mutliples the
discounted logarithm of consumption with the period length. The final period is treated separately to include a correction factor \(\frac{1}{{FIN_TIME}_{n, y}}\) reflecting
the finite time horizon of the model. Note that the sum over nodes \(node_active\) is artificial, because \(node_active\) only contains one element.

Equation CAPITAL_CONSTRAINT

The following equation specifies the allocation of total production among current consumption \({C}_{n, y}\), investment into building up capital stock excluding
the sectors represented in MESSAGE \({I}_{n, y}\) and the MESSAGE system costs \({EC}_{n, y}\) which are derived from a previous MESSAGE model run. As described in [manne_buying_1992], the first-order
optimality conditions lead to the Ramsey rule for the optimal allocation of savings, investment and consumption over time.

\[Y_{n, y} = C_{n, y} + I_{r, y} + {EC}_{n, y} \qquad \forall{n, y}\]

Equation NEW_CAPITAL

The accumulation of capital in the sectors not represented in MESSAGE is governed by new capital stock equation. Net capital formation \({KN}_{n,y}\) is derived from gross
investments \({I}_{n,y}\) minus depreciation of previsouly existing capital stock.

\[{KN}_{n,y} = {duration_period}_{y} \cdot I_{n,y} \qquad \forall{n, y > 1}\]

Here, the initial boundary condition for the base year \(y_0\) implies for the investments that \(I_{n,y_0} = (grow_{n,y_0} + depr_{n}) \cdot kgdp_{n} \cdot gdp_{n,y_0}\).

Equation NEW_PRODUCTION

MACRO employs a nested constant elasticity of substitution (CES) production function with capital, labor and the (commercial) end-use services
represented in MESSAGE as inputs. This version of the production function is equaivalent to that in MARKAL-MACRO.

\[{YN}_{n,y} = { \left({a}_{n} \cdot {{KN}_{n, y}}^{ ({\rho}_{n} \cdot {\alpha}_{n}) } \cdot {{newlab}_{n, y}}^{ ({\rho}_{n} \cdot (1 - {\alpha}_{n})) } + \displaystyle \sum_{s} ({b}_{n, s} \cdot {{NEWENE}_{n, s, y}}^{{\rho}_{n}}) \right) }^{ \frac{1}{{\rho}_{n}} } \qquad \forall{ n, y > 1}\]

Equation TOTAL_CAPITAL

Equivalent to the total production equation above, the total capital stock, again excluding those sectors which are modeled in MESSAGE, is then simply a summation
of capital stock in the previous period \(y-1\), depreciated with the depreciation rate \(depr_{n}\), and the capital stock added in the current period \(y\).

\[K_{n, y} = K_{n, y-1} \cdot { \left(1 - {depr}_n \right) }^{duration_period_{y}} + {KN}_{n, y} \qquad \forall{ n, y > 1}\]

Equation TOTAL_PRODUCTION

Total production in the economy (excluding energy sectors) is the sum of production from assets that were already existing in the previous period \(y-1\),
depreciated with the depreciation rate \(depr_{n}\), and the new vintage of production from period \(y\).

\[Y_{n, y} = Y_{n, y-1} \cdot { \left(1 - {depr}_n \right) }^{duration_period_{y}} + {YN}_{n, y} \qquad \forall{ n, y > 1}\]

Equation NEW_ENERGY

Total energy production (across the six commerical energy demands \(s\)) is the sum of production from all assets that were already existing
in the previous period \(y-1\), depreciated with the depreciation rate \(depr_{n}\), and the the new vintage of energy production from
period \(y\).

\[{PRODENE}_{n, s, y} = {PRODENE}_{n, s, y-1} \cdot { \left(1 - {depr}_n \right) }^{duration_period_{y}} + {NEWENE}_{n, s, y} \qquad \forall{ n, s, y > 1}\]

Equation ENERGY_SUPPLY

The relationship below establishes the link between physical energy \({PHYSENE}_{r, s, y}\) as accounted in MESSAGE for the six commerical energy demands \(s\) and
energy in terms of monetary value \({PRODENE}_{n, s, y}\) as specified in the production function of MACRO.

\[{PHYSENE}_{n, s, y} \geq {PRODENE}_{n, s, y} \cdot {aeei_factor}_{n, s, y} \qquad \forall{ n, s, y > 1}\]

The cumulative effect of autonomous energy efficiency improvements (AEEI) is captured in
\({aeei_factor}_{n,s,y} = {aeei_factor}_{n, s, y-1} \cdot (1 - {aeei}_{n,s,y})^{duration_period}_{y}\)
with \({aeei_factor}_{n,s,y=1} = 1\). Therefore, choosing the \({aeei}_{n,s,y}\) coefficients appropriately offers the possibility to calibrate MACRO to a certain energy demand trajectory
from MESSAGE.

Equation COST_ENERGY

Energy system costs are based on a previous MESSAGE model run. The approximation of energy system costs in vicinity of the MESSAGE solution are approximated by a Taylor expansion with the
first order term using shadow prices \(eneprice_{s, y, n}\) of the MESSAGE model’s solution and a quadratic second-order term.

\[\begin{split}{EC}_{n, y} = & {total_cost}_{n, r} \\
+ & \displaystyle \sum_{s} {eneprice}_{s, y, n} \cdot \left({PHYSENE}_{n, s, y} - {enestart}_{s, y, n} \right) \\
+ & \displaystyle \sum_{s} \frac{{eneprice}_{s, y, n}}{{enestart}_{s, y, n}} \cdot \left({PHYSENE}_{n, s, y} - {enestart}_{s, y, n} \right)^2 \qquad \forall{ n, y > 1}\end{split}\]

Equation TERMINAL_CONDITION

Given the finite time horizon of MACRO, a terminal constraint needs to be applied to ensure that investments are chosen at an appropriate level, i.e. to replace depriciated capital and
provide net growth of capital stock beyond MACRO’s time horizon [manne_buying_1992]. The goal is to avoid to the extend possible model artifacts resulting from this finite time horizon
cutoff.

\[K_{n, y} \cdot \left(grow_{n, y} + {depr}_n \right) \leq I_{n, y} \qquad \forall{ n, y = last year}\]

Developing MESSAGEix models

Developing a valid, scientific MESSAGEix model requires careful use of the framework features. This section provides guidelines for how to make some
common model design choices.

	Efficiency - output- vs. input defined technologies
	Example 1 - Power plants

	Example 2 - Refineries

	Example 3 - Combined power- and heat plants

	Debugging and data validation
	Pre-processing data validation

	Identification of infeasibilities

	Postprocessing and reporting
	Terminology

	Basic usage

	Customization

	Reporters

	Computations
	Computations from ixmp

	Configuration

	Utilities

Model-building tools

	Add model years to an existing Scenario

Efficiency - output- vs. input defined technologies

There is no obvious approach whether a model should be formulated
in a way that treats technologies as parametrized to input or output commodities/fuels -
power plant parameters are usually understood as output-based (per unit of electricity generated),
while refinery parameters are usually based on input fuels (per unit of input commodity processed.
Things become even trickier when technologies have multiple inputs or outputs.
Standardizing the methodology and assumptions can become quite a challenge.

For the implementation of MESSAGEix, we opted to formulate the model in an agnostic manner,
so that for each technology, the most “appropriate” parametrization can be applied.
As an additional benefit, we do not need to define an explicit efficiency parameter
or “main” input and output fuels.

The recommended approach is illustrated below for multiple examples.
The decision variables \(CAP_NEW\), \(CAP\) and \(ACT\) as well as all bounds
are always understood to be in the same units. All cost parameters also have to be provided
in monetary units per these units - there is no “automatic rescaling” done either within the ixmp API
or in the GAMS implementation pre- or postprocessing.

Example 1 - Power plants

Technical specifications of power plants are commonly stated in terms of electricity generated (output).
Therefore, the decision variables should be understood as outputs, with the parameter \(output = 1\)
and parameter \(input = \frac{1}{efficiency}\). This may seem counter-intuitive at first, but the clear
advantage is that all technical parameters can be immediately related to values found in the literature.

Example 2 - Refineries

For crude oil refineries, it is more common to scale costs and emissions
in terms of crude oil input quantities. Hence, the parameter \(input = 1\)
and the output parameters (usually for multiple different oil products)
should be set accordingly.

The decision variables and bounds are then implicitly understood as input-based.

An alternative would be to parametrize a refinery based on outputs, but
considering that there are multiple outputs (in fixed proportions),
the sum of output parameters over all products should be set to 1,
i.e., \(\sum_{c} output_{c} = 1\). The input of crude oil should then
include the losses during the refining process, \(input > 1\).

Example 3 - Combined power- and heat plants

As a third option, technical specifications of combined heat- and power plants
are usually also given with regard to electricity generated under the
assumption that the electricity generated is maximized. Then, as in example 1,
the capacity and activity variables should be understood as electricity generated.

Assuming that such a plant usually has (at least) two modes of operation, these
modes could be parametrized as follows:

\(input = \frac{1}{efficiency}\)

\(output_{'M1','electricity'} = 1\) and \(output_{'M1','heat'} = 0.2\)

\(output_{'M2','electricity'} = 0.5\) and \(output_{'M2','heat'} = 3\).

Note that the activity level in mode ‘M2’ has an odd interpretation - the amount
of electricity generated if electricity generation were maximized. The sum of outputs
is greater than 1 in either mode. However, we believe that this approach at least
has the benefit of a parametrization that can be directly related to technical reports.

Debugging and data validation

Finding the cause for infeasibilities or counter-intuitive results in large-scale numerical models is not trivial.
For this reason, the MESSAGEix framework includes a number of features to simplify debugging and pre-processing data validation.

Pre-processing data validation

The data validation checks are included in the file model/MESSAGE/data_load.gms.
If the data validation fails, an error message is written to the log file.

Identification of infeasibilities

The MESSAGEix framework includes the option to “relax” the most common constraints, simultaneously adding a penalty term for the relaxation to the objective function.
Solving the relaxed version of the model can help to identify incompatible constraints or input data errors causing infeasible models.

The relaxations can be activated by blocks/types of equations by setting the respective global variables ($SETGLOBAL in GAMS) in MESSAGE_master.gms or by calling MESSAGE_run.gms passing the global variables as command-line arguments.

Postprocessing and reporting

Warning

message_ix.reporting is experimental in message_ix 1.2 and only
supports Python 3. The API and functionality may change without advance
notice or a deprecation period in subsequent releases.

The ix modeling platform provides powerful features to perform calculations and other postprocessing after a message_ix.Scenario has been solved by the associated model. The MESSAGEix framework uses these features to provide zero-configuration reporting of models built on the framework.

These features are accessible through Reporter, which can produce multiple reports from one or more Scenarios. A report is identified by a key (usually a string), and may…

	perform arbitrarily complex calculations while intelligently handling units;

	read and make use of data that is ‘exogenous’ to (not included in) a
Scenario;

	produce output as Python or R objects (in code), or to files or databases;

	calculate only a requested subset of quantities; and

	much, much more!

Contents:

	Terminology

	Basic usage

	Customization

	Reporters

	Computations

	Computations from ixmp

	Configuration

	Utilities

Terminology

ixmp.reporting handles numerical quantities, which are scalar (0-dimensional) or array (1 or more dimensions) data with optional associated units.
ixmp parameters, scalars, equations, and time-series data all become quantities for the purpose of reporting.

Every quantity and report is identified by a key, which is a str [https://docs.python.org/3/library/stdtypes.html#str] or other hashable [https://docs.python.org/3/glossary.html#term-hashable] object. Special keys are used for multidimensional quantities. For instance: the MESSAGEix parameter resource_cost, defined with the dimensions (node n, commodity c, grade g, year y) is identified by the key 'resource_cost:n-c-g-y'. When summed across the grade/g dimension, it has dimensions n, c, y and is identified by the key 'resource_cost:n-c-y'.

Non-model 1 quantities and reports are produced by computations, which are atomic tasks that build on other computations. The most basic computations—for instance, resource_cost:n-c-g-y—simply retrieve raw/unprocessed data from a message_ix.Scenario and return it as a Quantity. Advanced computations can depend on many quantities, and/or combine quantities together into a structure like a document or spreadsheet. Computations are defined in ixmp.reporting.computations and message_ix.reporting.computations, but most common computations can be added using the methods of Reporter.

	1

	i.e. quantities that do not exist within the mathematical formulation of the model itself, and do not affect its solution.

Basic usage

A basic reporting workflow has the following steps:

	Obtain a message_ix.Scenario object from an ixmp.Platform [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Platform].

	Use from_scenario() to
create a Reporter object.

	(optionally) Use Reporter built-in
methods or advanced features to add computations to the reporter.

	Use get() to retrieve the
results (or trigger the effects) of one or more computations.

>>> from ixmp import Platform
>>> from message_ix import Scenario, Reporter
>>>
>>> mp = Platform()
>>> scen = Scenario(scen)
>>> rep = Reporter.from_scenario(scen)
>>> rep.get('all')

Note

Reporter stores defined
computations, but these are not executed until get() is called—or the results of one
computation are required by another. This allows the Reporter to skip
unneeded (and potentially slow) computations. A Reporter may contain computations for thousands of model quantities and derived quantities, but
a call to get() may only execute a
few of these.

Customization

A Reporter prepared with from_scenario() always contains a key
scenario, referring to the Scenario to be reported.

The method Reporter.add() can be used to
add arbitrary Python code that operates directly on the Scenario object:

>>> def my_custom_report(scenario):
>>> """Function with custom code that manipulates the *scenario*."""
>>> print('foo')
>>>
>>> rep.add('custom', (my_custom_report, 'scenario'))
>>> rep.get('custom')
foo

In this example, the function my_custom_report() could run to thousands
of lines; read to and write from multiple files; invoke other programs or
Python scripts; etc.

In order to take advantage of the performance-optimizing features of the
Reporter, however, such calculations can be instead composed from atomic (i.e.
small, indivisible) computations.

Reporters

	message_ix.reporting.Reporter(**kwargs)

	MESSAGEix Reporter.

	ixmp.reporting.Reporter(**kwargs)

	Class for generating reports on ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario] objects.

	ixmp.reporting.Key(name[, dims, tag])

	A hashable key for a quantity that includes its dimensionality.

	
class message_ix.reporting.Reporter(**kwargs)

	Bases: ixmp.reporting.Reporter

MESSAGEix Reporter.

	
classmethod from_scenario(scenario, **kwargs)

	Create a Reporter by introspecting scenario.

	Returns

	A reporter for scenario.

	Return type

	message_ix.reporting.Reporter

In addition to the keys automatically added by
ixmp.reporting.Reporter.from_scenario(), keys are added for
derived quantities specific to the MESSAGEix framework, as defined in
PRODUCTS and DERIVED.

	out: the product of output (output efficiency) and ACT
(activity).

	out_hist: output × ref_activity (historical reference
activity),

	in: input × ACT,

	in_hist: input × ref_activity,

	emi: emission_factor × ACT,

	emi_hist: emission_factor × ref_activity,

	inv: inv_cost × CAP_NEW,

	inv_hist: inv_cost × ref_new_capacity,

	fom: fix_cost × CAP,

	fom_hist: fix_cost × ref_capacity,

	vom: var_cost × ACT, and

	vom_hist: var_cost × ref_activity.

	tom: fom + vom.

Tip

Use full_key() to retrieve the full-dimensionality
Key for these quantities.

Other added keys include:

	<name>:pyam for the above quantities, plus:

	cap:pyam (from CAP)

	new_cap:pyam (from CAP_NEW)

…according to PYAM_CONVERT.

	Standard reports according to REPORTS.

	The report message:default, collecting all of the above reports.

	
as_pyam(quantities, year_time_dim, key=None, drop={}, collapse=None)

	Add conversion of quantities to pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/stable/api.html#pyam.IamDataFrame].

	Parameters

	
	quantities (str [https://docs.python.org/3/library/stdtypes.html#str] or Key or list of (str [https://docs.python.org/3/library/stdtypes.html#str], Key)) – Quantities to transform to pyam format.

	year_time_dim (str [https://docs.python.org/3/library/stdtypes.html#str]) – Label of the dimension use for the year or time column of the
pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/stable/api.html#pyam.IamDataFrame]. The column is labelled “Time” if
year_time_dim is h, otherwise “Year”.

	drop (iterable of str, optional) – Label of additional dimensions to drop from the resulting data
frame. Dimensions h, y, ya, yr, and yv—
except for the one named by year_time_dim—are automatically
dropped.

	collapse (callable, optional) – Callback to handle additional dimensions of the data frame.

	Returns

	Keys for the reporting targets that create the IamDataFrames
corresponding to quantities. The keys have the added tag ‘iamc’.

	Return type

	list of Key

The IAMC data format [https://pyam-iamc.readthedocs.io/en/stable/data.html] includes columns named ‘Model’,
‘Scenario’, ‘Region’, ‘Variable’, ‘Unit’; one of ‘Year’ or ‘Time’; and
‘value’.

Using as_pyam() :

	‘Model’ and ‘Scenario’ are populated from the attributes of the
Scenario identified by the key scenario;

	‘Variable’ contains the name(s) of the quantities;

	‘Unit’ contains the units associated with the quantities; and

	‘Year’ or ‘Time’ is created according to year_time_dim.

Additional dimensions of quantities pass through as_pyam() and
appear as additional columns in the resulting IamDataFrame.
While this is valid IAMC data, as_pyam() also supports dropping
additional columns (with drop), and a custom callback (collapse) that
can be used to manipulate values along other dimensions.

For example, here the values for the MESSAGEix technology and
mode dimensions are appended to the ‘Variable’ column:

def m_t(df):
 """Callback for collapsing ACT columns."""
 # .pop() removes the named column from the returned row
 df['variable'] = Activity + '|' + df['t'] + '|' + df['m']
 return df

ACT = rep.full_key('ACT')
keys = rep.as_pyam(ACT, 'ya', collapse=m_t, drop=['t', 'm'])

	
write(key, path)

	Write the report key to the file path.

In addition to the formats handled by ixmp.Reporter.write(),
this version will write pyam.IamDataFrame to CSV or Excel files
using built-in methods.

	
class ixmp.reporting.Reporter(**kwargs)

	Class for generating reports on ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario] objects.

A Reporter is used to postprocess data from from one or more
ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario] objects. The get() method can be used to:

	Retrieve individual quantities. A quantity has zero or more
dimensions and optional units. Quantities include the ‘parameters’,
‘variables’, ‘equations’, and ‘scalars’ available in an
ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario].

	Generate an entire report composed of multiple quantities. A report
may:

	Read in non-model or exogenous data,

	Trigger output to files(s) or a database, or

	Execute user-defined methods.

Every report and quantity (including the results of intermediate steps) is
identified by a utils.Key; all the keys in a Reporter can be
listed with keys().

Reporter uses a graph [http://docs.dask.org/en/stable/graphs.html] data structure to keep track of
computations, the atomic steps in postprocessing: for example, a single
calculation that multiplies two quantities to create a third. The graph
allows get() to perform only the requested computations. Advanced
users may manipulate the graph directly; but common reporting tasks can be
handled by using Reporter methods:

	add(key, computation[, strict, index, sums])

	Add computation to the Reporter under key.

	add_file(path[, key])

	Add exogenous quantities from path.

	aggregate(qty, tag, dims_or_groups[, …])

	Add a computation that aggregates qty.

	apply(generator, *keys)

	Add computations from generator applied to key.

	configure([path])

	Configure the Reporter.

	describe([key])

	Return a string describing the computations that produce key.

	disaggregate(qty, new_dim[, method, args])

	Add a computation that disaggregates var using method.

	finalize(scenario)

	Prepare the Reporter to act on scenario.

	full_key(name_or_key)

	Return the full-dimensionality key for name_or_key.

	get([key])

	Execute and return the result of the computation key.

	read_config(path)

	Configure the Reporter with information from a YAML file at path.

	visualize(filename, **kwargs)

	Generate an image describing the reporting structure.

	write(key, path)

	Write the report key to the file path.

	
graph = {'filters': None}

	A dask-format graph [http://docs.dask.org/en/stable/graphs.html].

	
add(key, computation, strict=False, index=False, sums=False)

	Add computation to the Reporter under key.

	Parameters

	
	key (hashable) – A string, Key, or other value identifying the output of task.

	computation (object [https://docs.python.org/3/library/functions.html#object]) – One of:

	any existing key in the Reporter.

	any other literal value or constant.

	a task, i.e. a tuple with a callable followed by one or more
computations.

	A list containing one or more of #1, #2, and/or #3.

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, key must not already exist in the Reporter, and
any keys referred to by computation must exist.

	index (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, key is added to the index as a full-resolution key, so
it can be later retrieved with full_key().

	sums (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, all partial sums of key are also added to the Reporter.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If key is already in the Reporter; any key referred to by
computation does not exist; or sums=True and the key for one
of the partial sums of key is already in the Reporter.

add() may be used to:

	Provide an alias from one key to another:

>>> r.add('aliased name', 'original name')

	Define an arbitrarily complex computation in a Python function that
operates directly on the ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario]:

>>> def my_report(scenario):
>>> # many lines of code
>>> return 'foo'
>>> r.add('my report', (my_report, 'scenario'))
>>> r.finalize(scenario)
>>> r.get('my report')
foo

Note

Use care when adding literal str [https://docs.python.org/3/library/stdtypes.html#str] values (2); these may
conflict with keys that identify the results of other
computations.

	
add_file(path, key=None)

	Add exogenous quantities from path.

A file at a path like ‘/path/to/foo.ext’ is added at the key
'file:foo.ext'.

See also

ixmp.reporting.computations.load_file()

	
add_product(name, *quantities, sums=True)

	Add a computation that takes the product of quantities.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the new quantity.

	sums (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True], all partial sums of the new quantity are also
added.

	Returns

	The full key of the new quantity.

	Return type

	Key

	
aggregate(qty, tag, dims_or_groups, weights=None, keep=True)

	Add a computation that aggregates qty.

	Parameters

	
	qty (Key or str) – Key of the quantity to be disaggregated.

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Additional string to add to the end the key for the aggregated
quantity.

	dims_or_groups (str [https://docs.python.org/3/library/stdtypes.html#str] or iterable of str or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Name(s) of the dimension(s) to sum over, or nested dict.

	weights (xr.DataArray) – Weights for weighted aggregation.

	Returns

	The key of the newly-added node.

	Return type

	Key

	
apply(generator, *keys)

	Add computations from generator applied to key.

	Parameters

	
	generator (callable) – Function to apply to keys. Must yield a sequence (0 or more) of
(key, computation), which are added to the graph.

	keys (hashable) – The starting key(s)

	
check_keys(*keys)

	Check that keys are in the Reporter.

If any of keys is not in the Reporter, KeyError is raised.
Otherwise, a list is returned with either the key from keys, or the
corresponding full_key().

	
configure(path=None, **config)

	Configure the Reporter.

Accepts a path to a configuration file and/or keyword arguments.
Configuration keys loaded from file are replaced by keyword arguments.

Valid configuration keys include:

	default: the default reporting key; sets default_key.

	filters: a dict [https://docs.python.org/3/library/stdtypes.html#dict], passed to set_filters().

	files: a dict [https://docs.python.org/3/library/stdtypes.html#dict] mapping keys to file paths.

	alias: a dict [https://docs.python.org/3/library/stdtypes.html#dict] mapping aliases to original keys.

	Warns

	UserWarning – If config contains unrecognized keys.

	
default_key = None

	The default reporting key.

	
describe(key=None)

	Return a string describing the computations that produce key.

If key is not provided, all keys in the Reporter are described.

	
disaggregate(qty, new_dim, method='shares', args=[])

	Add a computation that disaggregates var using method.

	Parameters

	
	var (hashable) – Key of the variable to be disaggregated.

	new_dim (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the new dimension of the disaggregated variable.

	method (callable or str [https://docs.python.org/3/library/stdtypes.html#str]) – Disaggregation method. If a callable, then it is applied to var
with any extra args. If then a method named
‘disaggregate_{method}’ is used.

	args (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Additional arguments to the method. The first element should be
the key for a quantity giving shares for disaggregation.

	Returns

	The key of the newly-added node.

	Return type

	Key

	
finalize(scenario)

	Prepare the Reporter to act on scenario.

The Scenario object scenario is
associated with the key 'scenario'. All subsequent processing will
act on data from this scenario.

	
classmethod from_scenario(scenario, **kwargs)

	Create a Reporter by introspecting scenario.

	Parameters

	
	scenario (ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario]) – Scenario to introspect in creating the Reporter.

	kwargs (optional) – Passed to Scenario.configure().

	Returns

	A Reporter instance containing:

	A ‘scenario’ key referring to the scenario object.

	Each parameter, equation, and variable in the scenario.

	All possible aggregations across different sets of dimensions.

	Each set in the scenario.

	Return type

	Reporter

	
full_key(name_or_key)

	Return the full-dimensionality key for name_or_key.

An ixmp variable ‘foo’ with dimensions (a, c, n, q, x) is available in
the Reporter as 'foo:a-c-n-q-x'. This Key can be retrieved with:

rep.full_key('foo')
rep.full_key('foo:c')
etc.

	
get(key=None)

	Execute and return the result of the computation key.

Only key and its dependencies are computed.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If not provided, default_key is used.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If key and default_key are both None [https://docs.python.org/3/library/constants.html#None].

	
read_config(path)

	Configure the Reporter with information from a YAML file at path.

See configure().

	
set_filters(**filters)

	Apply filters ex ante (before computations occur).

filters has the same form as the argument of the same name to
ixmp.Scenario.par() [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario.par] and analogous methods. A value of
None will clear the filter for the named dimension.

	
visualize(filename, **kwargs)

	Generate an image describing the reporting structure.

This is a shorthand for dask.visualize(). Requires
graphviz [https://pypi.org/project/graphviz/].

	
write(key, path)

	Write the report key to the file path.

	
class ixmp.reporting.Key(name, dims=[], tag=None)

	A hashable key for a quantity that includes its dimensionality.

Quantities in a Scenario can be indexed by one or more dimensions.
For example, a parameter with three dimensions can be initialized with:

>>> scenario.init_par('foo', ['a', 'b', 'c'], ['apple', 'bird', 'car'])

Computations for this scenario might use the quantity foo in different
ways:

	in its full resolution, i.e. indexed by a, b, and c;

	aggregated (e.g. summed) over any one dimension, e.g. aggregated over c
and thus indexed by a and b;

	aggregated over any two dimensions; etc.

A Key for (1) will hash, display, and evaluate as equal to 'foo:a-b-c'.
A Key for (2) corresponds to 'foo:a-b', and so forth.

Keys may be generated concisely by defining a convenience method:

>>> def foo(dims):
>>> return Key('foo', dims.split(''))
>>> foo('a b')
foo:a-b

	
add_tag(tag)

	Return a new Key with tag appended.

	
append(*dims)

	Return a new Key with additional dimensions dims.

	
dims

	Dimensions of the quantity, tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str].

	
drop(*dims)

	Return a new Key with dims dropped.

	
classmethod from_str_or_key(value, drop=[], append=[], tag=None)

	Return a new Key from value.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str] or Key) – Value to use to generate a new Key.

	drop (list of str, optional) – Existing dimensions of value to drop. See drop().

	append (list of str, optional.) – New dimensions to append to the returned Key. See append().

	tag (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Tag for returned Key. If value has a tag, the two are joined
using a ‘+’ character. See add_tag().

	Returns

	

	Return type

	Key

	
iter_sums()

	Generate (key, task) for all possible partial sums of the Key.

	
name

	Name of the quantity, str [https://docs.python.org/3/library/stdtypes.html#str].

	
classmethod product(new_name, *keys)

	Return a new Key that has the union of dimensions on keys.

Dimensions are ordered by their first appearance:

	First, the dimensions of the first of the keys.

	Next, any additional dimensions in the second of the keys that
were not already added in step 1.

	etc.

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name for the new Key. The names of keys are discarded.

	
tag

	Quantity tag, str [https://docs.python.org/3/library/stdtypes.html#str].

Computations

	
message_ix.reporting.computations.add(a, b, fill_value=0.0)

	Sum of a and b.

	
message_ix.reporting.computations.as_pyam(scenario, year_time_dim, quantities, drop=[], collapse=None)

	Return a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/stable/api.html#pyam.IamDataFrame] containing quantities.

See also

Reporter.as_pyam()

	
message_ix.reporting.computations.concat(*args)

	Concatenate args, which must be pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/stable/api.html#pyam.IamDataFrame].

	
message_ix.reporting.computations.write_report(quantity, path)

	Write the report identified by key to the file at path.

If quantity is a pyam.IamDataFrame [https://pyam-iamc.readthedocs.io/en/stable/api.html#pyam.IamDataFrame] and path ends with ‘.csv’
or ‘.xlsx’, use pyam methods to write the file to CSV or Excel
format, respectively. Otherwise, equivalent to
ixmp.reporting.computations.write_report().

Computations from ixmp

Elementary computations for reporting.

Unless otherwise specified, these methods accept and return
Quantity objects for data
arguments/return values.

Calculations:

	aggregate(quantity, groups, keep)

	Aggregate quantity by groups.

	concat(*args, **kwargs)

	

	disaggregate_shares(quantity, shares)

	Disaggregate quantity by shares.

	product(*quantities[, drop])

	Return the product of any number of quantities.

	ratio(numerator, denominator[, drop])

	Return the ratio numerator / denominator.

	sum(quantity[, weights, dimensions])

	Sum quantity over dimensions, with optional weights.

Input and output:

	load_file(path)

	Read the file at path and return its contents.

	write_report(quantity, path)

	Write a quantity to a file.

Conversion:

	make_dataframe(*quantities)

	Concatenate quantities into a single pd.DataFrame.

	
ixmp.reporting.computations.aggregate(quantity, groups, keep)

	Aggregate quantity by groups.

	Parameters

	
	quantity (Quantity) –

	groups (dict of dict) – Top-level keys are the names of dimensions in quantity. Second-level
keys are group names; second-level values are lists of labels along the
dimension to sum into a group.

	keep (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the members that are aggregated into a group are returned with
the group sums. If False, they are discarded.

	Returns

	Same dimensionality as quantity.

	Return type

	Quantity

	
ixmp.reporting.computations.disaggregate_shares(quantity, shares)

	Disaggregate quantity by shares.

	
ixmp.reporting.computations.make_dataframe(*quantities)

	Concatenate quantities into a single pd.DataFrame.

	
ixmp.reporting.computations.load_file(path)

	Read the file at path and return its contents.

Some file formats are automatically converted into objects for direct use
in reporting code:

	csv: converted to xarray.DataArray. CSV files must have a
‘value’ column; all others are treated as indices.

	
ixmp.reporting.computations.sum(quantity, weights=None, dimensions=None)

	Sum quantity over dimensions, with optional weights.

	
ixmp.reporting.computations.write_report(quantity, path)

	Write a quantity to a file.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str] or Path) – Path to the file to be written.

Configuration

	ixmp.reporting.configure([path])

	Configure reporting globally.

	ixmp.reporting.utils.RENAME_DIMS

	Dimensions to rename when extracting raw data from Scenario objects.

	ixmp.reporting.utils.REPLACE_UNITS

	Replacements to apply to quantity units before parsing by pint [https://pint.readthedocs.io/en/stable/index.html].

	ixmp.reporting.utils.UNITS

	pint [https://pint.readthedocs.io/en/stable/index.html] unit registry for processing quantity units.

	message_ix.reporting.PRODUCTS

	Basic derived quantities that are the product of two others.

	message_ix.reporting.DERIVED

	Other standard derived quantities.

	message_ix.reporting.PYAM_CONVERT

	Quantities to automatically convert to pyam format.

	message_ix.reporting.REPORTS

	Standard reports that collect quantities converted to pyam format.

	
reporting.configure(**config)

	Configure reporting globally.

Modifies global variables that affect the behaviour of all Reporters and
computations, namely
RENAME_DIMS,
REPLACE_UNITS, and
UNITS.

Valid configuration keys—passed as config keyword arguments—include:

	Other Parameters

	
	units (mapping) – Configuration for handling of units. Valid sub-keys include:

	replace (mapping of str -> str): replace units before they are
parsed by pint [https://pint.readthedocs.io/en/stable/index.html]. Added to REPLACE_UNITS.

	define (str [https://docs.python.org/3/library/stdtypes.html#str]): block of unit definitions, added to
UNITS so that units are
recognized by pint. See the pint documentation [https://pint.readthedocs.io/en/stable/defining.html#defining].

	rename_dims (mapping of str -> str) – Update RENAME_DIMS.

	Warns

	UserWarning – If config contains unrecognized keys.

	
message_ix.reporting.PRODUCTS = (('out', ('output', 'ACT')), ('in', ('input', 'ACT')), ('rel', ('relation_activity', 'ACT')), ('emi', ('emission_factor', 'ACT')), ('inv', ('inv_cost', 'CAP_NEW')), ('fom', ('fix_cost', 'CAP')), ('vom', ('var_cost', 'ACT')), ('land_out', ('land_output', 'LAND')), ('land_use_qty', ('land_use', 'LAND')), ('land_emi', ('land_emission', 'LAND')))

	Basic derived quantities that are the product of two others.

	
message_ix.reporting.DERIVED = [('tom:nl-t-yv-ya', (<function add>, 'fom:nl-t-yv-ya', 'vom:nl-t-yv-ya')), ('tom:nl-t-ya', (<function sum>, 'tom:nl-t-yv-ya', None, ['yv']))]

	Other standard derived quantities.

	
message_ix.reporting.PYAM_CONVERT = {'cap': ('CAP:nl-t-ya', 'ya', {'var': 'capacity'}), 'emis': ('emi:nl-t-ya-m-e', 'ya', {'kind': 'emi', 'var': 'emis'}), 'fom': ('fom:nl-t-ya', 'ya', {'var': 'fom cost'}), 'in': ('in:nl-t-ya-m-no-c-l', 'ya', {'kind': 'ene', 'var': 'in'}), 'inv': ('inv:nl-t-yv', 'yv', {'var': 'inv cost'}), 'new_cap': ('CAP_NEW:nl-t-yv', 'yv', {'var': 'new capacity'}), 'out': ('out:nl-t-ya-m-nd-c-l', 'ya', {'kind': 'ene', 'var': 'out'}), 'tom': ('tom:nl-t-ya', 'ya', {'var': 'total om cost'}), 'vom': ('vom:nl-t-ya', 'ya', {'var': 'vom cost'})}

	Quantities to automatically convert to pyam format.

	
message_ix.reporting.REPORTS = {'message:costs': ['inv:pyam', 'fom:pyam', 'vom:pyam', 'tom:pyam'], 'message:emissions': ['emis:pyam'], 'message:system': ['out:pyam', 'in:pyam', 'cap:pyam', 'new_cap:pyam']}

	Standard reports that collect quantities converted to pyam format.

	
ixmp.reporting.utils.RENAME_DIMS = {'commodity': 'c', 'emission': 'e', 'grade': 'g', 'land_scenario': 's', 'land_type': 'u', 'level': 'l', 'mode': 'm', 'node': 'n', 'node_dest': 'nd', 'node_loc': 'nl', 'node_origin': 'no', 'node_rel': 'nr', 'node_share': 'ns', 'rating': 'q', 'relation': 'r', 'technology': 't', 'time': 'h', 'time_dest': 'hd', 'time_origin': 'ho', 'year': 'y', 'year_act': 'ya', 'year_rel': 'yr', 'year_vtg': 'yv'}

	Dimensions to rename when extracting raw data from Scenario objects.
Mapping from Scenario dimension name -> preferred dimension name.
message_ix adds the standard short symbols for MESSAGE sets to this
variable.

	
ixmp.reporting.utils.REPLACE_UNITS = {'%': 'percent'}

	Replacements to apply to quantity units before parsing by
pint [https://pint.readthedocs.io/en/stable/index.html]. Mapping from original unit -> preferred unit.

	
ixmp.reporting.utils.UNITS = <pint.registry.UnitRegistry object>

	pint [https://pint.readthedocs.io/en/stable/index.html] unit registry for processing quantity units.
All units handled by imxp.reporting must be either standard SI units,
or added to this registry.

Utilities

	
class ixmp.reporting.attrseries.AttrSeries(*args, **kwargs)

	pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series] subclass imitating xarray.DataArray.

Future versions of ixmp.reporting will use xarray.DataArray
as Quantity; however, because xarray currently lacks sparse
matrix support, ixmp quantities may be too large for available memory.

The AttrSeries class provides similar methods and behaviour to
xarray.DataArray, such as an attrs dictionary for metadata, so
that ixmp.reporting.computations methods can use xarray-like syntax.

	
ixmp.reporting.utils.clean_units(input_string)

	Tolerate messy strings for units.

Handles two specific cases found in MESSAGEix test cases:

	Dimensions enclosed in ‘[]’ have these characters stripped.

	The ‘%’ symbol cannot be supported by pint, because it is a Python
operator; it is translated to ‘percent’.

	
ixmp.reporting.utils.collect_units(*args)

	Return an list of ‘_unit’ attributes for args.

	
ixmp.reporting.utils.data_for_quantity(ix_type, name, column, scenario, filters=None)

	Retrieve data from scenario.

	Parameters

	
	ix_type ('equ' or 'par' or 'var') – Type of the ixmp object.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the ixmp object.

	column ('mrg' or 'lvl' or 'value') – Data to retrieve. ‘mrg’ and ‘lvl’ are valid only for ix_type='equ',
and ‘level’ otherwise.

	scenario (ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario]) – Scenario containing data to be retrieved.

	filters (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Mapping from dimensions to iterables of allowed values along each
dimension.

	Returns

	Data for name.

	Return type

	Quantity

	
ixmp.reporting.utils.dims_for_qty(data)

	Return the list of dimensions for data.

If data is a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], its columns are processed;
otherwise it must be a list.

ixmp.reporting.RENAME_DIMS is used to rename dimensions.

	
ixmp.reporting.utils.keys_for_quantity(ix_type, name, scenario)

	Iterate over keys for name in scenario.

	
message_ix.reporting.pyam.collapse_message_cols(df, var, kind=None)

	as_pyam() collapse=… callback for MESSAGE quantities.

	Parameters

	
	var (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name for ‘variable’ column.

	kind (None [https://docs.python.org/3/library/constants.html#None] or 'ene' or 'emi', optional) – Determines which other columns are combined into the ‘region’ and
‘variable’ columns:

	’ene’: ‘variable’ is
'<var>|<level>|<commodity>|<technology>|<mode>' and ‘region’ is
'<region>|<node_dest>' (if var=’out’) or
'<region>|<node_origin>' (if ‘var=’in’).

	’emi’: ‘variable’ is '<var>|<emission>|<technology>|<mode>'.

	Otherwise: ‘variable’ is '<var>|<technology>'.

The referenced columns are also dropped, so it is not necessary to
provide the drop argument of as_pyam().

Add model years to an existing Scenario

Description

This tool adds new modeling years to an existing ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario] (hereafter “reference scenario”). For instance, in a scenario define with:

history = [690]
model_horizon = [700, 710, 720]
sc_ref.add_horizon({'year': history + model_horizon,
 'firstmodelyear': model_horizon[0]})

…additional years can be added:

sc_new = message_ix.Scenario(mp, sc_ref.model, sc_ref.scenario,
 version='new')
add_year(sc_ref, sc_new, [705, 712, 718, 725])

At this point, sc_new will have the years [700, 705, 710, 712, 718, 720, 725], and original or interpolated data for all these years in all parameters.

The tool operates by creating a new empty Scenario (hereafter “new scenario”) and:

	Copying all sets from the reference scenario, adding new time steps to relevant sets (e.g., adding 2025 between 2020 and 2030 in the set year)

	Copying all parameters from the reference scenario, adding new years to relevant parameters, and calculating missing values for the added years.

Features

	It can be used for any MESSAGE scenario, from tutorials, country-level, and global models.

	The new years can be consecutive, between existing years, and/or after the model horizon.

	The user can define for what regions and parameters the new years should be added. This saves time when adding the new years to only one parameter of the reference scenario, when other parameters have previously been successfully added to the new scenario.

Usage

The tool can be used either:

	Directly from the command line:

$ python -m message_ix.tools.add_year \
 --model_ref MESSAGE_Model \
 --scen_ref baseline \
 --years_new 2015,2025,2035,2045

For the full list of input arguments, run:

$ python -m message_ix.tools.add_year --help

	By calling the function message_ix.tools.add_year.add_year() from a Python script.

Technical details

	An existing scenario is loaded and the desired new years are specified.

	A new (empty) scenario is created for adding the new years.

	The new years are added to the relevant sets, year and type_year.

	The sets firstmodelyear, lastmodelyear, baseyear_macro, and initializeyear_macro are modified, if needed.

	The set cat_year is modified for the new years.

	The new years are added to the index sets of relevant parameters, and the missing data for the new years are calculated based on interpolation of adjacent data points. The following steps are applied:

	Each non-empty parameter is loaded from the reference scenario.

	The year-related indexes (0, 1, or 2) of the parameter are identified.

	The new years are added to the parameter, and the missing data is calculated based on the number of year-related indexes. For example:

	The parameter inv_cost has index year_vtg, to which the new years are added.

	The parameter output has indices year_act and year_vtg. The new years are added to both of these dimensions.

	Missing data is calculated by interpolation.

	For parameters with 2 year-related indices (e.g. output), a final check is applied so ensure that the vintaging is correct. This step is done based on the lifetime of each technology.

	The changes are committed and saved to the new scenario.

Warning

The tool does not ensure that the new scenario will solve after adding the
new years. The user needs to load the new scenario, check some key
parameters (like bounds) and solve the new scenario.

API reference

Add model years to an existing Scenario.

	
message_ix.tools.add_year.add_year(sc_ref, sc_new, years_new, firstyear_new=None, lastyear_new=None, macro=False, baseyear_macro=None, parameter='all', region='all', rewrite=True, unit_check=True, extrapol_neg=None, bound_extend=True)

	Add years to sc_ref to produce sc_new.

add_year() does the following:

	calls add_year_set() to add and modify required sets.

	calls add_year_par() to add new years and modifications to each
parameter if needed.

	Parameters

	
	sc_ref (ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario]) – Reference scenario.

	sc_new (ixmp.Scenario [https://message.iiasa.ac.at/projects/ixmp/en/latest/api-python.html#ixmp.Scenario]) – New scenario.

	yrs_new (list of int) – New years to be added.

	firstyear_new (int [https://docs.python.org/3/library/functions.html#int], optional) – New first model year for new scenario.

	macro (bool [https://docs.python.org/3/library/functions.html#bool]) – Add new years to parameters of the MACRO model.

	baseyear_macro (int [https://docs.python.org/3/library/functions.html#int]) – New base year for the MACRO model.

	parameter (list of str or 'all') – Parameters for adding new years.

	rewrite (bool [https://docs.python.org/3/library/functions.html#bool]) – Permit rewriting a parameter in new scenario when adding new years.

	check_unit (bool [https://docs.python.org/3/library/functions.html#bool]) – Harmonize the units for each commodity, if there is inconsistency
across model years.

	extrapol_neg (float [https://docs.python.org/3/library/functions.html#float]) – When extrapolation produces negative values, replace with a multiple of
the value for the previous timestep.

	bound_extend (bool [https://docs.python.org/3/library/functions.html#bool]) – Duplicate data from the previous timestep when there is only one data
point for interpolation (e.g., permitting the extension of a bound to
2025, when there is only one value in 2020).

	
message_ix.tools.add_year.add_year_par(sc_ref, sc_new, yrs_new, parname, region_list, firstyear_new, extrapolate=False, rewrite=True, unit_check=True, extrapol_neg=None, bound_extend=True)

	Add new years to parameters.

This function adds additional years to a parameter. The value of the
parameter for additional years is calculated mainly by interpolating and
extrapolating data from existing years.

See add_year() for parameter descriptions.

	
message_ix.tools.add_year.add_year_set(sc_ref, sc_new, years_new, firstyear_new=None, lastyear_new=None, baseyear_macro=None)

	Add new years to sets.

add_year_set() adds additional years to an existing scenario, by
starting to make a new scenario from scratch. After modification of the
year-related sets, all other sets are copied from sc_ref to sc_new.

See add_year() for parameter descriptions.

	
message_ix.tools.add_year.interpolate_1d(df, yrs_new, horizon, year_col, value_col='value', extrapolate=False, extrapol_neg=None, bound_extend=True)

	Interpolate data with one year dimension.

This function receives a parameter data as a dataframe, and adds new data
for the additonal years by interpolation and extrapolation.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The dataframe of the parameter to which new years to be added.

	yrs_new (list of int) – New years to be added.

	horizon (list of int) – The horizon of the reference scenario.

	year_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The header of the column to which the new years should be added, e.g.
‘year_act’.

	value_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The header of the column containing values.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow extrapolation when a new year is outside the parameter years.

	extrapol_neg (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow negative values obtained by extrapolation.

	bound_extend (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow extrapolation of bounds for new years

	
message_ix.tools.add_year.interpolate_2d(df, yrs_new, horizon, year_ref, year_col, tec_list, par_tec, value_col='value', extrapolate=False, extrapol_neg=None, year_diff=None, bound_extend=True)

	Interpolate parameters with two dimensions related year.

This function receives a dataframe that has 2 time-related columns (e.g.,
“input” or “relation_activity”), and adds new data for the additonal years
in both time-related columns by interpolation and extrapolation.

	Parameters

	
	df (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The dataframe of the parameter to which new years to be added.

	yrs_new (list of int) – New years to be added.

	horizon (list of int) – The horizon of the reference scenario.

	year_ref (str [https://docs.python.org/3/library/stdtypes.html#str]) – The header of the first column to which the new years should be added,
e.g. ‘year_vtg’.

	year_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The header of the column to which the new years should be added, e.g.
‘year_act’.

	tec_list (list of str) – List of technologies in the parameter technical_lifetime.

	par_tec (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Parameter technical_lifetime.

	value_col (str [https://docs.python.org/3/library/stdtypes.html#str]) – The header of the column containing values.

	extrapolate (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow extrapolation when a new year is outside the parameter years.

	extrapol_neg (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow negative values obtained by extrapolation.

	year_diff (list of int) – List of model years with different time intervals before and after them

	bound_extend (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow extrapolation of bounds for new years

	
message_ix.tools.add_year.intpol(y1, y2, x1, x2, x)

	Interpolate between (x1, y1) and (x2, y2) at x.

	Parameters

	
	y2 (y1,) –

	x2, x (x1,) –

	
message_ix.tools.add_year.mask_df(df, index, count, value)

	Create a mask for removing extra values from df.

	
message_ix.tools.add_year.slice_df(df, idx, level, locator, value)

	Slice a MultiIndex DataFrame and set a value to a specific level.

	Parameters

	
	df (pd.DataFrame) –

	idx (list of indices) –

	level (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	locator (list [https://docs.python.org/3/library/stdtypes.html#list]) –

	value (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
message_ix.tools.add_year.unit_uniform(df)

	Make units in df uniform.

User guidelines and notice

We ask that you take the following four actions whenever you:

	use the MESSAGEix framework, ix modeling platform, or any model(s) you have built using these tools

	to produce any scientific publication, technical report, website, or other publicly-available material.

The aim of this request is to ensure good scientific practice and collaborative development of the platform.

1. Understand the code license

Use the most recent version of MESSAGEix from the Github repository.
Specify clearly which version (e.g. release tag, such as v1.1.0, or commit hash, such as 26cc08f) you have used, and whether you have made any modifications to the code.

Read and understand the file LICENSE; in particular, clause 7 (“Disclaimer of Warranty”), which states:

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

2. Cite the scientific publication

Cite the following manuscript:

Daniel Huppmann, Matthew Gidden, Oliver Fricko, Peter Kolp, Clara Orthofer,
Michael Pimmer, Nikolay Kushin, Adriano Vinca, Alessio Mastrucci,
Keywan Riahi, and Volker Krey.

“The MESSAGEix Integrated Assessment Model and the ix modeling platform”.

Environmental Modelling & Software 112:143-156, 2019.

doi: 10.1016/j.envsoft.2018.11.012 [https://doi.org/10.1016/j.envsoft.2018.11.012]

electronic pre-print available at pure.iiasa.ac.at/15157/ [https://pure.iiasa.ac.at/15157/].

In addition, include a hyperlink to the online resource MESSAGEix.iiasa.ac.at [https://MESSAGEix.iiasa.ac.at/].

3. Use the naming convention for new model instances

For any new model instance under the MESSAGEix framework, choose a name of
the form “MESSAGEix [xxx]” or “MESSAGEix-[xxx]”, where [xxx] is replaced by:

	the institution or organization developing the model,

	the name of a country/region represented in the model, or

	a similar identifier.

For example, the national model for South Africa developed by Orthofer et al. [1] is named “MESSAGEix South Africa”.

Ensure there is no naming conflict with existing versions of the MESSAGEix model family.
When in doubt, contact the IIASA Energy Program at <message_ix@iiasa.ac.at> for a list of existing model instances.

4. Give notice of publication

E-mail <message_ix@iiasa.ac.at> with notice of notice of any new or pending publication.

References

[1] Clara Orthofer, Daniel Huppmann, and Volker Krey (2019).

“South Africa’s shale gas resources - chance or challenge?”

Frontiers in Energy Research 7:20. doi: 10.3389/fenrg.2019.00020 [https://doi.org/10.3389/fenrg.2019.00020]

Contributing to MESSAGEix development

We welcome contributions to the code base and development of new features for the MESSAGEix framework.
This page contains guidelines for making these contributions.

	Filing issues for bugs and enhancements

	Contributing code via Github PRs

	1. Choose a repository

	2. Fork, branch, and open a pull request

	3. Ensure checks pass

	4. Review

	Other tips

	Code style

	Versions and releases

	Contributing tutorials

	Coding & writing style

	Structure

	Location

Filing issues for bugs and enhancements

We use Github issues for several purposes:

	Ask and answer questions about intended behaviour or issues running the framework or related models.

	Report bugs, i.e. unintended or undocumented behaviour.

	Request changes to behaviour.

	Request specific enhancements and new features, both urgent and long-term/low-priority.

	Discuss and design of other improvements.

Please search through open and closed issues for both the message_ix [https://github.com/iiasa/message_ix/issues?q=is:issue] and ixmp [https://github.com/iiasa/ixmp/issues?q=is:issue] repositories.
Review any related issues.
Then, if your issue is not found, open a new one [https://github.com/iiasa/message_ix/issues/new].

Contributing code via Github PRs

See the short introduction to the Github flow [https://guides.github.com/introduction/flow/], which describes a pull request and how it is used.
Use online documentation for git, Github, and Python to ensure you are able to complete the process below.
Register a Github account, if you do not already have one.

1. Choose a repository

Decide: to which part of the MESSAGEix software stack should your code be added?

	ixmp

	Contributions not specific to MESSAGEix model framework, e.g. that could be used for other, non-MESSAGE models.

	message_ix

	Contributions not specific to any particular MESSAGEix model instance.
Additions to message_ix should be usable in any MESSAGE-scheme model.

	message_data or message_doc

	Contributions to the MESSAGE-GLOBIOM family of models, including the global
model; and its documentation, respectively.

	ixmp_source

	Java / JDBC backend for ixmp.

2. Fork, branch, and open a pull request

Fork the chosen repository to your own Github account.
Create a branch with an appropriate name:

	all-lower-case-with-hyphens.

	issue/1234 if you are addressing a specific issue.

	feature/do-something if you are adding a new feature.

Open a PR (e.g. on message_ix [https://github.com/iiasa/message_ix/pulls]) to merge your code into the master branch.
The message_ix and ixmp repositories each have a template for the text of the PR, including the minimum requirements:

	A title and one-sentence summary of the change.
This is like the abstract of a publication: it should help a developer/reviewer/user quickly learn what the PR is about.

	Confirm that unit or integration tests have been added or revised to cover the changed code, and that the tests pass (see below).

	Confirm that documentation of the API and its usage is added or revised as necessary.

	Add a line to the file RELEASE_NOTES.md describing the changes (use the same title or one-sentence summary as above) and linking to the PR.

Optionally:

	Include a longer description of the design, or any changes whose purpose is not clear by inspecting code.

	Put “WIP:” at the start of the PR title to indicate “work in progress” while you continue to add commits.
This is good development practice: it ensures the automatic checks pass as you add to the code on your branch.

3. Ensure checks pass

MESSAGEix currently has three kinds of automatic, or “continuous integration” checks:

	The CLA Assistant [https://github.com/cla-assistant/] ensures you have signed the Contributor License Agreement (text below).
All contributors are required to sign the CLA before any pull request can be reviewed.
This ensures that all future users can benefit from your contribution, and that your contributions do not infringe on anyone else’s rights.

	The Stickler [https://stickler-ci.com/] service reviews Python code style (see below).

	Travis [https://travis-ci.org/iiasa/message_ix/] (Linux, macOS) and AppVeyor [https://ci.appveyor.com/project/danielhuppmann/message-ix] (Windows) run the test suite in tests/.

Resolve any non-passing checks—seeking help if needed.

If your PR updates the documentation, manually check that it can be built.
See doc/README.rst.

4. Review

Using the GitHub sidebar on your PR, request a review from another MESSAGEix contributor.
GitHub suggests reviewers; optionally, contact the IIASA Energy Program to ask who should review your code.
Address any comments raised by the reviewer, who will also merge your PR when it is ready.

Other tips

	If other PRs are merged before yours, a merge conflict may arise and must be addressed to complete the above steps.
This means that your PR, and the other PR, both modify the same file(s) in the same location(s), and git cannot automatically determine which changes to use.
Learn how to:

	git merge [https://git-scm.com/docs/git-merge]. This brings all updates from the master branch into your PR branch, giving you a chance to fix conflicts and make a new commit.

	git rebase [https://git-scm.com/docs/git-rebase]. This replays your PR branch commits one-by-one, starting from the tip of the master branch (rather than the original starting commit).

Code style

	Python: follow PEP 8 [https://www.python.org/dev/peps/pep-0008/].

	R: follow the style of the existing code base.

	Jupyter notebooks (.ipynb): see below, under Contributing tutorials.

	Documentation (.rst, .md):

	Do not hard-wrap lines.

	Start each sentence on a new line.

	Other (file names, CLI, etc.): follow the style of the existing code base.

Versions and releases

	We use semantic versioning [https://semver.org].

	We keep at least two active milestones on each of the message_ix and ixmp repositories:

	The next minor version. E.g. if the latest release was 3.5, the next minor release/milestone is 3.6.

	The next major version. E.g. 4.0.

	The milestones are closed at the time a new version is released.
If a major release (e.g. 4.0) is made without the preceding minor release (e.g. 3.6), both are closed together.

	Every issue and PR must be assigned to a milestone to record the decision/intent to release it at a certain time.

	New releases are made by Energy Program staff using the Release procedure [https://github.com/iiasa/message_ix/wiki/Release-procedure], and appear on Github, PyPI, and conda-forge.

Contributing tutorials

Developers and users of the MESSAGEix framework are welcome to contribute tutorials, according to the following guidelines.
Per the license and CLA, tutorials will become part of the message_ix test suite and will be publicly available.

Developers must ensure new features (including message_ix.tools submodules) are fully documented.
This can be done via the API documentation (this site) and, optionally, a tutorial.
These have complementary purposes:

	The API documentation (built using Sphinx and ReadTheDocs) must completely, but succinctly, describe the arguments and behaviour of every class and method in the code.

	Tutorials serve as structured learning exercises for the classroom or self-study.
The intended learning outcome for each tutorial is that students understand how the model framework API may be used for scientific research, and can begin to implement their own models or model changes.

Coding & writing style

	Tutorials are formatted as Jupyter notebooks in Python or R.

	Commit ‘bare’ notebooks in git, i.e. without cell output.
Notebooks will be run and rendered when the documentation is generated.

	Add a line to tests/test_tutorials.py, so that the parametrized test function runs the tutorial (as noted at #196 [https://github.com/iiasa/message_ix/pull/196]).

	Optionally, use Jupyter notebook slide-show features so that the tutorial can be viewed as a presentation.

	When relevant, provide links to publications or sources that provide greater detail for the methodology, data, or other packages used.

	Providing the mathematical formulation in the tutorial itself is optional.

	Framework specific variables and parameters or functions must be in italic.

	Relevant figures, tables, or diagrams should be added to the tutorial if these can help users to understand concepts.

	Place rendered versions of graphics in a directory with the tutorial (see Location below).
Use SVG, PNG, JPG, or other web-ready formats.

Structure

Generally, a tutorial should have the following elements or sections.

	Tutorial introduction:

	The general overview of tutorial.

	The intended learning outcome.

	An explanation of which features are covered.

	Reference and provide links to any tutorials that are interlinked or part of a series.

	Description of individual steps:

	A brief explanation of the step.

	A link to any relevant mathematical documentation.

	Modeling results and visualizations:

	Model outputs and post-processing calculations in tutorials should demonstrate usage of the message_ix.reporting module.

	Plots to depict results should use pyam [https://github.com/IAMconsortium/pyam/].

	Include a brief discussion of insights from the results, in line with the learning objectives.

	Exercises: include self-test questions, small activities, and exercises at the end of a tutorial so that users (and instructors, if any) can check their learning.

Location

Place notebooks in an appropriate location:

	tutorial/name.ipynb:

	Stand-alone tutorial.

	tutorial/example/example_baseline.ipynb:

	Group of tutorials named “example.”
Each notebook’s file name begins with the group name, followed by a name
beginning with underscores.
The group name can refer to a specific RES shared across multiple tutorials.
Some example names include:

<group>_baseline.ipynb

<group>_basic.ipynb # Basic modeling features, e.g.:
<group>_emmission_bounds.ipynb
<group>_emission_taxes.ipynb
<group>_fossil_resources.ipynb

<group>_adv.ipynb # Advanced modeling features, e.g.:
<group>_addon_technologies.ipynb
<group>_share_constraints.ipynb

<group>_renewables.ipynb # Features related to renewable energy, e.g.:
<group>_firm_capacity.ipynb
<group>_flexible_generation.ipynb
<group>_renewable_resources.ipynb

Contributor License Agreement

Summary and scope

It may seem self-evident that contributing to a project distributed under an open-source license is an implicit permission to anyone for using the contributed code.
However, a formal Contributor License Agreements (CLA) makes contribution terms explicit and provides the project maintainers a record of your agreement to those terms.

A wide range of terms exist in other CLAs, including waiver of moral rights, consequential damages waiver, as-is disclaimer, etc. For this project, we follow the more bare-boned GitHub CLA, which focuses on the three most important clauses: copyright, patent, and source of contribution.

In short, by signing this Contributor License Agreement, you confirm that:

	Anyone can use your contributions anywhere, for free, forever.

	Your contributions do not infringe on anyone else’s rights.

Definition of terms

The following terms are used throughout this agreement:

	You - the person or legal entity including its affiliates asked
to accept this agreement. An affiliate is any entity that controls
or is controlled by the legal entity, or is under common control with it.

	Project - the repositories message_ix and ixmp, and
any derived repositories, projects, or software/code packages.

	Contribution - any type of work that is submitted to a Project,
including any modifications or additions to existing work.

	Submitted - conveyed to a Project via a pull request, commit, issue,
or any form of electronic, written, or verbal communication with GitHub,
contributors or maintainers.

1. Grant of Copyright License

Subject to the terms and conditions of this agreement, You grant to
the Projects’ maintainers, contributors and users a perpetual, worldwide,
unlimited in scope, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to, in particular without being limited to,
reproduce, prepare derivative works of, publicly display, make available,
sublicense, and distribute Your contributions and such derivative works
in whole or in part. Except for this license, You reserve all moral rights,
title, and interest in your contributions.

2. Grant of Patent License

Subject to the terms and conditions of this agreement, You grant to
the Projects’ maintainers, contributors and users a perpetual, worldwide,
unlimited in scope, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use,
offer to sell, sell, import, and otherwise transfer your contributions, in
whole or in part, where such license applies only to those patent claims
licensable by you that are necessarily infringed by your contribution or
by combination of your contribution with the project
to which this contribution was submitted.

If any entity institutes patent litigation - including cross-claim or
counterclaim in a lawsuit - against You alleging that your contribution or
any project it was submitted to constitutes or is responsible for direct or
contributory patent infringement, then any patent licenses granted to that entity
under this agreement shall terminate as of the date such litigation is filed.

3. Source of Contribution

Your contribution is either your original creation or based upon previous work
that, to the best of your knowledge, is covered under an appropriate open
source license. You assure that you are legally entitled to submit your
contribution and grant the above license, or you have clearly identified the
source of the contribution and any license or other restriction (like related
patents, trademarks, and license agreements) of which you are personally aware.
If your employer(s) or employee(s) have rights to intellectual property that
you create, you represent that you have received permission to make the
contributions on behalf of that employer/employee, or that
your employer/employee has waived such rights for your contributions.

Should the licensor be held responsible for any violation of intellectual
property right in relation to your contribution, you shall be fully liable
for damages that may arise.

Reference and License

This Contributor License Agreement and the introductory text is adapted from
the GitHub Contributor License Agreement [https://cla.github.com/agreement], Version 298f3afd updated August 9, 2017.
GitHub granted a CC-BY-4.0 License [https://creativecommons.org/licenses/by/4.0/] to IIASA to use and modify the text of the CLA.

Frequently asked questions

What’s included in a ‘typical’ MESSAGEix model?

A typical MESSAGEix model instance is based on a suite of technologies such as power plants, which represent a reference energy system (RES).
Each technology is characterised by its input and output commodities, costs (investment, fixed and variable components), and other technical/engineering parameters.
The model minimizes the total system cost while meeting a given demand for energy services or commodities.

Which policies and regulatory measures can be included?

The MESSAGEix framework can represent a wide range of mitigation options and policies to analyse transformation pathways.
For example, bounds or taxes on emissions can be defined to shift the system towards a low-emission technology mix.
Upper or lower bounds on deployment of new technologies can also be easily included.

Answered elsewhere

	Under which license is MESSAGEix released? → see README.md or the the documentation index.

	Can I use MESSAGEix for my own analysis? → see User guidelines and notice.

	How can I contribute to the development of the MESSAGEix framework? → see Contributing to MESSAGEix development.

	I have a question not answered here → see the documentation index for information on the community mailing list.

References

	1

	Daniel Huppmann, Matthew Gidden, Oliver Fricko, Peter Kolp, Clara Orthofer, Michael Pimmer, Nikolay Kushin, Adriano Vinca, Alessio Mastrucci, Keywan Riahi, and Volker Krey. The MESSAGEix Integrated Assessment Model and the ix modeling platform (ixmp): An open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environmental Modelling & Software, 112:143–156, 2019. doi:10.1016/j.envsoft.2018.11.012 [https://doi.org/10.1016/j.envsoft.2018.11.012].

	2

	Nils Johnson, Manfred Strubegger, Madeleine McPherson, Simon C. Parkinson, Volker Krey, and Patrick Sullivan. A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system. Energy Economics, 64:651–664, 2016. doi:10.1016/j.eneco.2016.07.010 [https://doi.org/10.1016/j.eneco.2016.07.010].

	3

	Ilkka Keppo and Manfred Strubegger. Short term decisions for long term problems – The effect of foresight on model based energy systems analysis. Energy, 35(5):2033–2042, 2010. doi:10.1016/j.energy.2010.01.019 [https://doi.org/10.1016/j.energy.2010.01.019].

	4

	Alan Sussmann Manne and Richard G Richels. Buying greenhouse insurance: the economic costs of carbon dioxide emission limits. MIT press, 1992. ISBN 0-262-13280-X.

	5

	Sabine Messner and Manfred Strubegger. User’s Guide for MESSAGE III. 1995. URL: http://webarchive.iiasa.ac.at/Admin/PUB/Documents/WP-95-069.pdf.

	6

	Patrick Sullivan, Volker Krey, and Keywan Riahi. Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Reviews, 1(3):157 – 163, 2013. doi:10.1016/j.esr.2013.01.001 [https://doi.org/10.1016/j.esr.2013.01.001].

 Python Module Index

 i |
 m

 		 	

 		
 i	

 	[image: -]
 	
 ixmp	

 	
 	
 ixmp.reporting.computations	

 	
 	
 ixmp.reporting.utils	

 		 	

 		
 m	

 	[image: -]
 	
 message_ix	

 	
 	
 message_ix.models	

 	
 	
 message_ix.reporting.computations	

 	
 	
 message_ix.reporting.pyam	

 	
 	
 message_ix.testing	

 	
 	
 message_ix.tools.add_year	

 	
 	
 message_ix.utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	add() (in module message_ix.reporting.computations)

 	(ixmp.reporting.Reporter method)

 	add_cat() (message_ix.Scenario method)

 	add_file() (ixmp.reporting.Reporter method)

 	add_geodata() (message_ix.Scenario method)

 	add_horizon() (message_ix.Scenario method)

 	add_par() (message_ix.Scenario method)

 	add_product() (ixmp.reporting.Reporter method)

 	add_set() (message_ix.Scenario method)

 	add_spatial_sets() (message_ix.Scenario method)

 	add_tag() (ixmp.reporting.Key method)

 	
 	add_timeseries() (message_ix.Scenario method)

 	add_year() (in module message_ix.tools.add_year)

 	add_year_par() (in module message_ix.tools.add_year)

 	add_year_set() (in module message_ix.tools.add_year)

 	aggregate() (in module ixmp.reporting.computations)

 	(ixmp.reporting.Reporter method)

 	append() (ixmp.reporting.Key method)

 	apply() (ixmp.reporting.Reporter method)

 	as_pyam() (in module message_ix.reporting.computations)

 	(message_ix.reporting.Reporter method)

 	AttrSeries (class in ixmp.reporting.attrseries)

C

 	
 	cat() (message_ix.Scenario method)

 	cat_list() (message_ix.Scenario method)

 	change_scalar() (message_ix.Scenario method)

 	check_keys() (ixmp.reporting.Reporter method)

 	check_out() (message_ix.Scenario method)

 	clean_units() (in module ixmp.reporting.utils)

 	clear_cache() (message_ix.Scenario method)

 	
 	clone() (message_ix.Scenario method)

 	collapse_message_cols() (in module message_ix.reporting.pyam)

 	collect_units() (in module ixmp.reporting.utils)

 	commit() (message_ix.Scenario method)

 	concat() (in module message_ix.reporting.computations)

 	configure() (ixmp.reporting method)

 	(ixmp.reporting.Reporter method)

D

 	
 	data_for_quantity() (in module ixmp.reporting.utils)

 	DEFAULT_CPLEX_OPTIONS (in module message_ix.models)

 	default_key (ixmp.reporting.Reporter attribute)

 	defaults (message_ix.models.MESSAGE attribute)

 	DERIVED (in module message_ix.reporting)

 	describe() (ixmp.reporting.Reporter method)

 	
 	dims (ixmp.reporting.Key attribute)

 	dims_for_qty() (in module ixmp.reporting.utils)

 	disaggregate() (ixmp.reporting.Reporter method)

 	disaggregate_shares() (in module ixmp.reporting.computations)

 	discard_changes() (message_ix.Scenario method)

 	drop() (ixmp.reporting.Key method)

E

 	
 	equ() (message_ix.Scenario method)

 	
 	equ_list() (message_ix.Scenario method)

F

 	
 	finalize() (ixmp.reporting.Reporter method)

 	firstmodelyear (message_ix.Scenario attribute)

 	from_scenario() (ixmp.reporting.Reporter class method)

 	(message_ix.reporting.Reporter class method)

 	
 	from_str_or_key() (ixmp.reporting.Key class method)

 	full_key() (ixmp.reporting.Reporter method)

G

 	
 	get() (ixmp.reporting.Reporter method)

 	get_geodata() (message_ix.Scenario method)

 	
 	get_meta() (message_ix.Scenario method)

 	graph (ixmp.reporting.Reporter attribute)

H

 	
 	has_equ() (message_ix.Scenario method)

 	has_par() (message_ix.Scenario method)

 	
 	has_set() (message_ix.Scenario method)

 	has_solution() (message_ix.Scenario method)

 	has_var() (message_ix.Scenario method)

I

 	
 	idx_names() (message_ix.Scenario method)

 	idx_sets() (message_ix.Scenario method)

 	init_equ() (message_ix.Scenario method)

 	init_par() (message_ix.Scenario method)

 	init_scalar() (message_ix.Scenario method)

 	init_set() (message_ix.Scenario method)

 	init_var() (message_ix.Scenario method)

 	
 	interpolate_1d() (in module message_ix.tools.add_year)

 	interpolate_2d() (in module message_ix.tools.add_year)

 	intpol() (in module message_ix.tools.add_year)

 	is_default() (message_ix.Scenario method)

 	iter_sums() (ixmp.reporting.Key method)

 	ixmp.reporting.computations (module)

 	ixmp.reporting.utils (module)

K

 	
 	Key (class in ixmp.reporting)

 	
 	keys_for_quantity() (in module ixmp.reporting.utils)

L

 	
 	last_update() (message_ix.Scenario method)

 	
 	load_file() (in module ixmp.reporting.computations)

 	load_scenario_data() (message_ix.Scenario method)

M

 	
 	make_dantzig() (in module message_ix.testing)

 	make_dataframe() (in module ixmp.reporting.computations)

 	make_df() (in module message_ix.utils)

 	make_ts() (in module message_ix.utils)

 	make_westeros() (in module message_ix.testing)

 	mask_df() (in module message_ix.tools.add_year)

 	matching_rows() (in module message_ix.utils)

 	MESSAGE (class in message_ix.models)

 	
 	message_ix.models (module)

 	message_ix.reporting.computations (module)

 	message_ix.reporting.pyam (module)

 	message_ix.testing (module)

 	message_ix.tools.add_year (module)

 	message_ix.utils (module)

 	MESSAGE_MACRO (class in message_ix.models)

 	multiply_df() (in module message_ix.utils)

N

 	
 	name (ixmp.reporting.Key attribute)

 	(message_ix.models.MESSAGE attribute)

 	(message_ix.models.MESSAGE_MACRO attribute)

P

 	
 	par() (message_ix.Scenario method)

 	par_list() (message_ix.Scenario method)

 	preload_timeseries() (message_ix.Scenario method)

 	
 	product() (ixmp.reporting.Key class method)

 	PRODUCTS (in module message_ix.reporting)

 	PYAM_CONVERT (in module message_ix.reporting)

R

 	
 	read_config() (ixmp.reporting.Reporter method)

 	read_excel() (message_ix.Scenario method)

 	read_version() (message_ix.models.MESSAGE class method)

 	remove_geodata() (message_ix.Scenario method)

 	remove_par() (message_ix.Scenario method)

 	remove_set() (message_ix.Scenario method)

 	remove_solution() (message_ix.Scenario method)

 	remove_timeseries() (message_ix.Scenario method)

 	
 	rename() (message_ix.Scenario method)

 	RENAME_DIMS (in module ixmp.reporting.utils)

 	REPLACE_UNITS (in module ixmp.reporting.utils)

 	Reporter (class in ixmp.reporting)

 	(class in message_ix.reporting)

 	REPORTS (in module message_ix.reporting)

 	run() (message_ix.models.MESSAGE method)

 	run_id() (message_ix.Scenario method)

S

 	
 	scalar() (message_ix.Scenario method)

 	Scenario (class in message_ix)

 	set() (message_ix.Scenario method)

 	set_as_default() (message_ix.Scenario method)

 	set_filters() (ixmp.reporting.Reporter method)

 	
 	set_list() (message_ix.Scenario method)

 	set_meta() (message_ix.Scenario method)

 	slice_df() (in module message_ix.tools.add_year)

 	solve() (message_ix.Scenario method)

 	sum() (in module ixmp.reporting.computations)

T

 	
 	tag (ixmp.reporting.Key attribute)

 	
 	timeseries() (message_ix.Scenario method)

 	to_excel() (message_ix.Scenario method)

U

 	
 	unit_uniform() (in module message_ix.tools.add_year)

 	
 	UNITS (in module ixmp.reporting.utils)

V

 	
 	var() (message_ix.Scenario method)

 	var_list() (message_ix.Scenario method)

 	
 	vintage_and_active_years() (message_ix.Scenario method)

 	visualize() (ixmp.reporting.Reporter method)

W

 	
 	write() (ixmp.reporting.Reporter method)

 	(message_ix.reporting.Reporter method)

 	
 	write_report() (in module ixmp.reporting.computations)

 	(in module message_ix.reporting.computations)

Y

 	
 	years_active() (message_ix.Scenario method)

 _images/ix_components.png
Web-based user interface
Features

v Visualization of input data & model results
v Intuitive drag & drop tables and graphs
v Data import & export usmg MS Excel

Powered by E E E

Reference data

Historical time series,
projections of key drivers,
technology specifications, etc.

Scientific programming API

Seamless integration with powerful, open
and flexible scientific programming languages
v/ Efficient implementation of workflows
v’ Standardized interface for data processing

1x Modeling Platform

Data processing

Downscaling & aggregation,
harmonization across sources

@ python” (R

Model data

Structured input data,
complete model results,
standardized reporting

Database infrastructure

Suite of mathematical models

MESSAGE;x & MACRO
Versatile spatial systems-economic model

v Perfect-foresight or recursive-dynamic approach
v Easy to add new features & extensions
v Flexible spatial & temporal detail - GAMS

Water—land integration

Supports both a centralized data hub
and local databases to work “on the fly"

£ oRACLE

Java

Powered by

All model codes & workflow scripts

QGitHub are under version control

for efficient collaboration

_images/ix_features.png
Transparency, ‘
discoverability and

intelligibility of
scientific research

_static/IIASA_logo.png
International Institute for
Applied Systems Analysis

ITASA

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 The MESSAGEix framework

 		
 Installation

 		
 Install GAMS

 		
 Install MESSAGEix via Anaconda

 		
 Install MESSAGEix from source

 		
 Configure model files

 		
 Tutorials

 		
 Preparation

 		
 Getting tutorial files

 		
 Running tutorials

 		
 Westeros Electrified

 		
 Austrian energy system

 		
 MESSAGEix framework overview

 		
 Supported features

 		
 Running a model

 		
 Run script for MESSAGEix (stand-alone)

 		
 Run script for MESSAGEix and MACRO

 		
 Python & R API

 		
 ixmp package

 		
 message_ix package

 		
 Model classes

 		
 Utility methods

 		
 Testing utilities

 		
 Mathematical specification

 		
 Sets and mappings definition

 		
 Sets in the MESSAGEix implementation

 		
 Category types and mappings

 		
 Mappings sets

 		
 Mapping sets (flags) for bounds

 		
 Mapping sets (flags) for fixed variables

 		
 Parameter definition

 		
 General parameters of the MESSAGEix implementation

 		
 Parameters of the Resources section

 		
 Parameters of the Demand section

 		
 Parameters of the Technology section

 		
 Parameters of the Emission section

 		
 Parameters of the Land-Use model emulator section

 		
 Parameters of the Share Constraints section

 		
 Parameters of the Relations section

 		
 Fixed variable values

 		
 Mathematical formulation (core model)

 		
 Notation declaration

 		
 Objective function

 		
 Regional system cost accounting function

 		
 Resource and commodity section

 		
 Technology section

 		
 System reliability and flexibility requirements

 		
 Constraints on shares of technologies and commodities

 		
 Emission section

 		
 Land-use model emulator section

 		
 Section of generic relations (linear constraints)

 		
 Solve statement workflow

 		
 Perfect-foresight model

 		
 Recursive-dynamic and myopic model

 		
 Standard output reports

 		
 Auxiliary investment parameters

 		
 Levelized capital costs

 		
 Construction time accounting

 		
 Investment costs beyond the model horizon

 		
 Remaining installed capacity

 		
 MACRO - Mathematical formulation

 		
 Notation declaration

 		
 Decision variables

 		
 Developing MESSAGEix models

 		
 Efficiency - output- vs. input defined technologies

 		
 Example 1 - Power plants

 		
 Example 2 - Refineries

 		
 Example 3 - Combined power- and heat plants

 		
 Debugging and data validation

 		
 Pre-processing data validation

 		
 Identification of infeasibilities

 		
 Postprocessing and reporting

 		
 Terminology

 		
 Basic usage

 		
 Customization

 		
 Reporters

 		
 Computations

 		
 Configuration

 		
 Utilities

 		
 Model-building tools

 		
 Add model years to an existing Scenario

 		
 User guidelines and notice

 		
 1. Understand the code license

 		
 2. Cite the scientific publication

 		
 3. Use the naming convention for new model instances

 		
 4. Give notice of publication

 		
 References

 		
 Contributing to MESSAGEix development

 		
 Filing issues for bugs and enhancements

 		
 Contributing code via Github PRs

 		
 1. Choose a repository

 		
 2. Fork, branch, and open a pull request

 		
 3. Ensure checks pass

 		
 4. Review

 		
 Other tips

 		
 Code style

 		
 Versions and releases

 		
 Contributing tutorials

 		
 Coding & writing style

 		
 Structure

 		
 Location

 		
 Contributor License Agreement

 		
 Summary and scope

 		
 Definition of terms

 		
 1. Grant of Copyright License

 		
 2. Grant of Patent License

 		
 3. Source of Contribution

 		
 Reference and License

 		
 References

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/ix_components.png
Web-based user interface
Features

v Visualization of input data & model results
v Intuitive drag & drop tables and graphs
v Data import & export usmg MS Excel

Powered by E E E

Reference data

Historical time series,
projections of key drivers,
technology specifications, etc.

Scientific programming API

Seamless integration with powerful, open
and flexible scientific programming languages
v/ Efficient implementation of workflows
v’ Standardized interface for data processing

1x Modeling Platform

Data processing

Downscaling & aggregation,
harmonization across sources

@ python” (R

Model data

Structured input data,
complete model results,
standardized reporting

Database infrastructure

Suite of mathematical models

MESSAGE;x & MACRO
Versatile spatial systems-economic model

v Perfect-foresight or recursive-dynamic approach
v Easy to add new features & extensions
v Flexible spatial & temporal detail - GAMS

Water—land integration

Supports both a centralized data hub
and local databases to work “on the fly"

£ oRACLE

Java

Powered by

All model codes & workflow scripts

QGitHub are under version control

for efficient collaboration

_static/ix_features.png
Transparency, ‘
discoverability and

intelligibility of
scientific research

_static/logo_white.png
SEIEAEE Tol
S Analysis

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

