

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/mep2/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/mep2/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Source Roadmap

	docs Documentation and guidelines

	logs File logs

	src Source code of the core, services and drivers
	config Configuration files

	drivers Hardware abstraction layer, drivers and driver management core

	services Abstraction layer on to of drivers, algorithms, logic etc.

	types Custom data types, classes, important for platform

	utils General purpose libraries, functions and classes

	strategies Source code for strategies (to be replaced in separated repo)

	test Unit tests

	tools Tools that can help us to develop software easily

SkeletonDriver

Let’s start with very simple driver which do nothing.
SkeletonDriver meets minimal requirements to become a driver.

class SkeletonDriver {
 constructor(name, config) {

 }

 provides() { return []; }
}

Each driver gets variables name and config in constructor. name is unique
name of each driver instance, and config is configuration object for
instance of the driver.

Method provides() can return empty array or array of strings which
represents data that can be provided by a driver. If driver provides
some type of data it must meets a requirements for that type of data. More
will be explained.

All drivers are located in directory /drivers and by convention have
dedicated directory, eg. SkeletonDriver is stored in
/drivers/skeleton/SkeletonDriver.js.

Every driver must be added in configuration file. By adding our driver
in configuration file DriverManager knows that our driver should be instantiated.

...
Drivers: {
 ...
 SkeletonDriverInstance: {
 class: 'drivers/skeleton/SkeletonDriver',
 init: true
 }
}

An example of a driver in configuration file. SkeletonDriverInstance
in this case is name of the instance of SkeletonDriver. class is path
to SkeletonDriver.js and init field describes if driver should be
instantiated or not.

SimpleDriver

The code above is example of a very simple driver.

const driverManager = Mep.require('drivers/DriverManager').get();

class SimpleDriver {
 constructor(name, config) {
 this.modbusDriver = driverManager.getDriver('ModbusDriver');
 }

 provides() { return ['terrain']; }
}

TODO: Explain all segments of the SimpleDriver

 Currently simulator is very basic, it has just a few features. In the future
we should find more user friendly way to use simulator and to implement more features.

How to use simulator?

To start simulator you have to run ./simulator from the root directory

./simulator

Alternative command (for windows environment):

npm run-script simulator

It will start WebSocket server & open simulator in your default web browser.

Now our simulator is ready and waiting for commands. To use MEP (our brain application)
to control robot in simulator just run ./mep with simulation flag (-s):

./mep -s

Alternative command (for windows environment):

npm run-script test_simulation

Robot should move on the screen.

[image: Simulator]

	Install Microsoft Visual C++ [https://www.microsoft.com/en-us/download/details.aspx?id=48145]

	Install Python 2.x [https://www.python.org/downloads/]

	Install Node.js [https://nodejs.org/en/download/current/]

	Run npm install -g jsdoc mocha node-gyp

	RUn npm install

Telemetry

As a space shuttle all is automatic during launch, Robot should have a mean to get all telemetry out of the box and send
them to space nearby for team to analyze, understand and act to adapt or correct parameters for the next launch.

A Telemetry system is composed by :

	a set of robot modules with real time KPI (Key Point Indicators)

	a mean to transmit efficiently information to base

	a base telemetry reception to record all information

	a set of dashboards to view and analyze data

KPI Probes

Each Robot modules has his own set of KPI based on module functionality.

For example, a battery device has following KPI :

	Charge

	Temperature

	Battery high and low voltage threshold

	Real time Amperage consumption

Each of this measures can be collected via Probes and transmitted to base.

Efficient Transmission System

Transmission between Probe and outer world should have a limited effect on Robot System and capabilities.
Like a droid in the dark, standing alone, it must transmit data at a fix rate but does not requires any external action
to work. Like UDP transmission : sending bottles in the sea without acknowledging any response.

Transmission should also be efficient in sent information, this means data format has to be tuned to avoid unnecessary
data structure decorator to minimize telemetry packet size.

Needs between telemetry information, packet optimization, data transmission should be optimal vs System computation and
resources consumption.

Base Data Recorder

Data Recorder receive data from anywhere and log them into data storage.
Data recorder must be :

	Simple and reliable

	Able to receive Telemetry from multiple robots at the same time (origin must be logged)

	Store received information even if data are corrupted or partial

	Provide a way to extract recorded information either in real time or request based

Telemetry Dashboards

Recording data is a key function, but without any dashboard to let Human understand what’s going on it’s useless.
Dashboard should be able to :

	Provide raw data access

	Provide visual information easy to understand

Implementation

KPI Probes

Probes should transmit a metric packet with :

	Origin

	Metric date

	A set of

	Metric type

	Metric value

Logger

Please don’t use console.log(message)! Instead of that use built in logging
system Mep.Log.debug(module, message). For more details please check reference for
Log class.

Logger configuration

Configuration can be done via configuration file located under src/config directory.

Sample configuration:

"Log": {
 "console" :{
 "active" : true,
 "outputMode" : "short",
 "color": true
 },
 "file" :{
 "active" : false,
 "file" : "javascript.log",
 "period" : "1d",
 "count" : 3
 },
 "elasticsearch": {
 "active" : false,
 "level" : "debug",
 "host" : "http://localhost:9200",
 "indexPattern" : "[mep2_logs-]YYYY-MM-DD",
 "type": "log"
 }
},

Loggers

console

Console logger parameters:

	active (false): true/false : activate console logger

	outputMode (short): short|long|simple|json|bunyan see bunyan-format [https://github.com/thlorenz/bunyan-format]

	color (true): toggles colors in output

By default log level is debug.

file

File logger parameters:

	active (false): true/false : activate file logger

	file (javascript.log): log filename, either an absolute path, or relative to ./logs directory

	period (1d): rotate log every day

	count (3): backup only

By default log level is debug.

elasticsearch

	active (false): true/false : activate elasticsearch logger

	level (debug): debug/info : debug level

	host (http://localhost:9200) : elasticsearch server http address

	index (mep2_logs) : elasticsearch index name. (no pattern allowed here)

	indexPattern ([mep2_logs-]YYYY-MM-DD) : elasticsearch index pattern. Can be a static name or a dynamic with YYYY-MM-DD pattern.

	type (log): elasticsearch type

If index is configured, indexPattern is ignored.

Performance Parameter

Log are impacted by “performance” parameter, if “performance” == true : Log level is limited to “info” for all loggers.

 “ElasticSearch is a distributed, open source search and analytics engine, designed for horizontal scalability, reliability, and easy management.”

1. Install ElasticSearch

This installation guide for Ubuntu, but it is very similar on other OS-s

wget https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/deb/elasticsearch/2.4.0/elasticsearch-2.4.0.deb
sudo dpkg -i elasticsearch-2.4.0.deb

2. Add a few lines in file

Open file

sudo gedit /etc/elasticsearch/elasticsearch.yml

and add those lines

http.cors.enabled: true
http.cors.allow-origin: "*"

3. Start ElasticSearch

sudo /etc/init.d/elasticsearch restart

4. Override config in MEP

Run ./mep with elasticHost parameter./mep -e=[host_ip_address].9200

5. Use ElasticSearch GUI

Find and pick your favorite ElasticSearch GUI and start exploring the logs.

	ElasticHQ (http://www.elastichq.org/app/index.php)

	Head (https://github.com/mobz/elasticsearch-head)

Previous Memristor’s software

The most of concepts are taken by previous software built by Pandurov.

ROS

Publish/Subscribe system is inspired by ROS.

Android

Like Android’s Service Manager and generally managers in Android platform
our software has DriverManager, ServiceManager, LaserManager...
Necessarily module name in Android’s Log class is great, and we will
also use it.

Yii

Ability to change module’s class path in config file is implemented in
Yii framework. Also as Yii has global object Yii we have global object
Mep which provides custom require function, access to configuration
and logging system.

Alexandre Guillon

Alexandre has been helping a lot during software design.

Drivers

A driver provides a software interface to hardware devices, enabling
services and users to access hardware functions without needing
to know precise details of the hardware being used.

The configuration file determinate which driver is going to be used and
which parameters to use. It is very useful when we are speaking about
rapid hardware changes and using the same core for multiple robots.

Services

A service presents high level of abstraction and it refers to a set of
software functionalities that can be for different purposes. The service
implements complex algorithms to collect, synthesize and process data
from drivers and it also provides interface to control the robot.

In short, services are the brain of the platform. They are hardware
independent and all services are always available. Using driver
provide mechanism services are able to collect data from unlimited
number of drivers without needing to reprogram the service.

 #About

Our goal is to make a modular platform for developing robots for Eurobot competition.

Big picture simple

[image: MEP Simple]

Big picture full

[image: MEP Full]

Modular

Every driver or service can be easily replaced and tested separately.

Team orientated

There is big picture & every module is separated.

Easy & fast to make a change

Because it is JIT you don’t have compile and transfer over the network

Fast learning curve

Software should be well organized and documented.

Tested

Every module should be tested using Unit tests.

Package manager

Don’t rewrite software, if there is already packet written use it.

Hardware independent

Services should be independent of drivers, practically that means if
we disable LidarDriver TerrainService should work just fine.

Logging system

Elastic Search & Kibana will help us to find a bugs.

Logger

Please don’t use console.log(message)! Instead of that use built in logging
system Mep.Log.debug(module, message). For more details please check reference for
Log class.

 _images/mep-simple.png
Dash
(simulator, terrain status, statstcs &
logs)

uop

core
(stategies, algorithms & drivers to
cantrol the robo)

can

Electronics
(motion board, actuator control board,
tidar board)

_static/minus.png

_images/mep-full.png
e
e
L (tsks,whal oot shoukd co)
Senices
(pathiicing, vitual e, schectier)
Drvers
(CAN bus, UART, motin, arm..)
canus
e
LidarBowra | | Actuator Control || yyoion goara
(AVR) b [&8)
R

_images/simulator.gif

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

