
MEMCloud Documentation
Release 0.0.1

Ashray Manur

Jan 20, 2018

Contents

1 Contents: 3
1.1 MEMCloud Architecture . 3

1.1.1 Goals . 3
1.1.2 Architecture Overview . 3
1.1.3 Setting up MEMCloud (MEMBackend, IoT Engine and DBs) on a local machine/server for

testing and development . 4
1.2 Production Server Details . 6

1.2.1 Load Balancer Implementation . 7
1.3 Directory Structure . 7
1.4 Back-end File Structure . 8

1.4.1 IoT Unit . 8
1.4.2 Chief Microgrid Operator (CMO) . 8
1.4.3 Microgrid Supervisor . 8
1.4.4 Status Monitor (SM) . 9
1.4.5 Exchanges and Queues . 9
1.4.6 Backend Flow . 12

1.5 Front-end File Structure . 14
1.5.1 Web dashboard file structure . 14
1.5.2 How does it work? . 15

i

ii

MEMCloud Documentation, Release 0.0.1

MEMCloud is the cloud platform for managing microgrids.

Contents 1

MEMCloud Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Contents:

1.1 MEMCloud Architecture

1.1.1 Goals

• Make it a platform based solution, allowing 3rd party developers to plug-and-play different services.

• Provide end-to-end capabilities so that users don’t have to develop missing pieces

• Design suitable for energy systems (microgrids, smartgrids, building automation, IoT etc)

1.1.2 Architecture Overview

MEMCloud is a component of SEUP. Before you read about MEMCloud, check out the following resources to know
more about SEUP and how MEMCloud fits into the SEUP puzzle

• SEUP Docs

• SEUP Publications

3

http://seupdocs.readthedocs.io
http://seupdocs.readthedocs.io/en/latest/introduction.html#seup-publications

MEMCloud Documentation, Release 0.0.1

MEMCloud consists of five main components that include storage, RESTful Services, IoT Unit, Microgrid Energy
Manager (MEM) and MEMWeb.

• RESTful service - serves the MEMWeb. It exposes a suite of REST APIs that MEMWeb can use to integrate
with the backend services.

• IoT Unit - The IoT unit on MEMCloud acts as an interface between HEMCore and other components of MEM-
Cloud

• MEM (Microgrid Energy Manager) - The MEM is the core of the backend infrastructure. It houses applications
which are responsible for operation, management, control, and optimization of all the MGOs. These applications
are developed by users and are deployed through MEMWeb

1.1.3 Setting up MEMCloud (MEMBackend, IoT Engine and DBs) on a local ma-
chine/server for testing and development

MEMCloud consists of two main components as far as code is concerned MEM WebApp and the code which corre-
sponds to the IoT Engine and MEMBackend

Stack and Infrastructure details

• Node.js for both front-end(with Express) and back-end

• Angular2 along with a host of other libraries for our Web applications

• MySQL for Web application related stuff.

• MongoDB for IoT related stuff.

• RabbitMQ for our messaging service

• Docker for containers

4 Chapter 1. Contents:

MEMCloud Documentation, Release 0.0.1

Setting up on your local machine

Fork a branch from production. This is the latest branch

• Once you clone the repository, mem is the main directory. Under mem, the distribution is as follows

– app and public corresponds to the Web application/User Interface. The main file which is use to start
the Web server is app.js. Note: The web app has environment dependencies at this point runs only on
an AWS environment (it uses googleOAuth, AWS load balancer etc.). Work has to be done to configure to
run on a local system.

– Running the back-end which consists of all the IoT engine, MEMBackend and databases is relatively easier
on local system

– cloud is the main directory which has all files.

– clients directory has the software clients (which emulate the hardware)

– package.json is our Node.js dependencies.

• PART 1 - Installation and setting up of MEMBackend and IoT Engine

– Setup a separate VM (maybe Ubuntu) in case things screw up. We run Ubuntu server 14.04 on
AWS.

– Install node.js version v6.9.x from https://nodejs.org/en/. We use version v6.9.2

– Install MYSQL You can use this guide (or any). We use version 5.5.44-0ubuntu0.14.0.4.1 -
https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-ubuntu-14-04

– Install MongoDB using this guide (or any) - https://www.digitalocean.com/community/tutorials/
how-to-install-mongodb-on-ubuntu-14-04. We use version 3.4.1

– Install the latest version of RabbitMQ using sudo dpkg -i rabbitmq-server_<version number>_all.deb.
You can use this https://www.rabbitmq.com/install-debian.html. We use version 3.6.5

– Configure RabbitMQ replace /etc/rabbitmq/rabbitmq.config with mem/cloud/
rabbitmq.config

– To clear all exchanges and start the queues - use this sudo rabbitmqctl stop_app && ``sudo
rabbitmqctl reset && sudo rabbitmqctl start_app

– In mem/ directory, run sudo npm install. This installs all the package.json dependencies. Be-
fore starting the backend server, the log path has to be updated as per your local system in mem/cloud/
config.js

– Change line 4 : var logPath = "./log/"; to whichever directory you want to collect logs in.

– Import the MySQL and MongoDB schema (copy of both these databases will be provided). The mongoDB
backup is mongo_backup_feb_3_2017. To use this as your database, you can run mongorestore
mongo_backup_feb_3_201``7. The mysql file is ``mysql_backup_feb_3_2017
in the mysql directory.

• PART2 - Creating and adding keys

– Create a new directory keys in mem/cloud/

– We need to create a self-signed certificate for TLS.

* In mem/cloud/keys, execute openssl req -x509 -newkey rsa:4096 -nodes
-keyout private-key.pem -out public-cert.pem -days 365

* This will ask for a bunch of information. You can enter anything arbitrary (for testing and local
development).

1.1. MEMCloud Architecture 5

https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-mongodb-on-ubuntu-14-04
https://www.rabbitmq.com/install-debian.html

MEMCloud Documentation, Release 0.0.1

* It then generates two files public-cert.pem and private-key.pem.

* Copy public-cert.pem to mem/clients/python

• PART3 - Running server and client

– Uncomment line 41 (console.log) in cloud.js in mem/cloud. This will show the data the cloud is
receiving.

– To run the server, execute sudo node run.js in the mem/cloud directory

– The console show the data received by the cloud (Hold on! You have to start the clients. See next step).

– Before you start the clients, comment line 21 (T="memcloud.io",23123) and uncomment line 20
(T="localhost",23123). This ensures your clients connects to the local server that is running on
your machine.

– Now start the clients. The clients (which emulate actual hardware) can be found in mem/clients/
python.

– To start the clients run python clients_tls.py 4 in mem/clients/python. This starts 4
clients.

– The console shows the data the client is sending.

• Issues you might face

– Installing Mongodb 3.4 on 32 bit ubuntu : Refer below link https://docs.mongodb.com/manual/tutorial/
install-mongodb-on-linux/

– While running server, you might get an error Cannot find module bunyan & amqplib/
callback_api. To resolve this :In mem/ run sudo npm install bunyan;sudo npm
install amqplib

– Change logpath from ./log to appropriate path in client_tls.py file

– In databaseService.js :Change the username and password to match the one you used to when
creating mysql

1.2 Production Server Details

• Domain: memcloud.io, service provider - GoDaddy

• Admin email: admin@memcloud.io, service provider - GoDaddy

• Server hosting: Amazon EC2, service provider - AWS

• Load Balancing: Amazon Elastic Load Balancing (ELB), service provider - AWS

• Storage: 60GB Amazon Elastic Block Storage (EBS), service provider - AWS

• SSL/TLS for web applications: AWS Certificate Manager, service provider - AWS

6 Chapter 1. Contents:

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-linux/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-linux/
mailto:admin@memcloud.io

MEMCloud Documentation, Release 0.0.1

1.2.1 Load Balancer Implementation

1.3 Directory Structure

This is the directory structure for the entire MEMCloud repository

In the mem directory

• app - this contains all the files for the web applications

– models- the html and typescript for the front-end

* dashboard- this contains all the typescript stuff. See Web dashboard file structure for more details
about the web dashboard files.

* *.html - all the html files for displaying static content

– appConstant.js - constants for the HTTP related services

– appDatabaseService.js - This should be deleted. This is the obsolete version of
webDatabaseService.js.

– routes.js - this handles all the routes for the web application. Pretty straightforward.

– webDatabaseService.js - This acts as an interface between the RESTful service and database. Any
request to pull certain info from the database is routed through this.

• clients - files for emulating the HEM clients

• cloud - contains all the files for the MEM

• config - contains configuration file for the web app

• log - contains log for the web app

• modules - this is dummy for now.

1.3. Directory Structure 7

MEMCloud Documentation, Release 0.0.1

• public - contains all the public facing files - stylesheets, javascript modules, html etc.

• app.js - this file starts the web app

• package.json - all the JS module dependencies

1.4 Back-end File Structure

1.4.1 IoT Unit

• Responsible for sending and receiving data to/from HEM

• Also performs authentication and is responsible for encryption and decryption of data

Files

• cloud.js

• commandProcessor.js

• commandSender.js

• msgTable.js

• socketTable.js

• msgPacket.js

1.4.2 Chief Microgrid Operator (CMO)

• Creates one supervisor (microgrid.js) for each microgrid. Supervisor for a particular microgrid is created
when the first HEM of that microgrid sends data.

• The CMO for now is microgrids.js

Files

• microgrids.js

1.4.3 Microgrid Supervisor

• Creates a message bus for a microgrid so that worker nodes can subscribe to it and get live data.

• When a job comes to the supervisor, it creates a worker node and asks it to run.

• For now, this is microgrid.js in mem/cloud/microgrid

Files

• microgrid.js

8 Chapter 1. Contents:

MEMCloud Documentation, Release 0.0.1

1.4.4 Status Monitor (SM)

• Maintains status of all HEMs for the REST services. Mainly for the web application

Files

• hemGlobalEvents.js

• hemStatusMonitor.js

• hemStatusObj.js

1.4.5 Exchanges and Queues

• We have two types of exchanges– fanout and topic

• Fanout distributes messages to all connected queues. It does dummy broadcasting

• Topic distributes messages selectively based on routing key

1.4. Back-end File Structure 9

MEMCloud Documentation, Release 0.0.1

10 Chapter 1. Contents:

MEMCloud Documentation, Release 0.0.1

1.4. Back-end File Structure 11

MEMCloud Documentation, Release 0.0.1

1.4.6 Backend Flow

12 Chapter 1. Contents:

MEMCloud Documentation, Release 0.0.1

1.4. Back-end File Structure 13

MEMCloud Documentation, Release 0.0.1

1.5 Front-end File Structure

1.5.1 Web dashboard file structure

• gulpfile.js - this contains all the info on how to compile typescript, how to run the app etc.

• tsconfig.json - this is the config file for gulp

• process/typescript - this contains all the typescript files for Angular

– main-dash.module.ts - this is the root module which tells Angular how to assemble the application.
Refer - https://angular.io/guide/bootstrapping

– main-dash.component.ts - this is the root component of what will become a tree of nested compo-
nents.

– main-routing.module.ts - this module takes care of navigating from one view to another.
This is the main routing module for the entire application. Refer https://angular.io/guide/router#
milestone-2-routing-module

Parent and Child Hierarchy

• main-dash.module.ts

• main-routing.module.ts

• main-dash.component.ts

– modal.component.ts and modal-http.service

* hem-list.component.ts and hem-list.service

· hem-single.component.ts

14 Chapter 1. Contents:

https://angular.io/guide/bootstrapping
https://angular.io/guide/router#milestone-2-routing-module
https://angular.io/guide/router#milestone-2-routing-module

MEMCloud Documentation, Release 0.0.1

1.5.2 How does it work?

• As soon as the user logins in, dash.html is called which in-turn calls <main-dash></main-dash>. This
triggers the creation of main-dash.component.ts module.

• This module is then created and calls modal.component.ts which then brings up the modal if the user has
not been validated through a MEMID. It checks if the user has validated through preModalCheck(). If not,
it brings up a form(modal) through modal.html in mem/public/dash/partials. The validation and
submission of the form happens through preModalCheck() and validateForm(). It uses the service
modal-http.service to communicate with the REST server. If the ID is valid and everything is okay, it
brings up <hem-list></hem-list> which is in the <div> with the id show. If things dont work out, all
the html belonging to that <div is hidden.

• Calling <hem-list></hem-list> created a new component hem-list.component.ts. The HTML
associated with this is dash/partials/hemlist.html. The service associated with this is hem-list.
service.ts. This service is used to get all the information for all HEMs. The component gets the data from
HEM every few seconds using the service and then displays that data. It tells you the HEM ID, active status and
online status of each HEM‘‘

• When you click on one of the HEMs, navigateHem() from hem-list.component is called which then
passes that info to the router.

• hem-viewControl.service - how does that work? Refer to hem-list.component.ts and
hem-list.service.ts.

• The main-routing.module.ts then matches this route and in this case, creates a new compo-
nent hem-single.component. The router matches that URL to the route path s and displays
the component after a RouterOutlet that you’ve placed in the host view’s HTML. In this case that
is hem-list.html.Refer https://angular.io/guide/router#router-outlet, https://stackoverflow.com/questions/
40476814/angular2-target-specific-router-outlet/40477582#40477582

• For this particular route, hem-single.component.ts is created.

Angular Resources

• Angular quickstart - https://angular.io/guide/quickstart

1.5. Front-end File Structure 15

https://angular.io/guide/router#router-outlet
https://stackoverflow.com/questions/40476814/angular2-target-specific-router-outlet/40477582#40477582
https://stackoverflow.com/questions/40476814/angular2-target-specific-router-outlet/40477582#40477582
https://angular.io/guide/quickstart

	Contents:
	MEMCloud Architecture
	Goals
	Architecture Overview
	Setting up MEMCloud (MEMBackend, IoT Engine and DBs) on a local machine/server for testing and development

	Production Server Details
	Load Balancer Implementation

	Directory Structure
	Back-end File Structure
	IoT Unit
	Chief Microgrid Operator (CMO)
	Microgrid Supervisor
	Status Monitor (SM)
	Exchanges and Queues
	Backend Flow

	Front-end File Structure
	Web dashboard file structure
	How does it work?

