

Welcome to mdl’s documentation!

mdl is a lightweight Python 3 based REST API that stores
and/or retrieves timestamped data. It runs on Linux.

We recommend that you read as much as you can on installation, configuration, operation and the API to get a good understanding of the software.

The introduction will provide useful background information too.

Contents:

	Introduction
	Features

	Oversight

	Installation
	Dependencies
	Ubuntu / Debian / Mint

	Centos / Fedora

	Installation
	Clone the Repository

	Setup the Database

	Run Installation Script

	Next Steps

	Configuration
	mdl Configuration Example

	Logrotate Configuration

	Next Steps

	Operation
	Testing Operation After Installation
	Start the API Interactively

	Test API Functionality

	Stop After Successful Testing

	API Operation
	The API as a System Daemon

	The API as a User Process

	Using the API
	Why Infoset-ng Expects UTC Timestamps

	Posting Data to the API
	Route /mdl/api/v1/mobile/post/drivercoordinates

	Retrieving Data from the API
	Overview

	Routes
	Route /mdl/api/v1/mobile/get/coordinates/lastcontactdrivers

	Troubleshooting
	Ingester Troubleshooting
	Ingester Logging

	Testing Ingester Operation

	Invalid Agents

	API Troubleshooting
	API Logging

	Poor or Blocked Network Connectivity

	Best Practices
	Use a Web Proxy Server
	Nginx Configuration

	Apache Configuration

	Community
	Mailing list

	Irc

	Issue Tracking

	Security Issues

Indices and tables

	Index

	Module Index

	Search Page

Introduction

MDL is a middleware subsystem for mobile taxi applications.

There’s a lot to know about mdl which we’ll summarize here.

Features

mdl has the following features:

	Written in python, a modern language.

	Easy configuration.

	Uses the well known Flask webserver for accepting data and
responding to requests.

	mdl has a number of fault tolerant features aimed at
making it resilient in unstable computing environemnts.

	MariaDB / MySQL database backend

	Database connection pooling to reduce database load.

	
	The mdl configuration is entirely stored in files. This

	allows it to collect data in the absense of a database, such as
during maintenance or an outage.

	
	Backups are simple. Just save the entire contents of the

	mdl directory tree including hidden files, and save a
copy of the database for your performance data.

We are always looking for more contributors!

Oversight

mdl is a student collaboration between:

	The University of the West Indies Computing Society. (Kingston,
Jamaica)

	The University of Techology, IEEE Student Branch. (Kingston, Jamaica)

	The Palisadoes Foundation http://www.palisadoes.org

And many others.

Installation

This section outlines how to install and do basic configuration of mdl.

Dependencies

mdl has the following requirements:

	python >= 3.5

	python3-pip

	MySQL >= 5.7 OR MariaDB >= 10.0

It will not work with lower versions.

Ubuntu / Debian / Mint

The commands for installing the dependencies are:

$ sudo apt-get -y install python3 python3-pip python3-dev memcached

Select either of these commands to install MySQL server or MariaDB server

$ sudo apt-get -y install mysql-server
$ sudo apt-get -y install mariadb-server

Centos / Fedora

The commands for installing the dependencies are:

$ sudo dnf -y install python3 python3-pip python3-dev memcached

Select either of these commands to install MySQL server or MariaDB server

$ sudo dnf -y install mysql-server
$ sudo dnf -y install mariadb-server

Installation

Installation is simple. There are three basic steps.

	Clone the Repository

	Setup the Database

	Run the Installation Script

This will now be explained in more detail.

Clone the Repository

Now clone the repository and copy the sample configuration file to its
final location.

$ git clone https://github.com/PalisadoesFoundation/mdl
$ cd mdl

Setup the Database

Next create the MySQL or MariaDB database. Make sure the database server is running.

$ mysql -u root -p
password:
mysql> create database mdl;
mysql> grant all privileges on mdl.* to mdl@"localhost" identified by 'PASSWORD';
mysql> flush privileges;
mysql> exit;

Note Remember the value you select for PASSWORD. It will be required when you edit the mdl configuration file later.

Run Installation Script

Run this command and follow the prompts.

$ bin/mdl-cli install

Note The setup script will make mdl to be a system daemon if it is run as the root user (System Daemon Mode). If it is not run as root you will have to manually start the mdl processes after each reboot. (Interactive Mode)

Next Steps

It is now time to review the various configuration options.

Configuration

It is important to have a valid configuration file in the etc/
directory before starting data collection. The installation automatically creates a default version that may need to be edited. This page explains the various configuration parameters.

The examples/etc directory includes a sample reference file.

mdl Configuration Example

In this example we explain each parameter in the configuration file.

The main section governs the general operation of mdl.

main:
 log_directory: /home/mdl/log
 log_level: debug
 interval: 300
 listen_address: 0.0.0.0
 bind_port: 6000
 sqlalchemy_pool_size: 10
 sqlalchemy_max_overflow: 10
 memcached_hostname: localhost
 memcached_port: 11211
 db_hostname: localhost
 db_username: mdl
 db_password: PASSWORD
 db_name: mdl
 infoset_server_name: localhost
 infoset_server_port: 6000
 infoset_server_https: False
 infoset_server_uri: /infoset/api/v1

An explanation of these fields follows:

	Parameter
	Description

	main:
	YAML key describing the server configuration.

	log_directory:
	The directory where mdl places its log files

	log_level:
	Defines the logging level. debug level is the most verbose, followed by info, warning and critical

	interval:
	The expected interval in seconds between updates to the database from systems posting to the mdl API. Data retieved from the API will be spaced interval seconds apart. Note it is important that the interval matches the interval of the infoset-ng backend server.

	listen_address:
	IP address the API will be using. The default is 0.0.0.0 or all available IP addresses

	bind_port:
	The TCP port the API will be listening on

	sqlalchemy_pool_size:
	The SQLAlchemy pool size. This is the largest number of connections that mdl will be keep persistently with the MySQL database

	sqlalchemy_max_overflow:
	The SQLAlchemy maximum overflow size. When the number of connections reaches the size set in sqlalchemy_pool_size, additional connections will be returned up to this limit. This is the floating number of additional database connections to be made available.

	memcached_hostname: localhost
	The hostname of our memcached cache server

	memcached_port: 11211
	The port which memcached is running on

	db_hostname:
	The devicename or IP address of the database server.

	db_username:
	The database username

	db_password:
	The database password

	db_name:
	The name of the database

	infoset_server_name:
	The name of the infoset-ng server

	infoset_server_port:
	The TCP/IP port of the infoset-ng server

	infoset_server_https:
	True if the infoset-ng server is using HTTPS

	infoset_server_uri:
	The URI of the infoset-ng server’s API

Logrotate Configuration

The examples/linux/logrotate/mdl file is a working logrotate
configuration to rotate the log files that mdl generates. The mdl log file data can be extensive and adding the logrotate file to your system
is highly recommended.

$ sudo cp examples/linux/logrotate/mdl /etc/logrotate.d

Next Steps

It is time to test the operation of mdl.

Operation

The core of mdl is its API which stores and retrieves data from either it’s own database of from infoset using REST API calls.

Testing Operation After Installation

There are a number of steps to take to make sure you have installed mdl correctly. This section explains how to do basic testing before putting mdl into production.

Start the API Interactively

Start the mdl API interactively.

$ bin/mdl-api --start

Test API Functionality

Now that both the API and ingester are running, it’s time to test functionality by running the bin/tools/test_installation.py script.

You can test by either posting to the mdl API or directly to the infoset-ng API depending on your needs. Here are some command examples.

$ bin/tools/test_installation.py mdl --post
$ bin/tools/test_installation.py mdl --get
$ bin/tools/test_installation.py infoset --post
$ bin/tools/test_installation.py infoset --get

Here is an example of a successful post test:

$ bin/tools/test_installation.py mdl --post

http://localhost:3000/mdl/api/v1/mobile/post/drivercoordinates

{'devicename': '+1 876-927-1680',
 'id_agent': 'e33ce6311cf95c6264c6777323e9c717220b19ccad7b6da1877384e7fb3364e7',
 'latitude': 1.7070604,
 'longitude': 1.8220003,
 'name': 'DoRoad',
 'utc_timestamp': 1487763120}

2017-02-21 19:32:30,471 - mdl_console - INFO - [peter] (1055S): Successfully posted test data for +1 876-927-1680

$

Refer to the Troubleshooting section of this page to rectify any issues.

Stop After Successful Testing

Now that you have tested the functionality successsfully it is time to stop the interactive API session until you decide the best method to run mdl, either interactively as you did during the testing or as system daemons.

$ bin/mdl-api --stop

The procedures to operate mdl using the various types of daemons will be covered next.

API Operation

The API can be operated in one of two modes:

	System Daemon: As a system daemon which will automatically restart after a reboot.

	User Process: Run by a user from the CLI. The API will not automatically restart after a reboot.

Usage of the API in each mode will be discussed next.

The API as a System Daemon

This is the preferred mode of operation for production systems. This mode is automatically configured if you installed mdl using the root user.

The API can be started like this:

$ sudo systemctl start mdl-api.service

The API can be stopped like this:

$ sudo systemctl stop mdl-api.service

You can get the status of the API like this:

$ sudo systemctl status mdl-api.service

You can get the API to automatically restart on boot like this:

$ sudo systemctl enable mdl-api.service

A sample system startup script can be found in the
examples/linux/systemd/mdl-api.service file. Follow the instructions in the file to make changes to the startup operation of the API daemon.

Note: There will be no visible output when the API is running. The API logs its status to the etc/api-web.log file by default. You will be able to see this interaction dynamically by running the following command:

$ tail -f etc/api-web.log

The API as a User Process

You can run the API in standalone mode using the bin/mdl-api script. The standalone API can be started like this:

$ bin/mdl-api --start

The API can be stopped like this:

$ bin/mdl-api --stop

You can get the status of the API like this:

$ bin/mdl-api --status

Note: There will be no visible output when the API is running. Web traffic to the API is logged to the etc/api-web.log file by default. You will be able to see this interaction dynamically by running the following command:

$ tail -f etc/api-web.log

Using the API

This section outlines how to use the API

Why Infoset-ng Expects UTC Timestamps

There is a good reason for this. According to the python datetime documentation page, The rules for time adjustment across the world are more political than rational, change frequently, and there is no standard suitable for every application aside from UTC.

We cannot guarantee the python timezone libraries will be always up to date, so we default to UTC as recommended.

Posting Data to the API

Posting data to the API is. Add the prefix http://SERVER_IP:3000 to
all the examples below to update data in your instance of mdl

Route /mdl/api/v1/mobile/post/drivercoordinates

JSON data needs to be posted to the http://SERVER_IP:3000/mdl/api/v1/mobile/post/drivercoordinates URL in the format below:

The example below explains the expected JSON format:

{'devicename': '+1 876-927-1660',
 'id_agent': 'bec9ba91e14804001e037fa4f52c94fb1ef027d04e1b86f6a74ab36e3b073609',
 'latitude': 1.7518061,
 'longitude': 1.7115351,
 'name': 'DoRoad',
 'utc_timestamp': 1487763540}

Where feasible, we will use Linux and networking related examples to
make explanation easier.

	Field
	Descripton

	name
	Agent or application name. If your agent script is designed to collect server performance data, you could name it ‘server_performance’. Each server performance agent would therefore report the same agent value.

	id_agent
	A unique, unchanging systemwide identifier for the application sending the data.

	latitude
	Latitude value of the geocoordinates.

	longitude
	Longitude value of the geocoordinates.

	devicename
	A unique, unchanging systemwide identifier

	utc_timestamp
	Epoch UTC time when data was generated. This must be an integer.

Retrieving Data from the API

This section covers how to retrieve data from the API. First we cover some of the basics.

Overview

Retrieving data from mdl is easy. Add the prefix http://SERVER_IP:6000 to all the examples below to get data from your instance of mdl

You can test each route using the command:

$ curl http://SERVER_IP:6000/route

Routes

Data is retrieved by making HTTP requests to well known URIs or routes. These are covered next.

Route /mdl/api/v1/mobile/get/coordinates/lastcontactdrivers

This route will retreive the most recent geo coordinate data posted by all drivers. It is returned in the form of a list of dicts.

	Field
	Description

	id_agent
	The Agent ID

	agent_label
	The description of the data being stored

	devicename
	The name of the device

	idx_deviceagent
	The index value that infoset-ng uses to store the the device`s agent data.

	idx_datapoint
	The index value that infoset-ng uses to store the the geocordinate data.

	name
	The agent name

	timestamp
	The UTC timestamp of the the contact

	value
	The value of the geocoordinate

Example:

$ curl http://SERVER_IP:3000/mdl/api/v1/mobile/get/coordinates/lastcontactdrivers

[{'agent_label': 'latitude',
 'agent_source': 'GPS',
 'devicename': '+1 876-927-1660',
 'id_agent': 'bec9ba91e14804001e037fa4f52c94fb1ef027d04e1b86f6a74ab36e3b073609',
 'idx_datapoint': 2,
 'idx_deviceagent': 2,
 'name': 'DoRoad',
 'timestamp': 1487763900,
 'value': 1.79943},
 {'agent_label': 'longitude',
 'agent_source': 'GPS',
 'devicename': '+1 876-927-1660',
 'id_agent': 'bec9ba91e14804001e037fa4f52c94fb1ef027d04e1b86f6a74ab36e3b073609',
 'idx_datapoint': 3,
 'idx_deviceagent': 2,
 'name': 'DoRoad',
 'timestamp': 1487763900,
 'value': 1.69493},
 {'agent_label': 'latitude',
 'agent_source': 'GPS',
 'devicename': '+1 876-927-1680',
 'id_agent': 'e33ce6311cf95c6264c6777323e9c717220b19ccad7b6da1877384e7fb3364e7',
 'idx_datapoint': 4,
 'idx_deviceagent': 3,
 'name': 'DoRoad',
 'timestamp': 1487763900,
 'value': 1.89642},
 {'agent_label': 'longitude',
 'agent_source': 'GPS',
 'devicename': '+1 876-927-1680',
 'id_agent': 'e33ce6311cf95c6264c6777323e9c717220b19ccad7b6da1877384e7fb3364e7',
 'idx_datapoint': 5,
 'idx_deviceagent': 3,
 'name': 'DoRoad',
 'timestamp': 1487763900,
 'value': 1.57342}]

Troubleshooting

There are a number of ways you can troubleshoot the ingester and API. The most accessible ways are through the log files and the API test script.

Ingester Troubleshooting

This section covers the various ways you can troubleshoot ingester operation.

Ingester Logging

It is always good to verify the operation of the ingester by observing changes in its log file. It is a good source of troubleshooting information.

You can see these changes as they occur by using the tail -f command as seen below:

$ tail -f /opt/mdl/log/mdl.log

The location of the log file is governed by the log_directory parameter in the configuration.

Testing Ingester Operation

You can test the operation of the API by using the curl command which is often used to test basic website functionality. The example below shows how. Replace SERVER_IP with the IP address or fully qualified DNS name.

$ curl http://SERVER_IP:6000/mdl/api/v1.0
mdl API Operational.
$

The curl response should be mdl API Operational if
successful.

Invalid Agents

There is the possibility that agents may be posting incorrectly formatted JSON data to the API. You can view the contents of these invalidated files in the failures/ sub-directory of the API cache directory. The cache directory is defined in the ingest_cache_directory: option of the configuration file.

API Troubleshooting

There are a number of ways you can troubleshoot the API. The most accessible ways are through the log file.

API Logging

It is always good to verify the operation of the API by observing changes in its log file. It is a good source of troubleshooting information.

You can see these changes as they occur by using the tail -f command as seen below:

$ tail -f /opt/mdl/log/api-web.log

The location of the log file is governed by the log_directory parameter in the configuration.

Poor or Blocked Network Connectivity

It is possible that there could be firewalls or intermittent connectivity causing issues to your API you should familarize yourself with the tcpdump command to determine whether connections are coming through.

In this example we are testing to see whether we are receiving traffic from IP address 192.168.1.100 on TCP port 6000 which the API uses

$ sudo tcpdump -ni tcp port 6000 and host 192.168.1.100

You can also use the basic telnet command to determine whether the remote device or network can communicate with the API. In this example we are testing to see whether we can communicate with the API running on a server with IP address 192.168.1.200 on the default TCP port 6000.

$ telnet 192.168.1.200 6000
Trying 192.168.1.200...
Connected to 192.168.1.200.
Escape character is '^]'.
^]
telnet> quit
Connection closed.

If you get no response, then you need. Try this approach on both the local and remote ends of the connection. In other words, use the same command on both the remote client and API server. If there is response on the server, but none on the client, then there is probably a connectivity issue.

You can also determine whether the API server is running at all. Use the netstat command on the API server itself to determine whether it is listening on port 6000. If there is no response, then the API isn’t running.

$ netstat -ant |grep 6000
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
$

You should also try to use the curl examples in the API guide to assist further.

Best Practices

There are a number of best practices to consider when implementing mdl.

Use a Web Proxy Server

mdl uses Gunicorn as lightweight webserver. The Gunicorn development team strongly recommends operating Gunicorn behind a proxy server.

Nginx Configuration

Although there are many HTTP proxies available, the Gunicorn team strongly advises that you use Nginx.

According to their website: If you choose another proxy server you need to make sure that it buffers slow clients when you use default Gunicorn workers. Without this buffering Gunicorn will be easily susceptible to denial-of-service.

A sample configuration can be found in the examples/linux/nginx directory

We also advise that you harden your nginx installation to reduce security risks.

Apache Configuration

This is the less preferred option. Use Nginx whenever possible.

A sample configuration can be found in the examples/linux/apache directory

We also advise that you harden your nginx installation to reduce security risks.

Community

Use these channels to communicate about the project.

Mailing list

The user mailing list is general discussion and support list for
Gunicorn users.

	To subscribe, send an email to TBD

	To unsubscribe, send an email to TBD

	Finally, to post a message to the list use the address to
TBD

The archive for this list can also be browsed online.

Irc

The Gunicorn channel is on the Freenode [http://freenode.net/] IRC
network. You can chat with other on #TBD.

Issue Tracking

Bug reports, enhancement requests and tasks generally go in the Github
issue tracker [https://github.com/PalisadoesFoundation/mdl/issues].

Security Issues

The security mailing list is a place to report security issues. Only
developers are subscribed to it. To post a message to the list use the address
to TBD.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to mdl's documentation!

 		Introduction

 		Features

 		Oversight

 		Installation

 		Dependencies

 		Ubuntu / Debian / Mint

 		Centos / Fedora

 		Installation

 		Clone the Repository

 		Setup the Database

 		Run Installation Script

 		Next Steps

 		Configuration

 		mdl Configuration Example

 		Logrotate Configuration

 		Next Steps

 		Operation

 		Testing Operation After Installation

 		Start the API Interactively

 		Test API Functionality

 		Stop After Successful Testing

 		API Operation

 		The API as a System Daemon

 		The API as a User Process

 		Using the API

 		Why Infoset-ng Expects UTC Timestamps

 		Posting Data to the API

 		Route /mdl/api/v1/mobile/post/drivercoordinates

 		Retrieving Data from the API

 		Overview

 		Routes

 		Troubleshooting

 		Ingester Troubleshooting

 		Ingester Logging

 		Testing Ingester Operation

 		Invalid Agents

 		API Troubleshooting

 		API Logging

 		Poor or Blocked Network Connectivity

 		Best Practices

 		Use a Web Proxy Server

 		Nginx Configuration

 		Apache Configuration

 		Community

 		Mailing list

 		Irc

 		Issue Tracking

 		Security Issues

_static/up-pressed.png

_static/down.png

_static/up.png

