

MD-TASK documentation

Getting started

	Introduction
	Contribute

	Citing MD-TASK

	License

	Installation
	Platform compatibility

	Install system dependencies

	Install Python dependencies

	Download the project

Usage

	General
	Activating the virtual environment

	Add MD-TASK to your PATH

	Trajectory vs Topology

	Reducing your trajectory

	Test Data

	Logging

	Network Analysis
	Measurements

	Calculating BC and L

	Calculating ΔL

	Calculating ΔBC

	Calculating Average BC and L (and standard deviation)

	SNP Analysis - wild-type vs mutant trajectories

	SNP Analysis - wild-type vs mutants heatmap

	SNP Analysis - residue contact map

	Pertubation Response Scanning
	Performing PRS

	Dynamic Cross-Correlation
	Calculating dynamic cross-correlation

MD-TASK

MD-TASK consists of a suite of Python scripts that have been developed to analyze molecular dynamics trajectories. These scripts fall into 3 categories:

	Residue Interaction Network (RIN) analysis

	Perturbation Response Scanning (PRS)

	Dynamic Cross-Correlation

Contribute

	Issue Tracker: https://github.com/RUBi-ZA/MD-TASK/issues

	Source Code: https://github.com/RUBi-ZA/MD-TASK

Citing MD-TASK

A publication is currently being prepared. For now, please site our GitHub page (https://github.com/RUBi-ZA/MD-TASK).

License

The project is licensed under GNU GPL 3.0

Installation

Platform compatibility

MD-TASK should be compatible with any Linux/Unix-based platform, although installation of system dependencies may differ. It has been successfully tested on the following platforms:

	Ubuntu Linux

	MacOS

	Windows 10 (with bash)

Install system dependencies

Note: package version numbers may differ depending on the OS version. For example, in Ubuntu 16.04, `libpng12-dev` must be installed. However, in Ubuntu 17.04, `libpng-dev` should be installed.

Ubuntu 16.04:

sudo apt-get install virtualenvwrapper python-dev libblas-dev liblapack-dev libatlas-base-dev gfortran libpng12-dev libfreetype6-dev python-tk r-base

Windows 10:

	Enable the Windows Subsystem for Linux (WSL) by following these instructions [https://msdn.microsoft.com/en-us/commandline/wsl/install_guide].

	Install the system dependencies as with Ubuntu above.

MacOS:

	On MacOS, Python comes installed by default, but the default version my not be ideal. Follow these instructions [http://exponential.io/blog/2015/02/11/install-python-on-mac-os-x-for-development/] to install a more up-to-date version of Python.

	Next, install virtualenv by following these instructions [http://exponential.io/blog/2015/02/10/install-virtualenv-and-virtualenvwrapper-on-mac-os-x/]

Install Python dependencies

We recommend using a Python virtual environment when using MD-TASK

virtualenv venv
source venv/bin/activate
pip install --upgrade pip
pip install numpy
pip install scipy
pip install matplotlib cython networkx natsort
pip install mdtraj

Install the igraph package for R:

R
> install.packages("igraph")

Download the project

MD-TASK can be cloned from it’s GitHub repository

git clone https://github.com/RUBi-ZA/MD-TASK.git
cd MD-TASK

Always activate the virtual environment you created in the previous step when using MD-TASK.

General

Activating the virtual environment

If the installation recommendations on the previous page were followed, you would have set up a virtual Python environment for MD-TASK. If that is so, it is important that the environment be active whenever you use MD-TASK. To activate the environment, run the following command in the root MD-TASK folder (if that is where the environment was installed):

. venv/bin/activate

You will now have all the installed dependencies available and MD-TASK should work perfectly.

Add MD-TASK to your PATH

To make tools in the MD-TASK suite available from anywhere on the command line, add the root MD-TASK directory to your PATH environment variable as follows:

export PATH=/path/to/MD-TASK:$PATH

Trajectory vs Topology

Most of the MD-TASK tools require both a trajectory file and topology/structure file as input. This is because most trajectory formats only contain the atom co-ordinates and not the topological information such as atom and residue names, chains, and bond information. The topology file can be the PDB file that was used in the molecular dynamics simulation to produce the trajectory. When supplying these files, it is important to note that the trajectory file and topology file must contain the exact same number of atoms i.e. if the trajectory has been reduced to CA and CB atoms only (as described below), the topology file must be reduced to the same.

Reducing your trajectory

Molecular dynamics trajectories can be extremely large. However, MD-TASK tools only require the alpha and beta carbon atoms to be present. To save space and improve performance, the following VMD script can be used to reduce a trajectory, to the bare essentials:

mol load pdb example.pdb
set s1 [atomselect top "name CA or name CB and not solvent"]
animate write pdb example_small.pdb sel $s1
animate read xtc example.xtc waitfor all
animate write dcd example_small.dcd waitfor all sel $s1
quit

The above assumes that your topology file is a PDB file named example.pdb and that your trajectory is named example.xtc. It then writes out the reduced structure and trajectory to example_small.pdb and example_small.dcd respectively. You should change these names accordingly. You will also note that the above converts the trajectory from XTC to DCD format. This is not necessary, but has been added as an example for those who may want to do it.

For very large trajectories that do not fit in memory, reducing as shown above is necessary. Note that when reducing the trajectory, it is important that the same reduction should be applied to the topology PDB file i.e. the trajectory and topology files should have the exact same number of atoms. Failing to do this will result in an error.

Test Data

There is test data located in the ‘examples’ directory. Four files are included here:

	File
	Description

	wt.dcd
	An example trajectory that has been reduced to alpha and beta carbons only (used in the network analysis section)

	wt.pdb
	A PDB file that corresponds to the above trajectory - to be used for topology information (used in the network analysis section)

	mutant.dcd
	A mutated version of the above trajectory (used in the network analysis section)

	mutant.pdb
	A mutated version of the above topology file (used in the network analysis section)

	example_small.dcd
	An example trajectory that has been reduced to alpha and beta carbons only (used in the PRS section)

	example_small.pdb
	A PDB file that corresponds to the above trajectory - to be used for topology information (used in the PRS section)

	initial.xyz
	An XYZ co-ordinate file representing the initial conformation of a protein (used for PRS)

	final.xyz
	An XYZ co-ordinate file representing the target conformation of a protein (used for PRS)

Logging

All scripts in the suite have two arguments for logging. By default, logging is switched on and is written to the terminal. This can be changed with the following arguments:

	Input
	Flag
	Description

	Log file
	--log-file
	Provide a path to a file that will store the logging output of the command. By default, the output will be written to the terminal.

	Silent
	--silent
	Switch off logging

Network Analysis

Residue Interaction Networks (RIN) are analyzed using a branch of Mathematics known as graph theory. In a RIN, each residue in the protein is a node in the network. An edge (or connection) between two nodes exists if there is an interaction between the two residues those nodes represent. MD-TASK considers an interaction between two residues to exist if the beta carbon atoms of the residues are within a user-defined cut-off distance (usually around 6.5 – 7.5 Å) of each other. Once the network has been constructed, there are various network measures that can be used to analyze it. Currently, MD-TASK can be used to analyze the change in betweenness centrality (BC) and average shortest path (L) of residues in a protein over a molecular dynamics simulation. This can be used to determine which residues are important for intra-protein communication and conformational changes. RINs can also be useful in the analysis of SNPs. Comparing changes in BC and L between the simulation of a wild-type and mutant protein can provide interesting insights into differences in intra-protein communication, which can affect the function of the protein.

Measurements

1. Betweenness Centrality (BC)

Betweenness centrality (BC) is a measure of how important a residue is for communication within a protein. It is equal to the number of shortest paths from all vertices to all others that pass through that node. Residues in a protein that have a high BC reveal locations that tend to be important for controlling inter-domain communication in a protein.

2. Average Shortest Path(L)

The average shortest path (L) to a given residue is calculated by working out all the shortest paths to the given node and dividing by the number of paths. The average shortest path to a residue gives an idea of how accessible the residue is within the protein. This can be used to, for example, analyze SNPs. A mutation may result in a change in L of a number of residues in the protein. This may indicate that the mutation has an important effect on protein function e.g. previous studies have suggested that positions that result in high delta L values may steer conformational changes.

Calculating BC and L

Command:

calc_network.py <options> --topology <pdb file> <trajectory>

Inputs:

	Input (*required)
	Input type
	Flag
	Description

	Trajectory *
	File
	
	A trajectory from a molecular
dynamics simulation. Can be
in DCD or XTC format.

	Topology *
	File
	--topology
	A PDB reference file for the
trajectory.

	Ligands
	CSV ligand
IDs
	--ligands
	Ligands that should be
included in the network
construction.

	Threshold
	Integer
	--threshold
	Distance threshold when
constructing network.

	Step
	Integer
	--step
	Step to use when iterating
through trajectory frames.

	Generate plots
	Boolean
	--generate-plots
	Set to generate figures.

	Calculate BC
	Boolean
	--calc-BC
	Set to calculate average
shortest path matrix for the
network

	Calculate L
	Boolean
	--calc-L
	Set to calculate betweenness
centrality matrix for the
network

	Discard graphs
	Boolean
	--discard-graphs
	Set to discard the network
once BC and L matrices have
been calculated

	Lazy load
	Boolean
	--lazy-load
	Load trajectory frames in a
memory efficient manner -
use for large trajectories

Note: for --calc-L to work, all nodes in the network must be accessbile from all other nodes in the network. When this is not the case, an error will occur. Try increasing the distance threshold when this happens.

Given a trajectory called wt.dcd and a topology file called wt.pdb, the following command could be used:

calc_network.py --topology wt.pdb --threshold 7.0 --step 100 --generate-plots --calc-BC --calc-L --discard-graphs --lazy-load wt.dcd

The above command will calculate the network for every 100th frame in the trajectory. Depending on the size of your trajectory, you may want to increase this --step. Because --lazy-load was used, the trajectory will be iterated through and frames will be loaded one-at-a-time and then discarded once the network for that frame has been calculated. Leaving out the --lazy-load argument will result in the entire trajectory being loaded into memory. This can be faster for small trajectories, but should be avoided when analysing large trajectories. Edges in the network will be created between nodes that are within 7 Angstroms of each other. The average shortest path for each residue in each frame and the betweenness centrality of each residue in each frame will be calculated as both flags have been set in the above command. In addition, the --discard-graphs flag was set. As such, the networks for each frame will be discarded once BC and L have been calculated, saving disk space. By default, the networks for each frame are saved in both gml and graphml format.

Outputs:

	Output
	Description

	BC Matrices
	For each frame analyzed, an Nx1 matrix is produced, where N is the number of residues in the protein and each value represents the BC for the residue at that index

	avg_L Matrices
	For each frame analyzed, an Nx1 matrix is produced, where N is the number of residues in the protein and each value represents the L to the residue at that index

	BC & L Plots
	If --generate-plots flag is set, PNG figures are produced for the BC and L matrices

	Network graphs
	If --discard-graphs flag is set, do not save the networks produced for each frame

Calculating ΔL

If the --calc-L flag in the previous command is set, a number of Nx1 L matrices will be generated. Given the trajectory wt.dcd, the matrices will be named wt_<frame>_avg_L.dat, where <frame> is the frame index in the trajectory.

Command:

calc_delta_L.py <options> --reference <frame> --alternatives <frames>

Inputs:

	Input (*required)
	Input type
	Flag
	Description

	Reference frame *
	File
	--reference
	Nx1 matrix to be used as the reference (normally the frame from time 0). Delta L will be worked out by comparing the alternative frames to this one.

	Alternative frames *
	File/s
	--alternatives
	The remaining Nx1 matrices that should be compared to the reference matrix

	Normalize
	Boolean
	--normalize
	Set this flag to normalize the values (ΔL/L)

	Generate plots
	Boolean
	--generate-plots
	Set to generate figures

Given a set of average shortest path .dat files wt_*_avg_L.dat (generated with calc_network.py), the wt_0_avg_L.dat file could be used as the reference and the rest could be used as the alternatives. If wt_0_avg_L.dat is renamed to ref_wt_L.dat, the following command could be used:

calc_delta_L.py --normalize --generate-plots --reference ref_wt_L.dat --alternatives wt_*_avg_L.dat

The above command will generate plots as well as Nx1 matrices representing the difference in L between each alternative and the reference frame. The values will be normalized by dividing by the reference values (ΔL/L).

Outputs:

	Output
	Description

	ΔL Matrices
	Nx1 matrices representing the change in L between the reference matrix and each alternative

	ΔL Plots
	Figures for each alternative frame, plotting the difference between L in the alternative and reference

Calculating ΔBC

If the --calc-BC flag was set when running the calc_network.py script, a number of Nx1 BC matrices will be generated. Given the trajectory wt.dcd, the matrices will be named wt_<frame>_bc.dat, where <frame> is the frame index in the trajectory.

Command:

calc_delta_BC.py <options> --reference <frame> --alternatives <frames>

Inputs:

	Input (*required)
	Input type
	Flag
	Description

	Reference frame *
	File
	--reference
	Nx1 matrix to be used as the reference (normally the frame from time 0). Delta BC will be worked out by comparing the alternative frames to this one.

	Alternative frames *
	File/s
	--alternatives
	The remaining Nx1 matrices that should be compared to the reference matrix

	Generate plots
	Boolean
	--generate-plots
	Set to generate figures

Given a set of BC .dat files wt_*_bc.dat (generated with calc_network.py), the wt_0_bc.dat file could be used as the reference and the rest could be used as the alternatives. If the wt_0_bc.dat is renamed to ref_wt_bc.dat, the following command could be used:

calc_delta_BC.py --generate-plots --reference ref_wt_bc.dat --alternatives wt_*_bc.dat

The above command will generate plots as well as Nx1 matrices representing the difference in BC between each alternative and the reference frame.

Outputs:

	Output
	Description

	ΔBC Matrices
	Nx1 matrices representing the change in BC between the reference matrix and each alternative

	ΔBC Plots
	Figures for each alternative frame, plotting the difference between BC in the alternative and reference

Calculating Average BC and L (and standard deviation)

The avg_network.py script can be used to calculate and plot the average BC and L as well as the standard deviation of these measurements over the course of the trajectory.

Command:

avg_network.py <options> --data-type <BC/delta-BC/L/delta-L> --data <matrices>

Inputs:

	Input (*required)
	Input type
	Flag
	Description

	Data *
	File/s
	--data
	The .dat files that will be averaged

	Data types *
	Text
	--data-type
	Type of data - BC/delta-BC/L/delta-L

	Prefix
	Text
	--prefix
	Prefix used to name outputs

	Generate plots
	Boolean
	--generate-plots
	Generate figures/plots

	X axis label
	Text
	--x-label
	Label for x-axis (use $Delta$ for delta sign)

	Y axis label
	Text
	--y-label
	Label for y-axis (use $Delta$ for delta sign)

	Max Y axis value
	Integer
	--y-max
	Maximum value on y-axis

	Min Y axis value
	Integer
	--y-min
	Minimum value on y-axis

	Graph title
	Text
	--title
	Title of plot (use $Delta$ for delta sign)

	X-axis start value
	Integer
	--initial-x
	The start index of the X-axis

	Split position
	Integer
	--split-pos
	Position to split the network at for large networks. Splits the plot at the given position to create two plots. Useful when analysing a dimer.

	Graph title 1
	Text
	--title-1
	Title of first plot

	Graph title 2
	Text
	--title-2
	Title of second plot

	X-axis start value 1
	Integer
	--initial-x-1
	The start index of the x-axis for the first plot

	X-axis start value 2
	Integer
	--initial-x-2
	The start index of the x-axis for the second plot

Given a set of .dat files generated by one of the previous commands (e.g. wt_*_bc_delta_BC.dat), the following command could be used:

avg_network.py --data wt_*_bc_delta_BC.dat --data-type delta-BC --prefix wt --generate-plots --x-label "Residues" --y-label "Avg delta BC" --title "Wild Type"

The above command will generate two new .dat files and a PNG plot. The first .dat file, wt_delta_bc_avg.dat, contains an Nx1 matrix with the average ΔBC values for each residue over the course of the simulation. The second .dat file, wt_delta_bc_std_dev.dat, contains the standard deviation of ΔBC for each residue over the course of the simulation. The graph plots residues on the X axis and ΔBC on the Y axis. The average values are shown as a line and the standard deviation, representing the fluctuation of ΔBC over the course of the trajectory, are shown as error bars over each residue. Note that in the above example, we have calculated the average and standard deviation of ΔBC, but avg_network.py can be used with any set of Nx1 matrix (BC/ΔBC/L/ΔL).

Outputs:

	Output
	Description

	Average .dat file
	Nx1 matrix representing the average BC/ΔBC/L/ΔL values from the input matrics

	Std dev .dat file
	Nx1 matrix representing the standard deviation of the BC/ΔBC/L/ΔL values of the input matrics

	Plot
	The plotted values from the above matrices

SNP Analysis - wild-type vs mutant trajectories

Two scripts have been added for comparing BC/ΔBC/L/ΔL graphs. Essentially, all these scripts do is plot the values from different trajectories on the same set of axes. The first script plots two trajectories, a ‘reference’ and ‘alternative’ against each other using a normal line graph.

Command:

compare_networks.py <options> --reference <reference .dat> --alternative <alternative .dat>

Inputs:

	Input (*required)
	Input type
	Flag
	Description

	Reference .dat file *
	File
	--reference
	The reference Nx1 matrix

	Alternative .dat file *
	File
	--alternative
	The alternative Nx1 matrix

	Prefix
	Text
	--prefix
	Prefix used to name outputs

	Label for reference traj
	Text
	--reference-label
	The label that will be used on the plot for the reference matrix

	Label for alternative traj
	Text
	--alternative-label
	The label that will be used on the plot for the alternative matrix

	Y axis label
	Text
	--y-label
	Label for y-axis (use $Delta$ for delta sign)

	Max Y axis value
	Integer
	--y-max
	Maximum value on y-axis

	Min Y axis value
	Integer
	--y-min
	Minimum value on y-axis

For example, if we had two trajectories, wt.dcd and mutant.dcd, and we analyzed both trajectories as discussed above, we would end up with 4 files:

	wt_delta_bc_avg.dat (and/or wt_delta_L_avg.dat)

	wt_delta_bc_std_dev.dat (and/or wt_delta_L_std_dev.dat)

	mutant_delta_bc_avg.dat (and/or mutant_delta_L_avg.dat)

	mutant_delta_bc_std_dev.dat (and/or mutant_delta_L_std_dev.dat)

We could compare the above files with the following two commands:

compare_networks.py --prefix "wt_mutant_avg" --reference-label Wild-type --alternative-label Mutant --y-label "Delta BC" --reference wt_delta_bc_avg.dat --alternative mutant_delta_bc_avg.dat
compare_networks.py --prefix "wt_mutant_std_dev" --reference-label Wild-type --alternative-label Mutant --y-label "Delta BC" --reference wt_delta_bc_std_dev.dat --alternative mutant_delta_bc_std_dev.dat

The output of these commands will provide two figures containing the average ΔBC of the mutant and wild type trajectories plotted against each other for comparison purposes.

Outputs:

	Output
	Description

	Comparison plot
	Plot comparing Nx1 matrix of reference .dat file with alternative .dat file

SNP Analysis - wild-type vs mutants heatmap

Where the above script allows the comparison of two matrices, the second comparison script, delta_networks.py, allows the comparison of many trajectories via a heatmap in which the rows represent the trajectories and the columns represent residues.

Command:

delta_networks.py <options> --reference <reference avg .dat> --reference-std <reference std dev .dat> --alternatives <alternative avg .dats> --alternatives-std <alternative std dev .dats>

Input:

	Input (*required)
	Input type
	Flag
	Description

	Reference avg .dat file *
	File
	--reference
	The .dat files that will be averaged

	Reference std_dev .dat file *
	Text
	--reference-std
	Type of data - BC/delta-BC/L/delta-L

	Alternatives avg .dat file *
	File
	--alternatives
	The .dat files that will be averaged

	Alternatives std_dev .dat file *
	Text
	--alternatives-std
	Type of data - BC/delta-BC/L/delta-L

	Use absolute values
	Boolean
	--absolute
	Convert all values on the heatmap to absolute values

	Prefix
	Text
	--prefix
	Prefix used to name outputs

	Graph title
	Text
	--title
	Title of plot (use $Delta$ for delta sign)

	X axis label
	Text
	--x-label
	Label for x-axis (use $Delta$ for delta sign)

	Y axis label
	Text
	--y-label
	Label for y-axis (use $Delta$ for delta sign)

	X-axis start value
	Integer
	--initial-x
	The start index of the X-axis

	Split position
	Integer
	--split-pos
	Position to split the hetamap at for large proteins/complexes. Splits the plot at the given position to create two plots. Useful when analysing a dimer.

	Graph title 1
	Text
	--title-1
	Title of first plot

	Graph title 2
	Text
	--title-2
	Title of second plot

	X-axis start value 1
	Integer
	--initial-x-1
	The start index of the x-axis for the first plot

	X-axis start value 2
	Integer
	--initial-x-2
	The start index of the x-axis for the second plot

Given a set of analyzed trajectories, they can be compared to a wild type trajectory using the following command:

delta_networks.py --reference wt_delta_BC_avg.dat --reference-std wt_delta_BC_std_dev.dat --alternatives mutant_*_delta_BC_avg.dat --alternatives-std mutant_*_delta_BC_std_dev.dat --absolute --prefix my_protein_delta --title "My Protein" --x-label "Residues" --y-label "Proteins"

The above command will produce a PNG with 2 heatmaps for comparing the average and standard deviation Nx1 BC matrices of the wild-type protein with those of the mutated proteins.

Outputs:

	Output
	Description

	Comparison plot
	2 heatmaps comparing average and standard deviation values of a wild type protein with a number of mutated proteins

SNP Analysis - residue contact map

A weighted residue contact map allows the user to determine how often, throughout the trajectory, a residue was interacting with surrounding residues. A contact map can be generated at a position containing a SNP and compared to the same position in the wild type protein to determine whether the SNP affect the immediate interactions at that position.

Command:

contact_map.py <options> --trajectory <trajectory> --topology <pdb file>

Input:

	Input (*required)
	Input type
	Flag
	Description

	Trajectory *
	File
	
	A trajectory from a molecular dynamics simulation. Can be in DCD or XTC format.

	Topology *
	File
	--topology
	A PDB reference file for the trajectory.

	Residue
	Text
	--residue
	The residue in the trajectory to build the contact map around

	Threshold
	Float
	--threshold
	Distance threshold in Angstroms when constructing network (default: 6.7).

	Prefix
	Text
	--prefix
	Prefix used to name outputs

Given two trajectories, wt.dcd and mutant.dcd, where a mutation, ASP31ASN, occurs, the following could be used to build contact maps around position 31 in both trajectories:

contact_map.py --residue ASP31 --prefix wt --topology wt.pdb wt.dcd
contact_map.py --residue ASN31 --prefix mutant --topology mutant.pdb mutant.dcd

For each of the commands above, a contact map in PDF format will be produced, as well as a CSV file containing the calculated values. The contact maps can be compared visually to give an idea of the changes cause by the mutation.

Outputs:

	Output
	Description

	Contact map
	Network with weighted edges depicting how often residues are interacting with the selected residue over the course of the simulation

	Contact network (CSV)
	Network in CSV format

Pertubation Response Scanning

PRS is a computational technique that is useful for determining single residues that play an active role in the manipulation of protein conformational changes. As input it requires two distinct atomic conformations for a protein of interest; initial and target structures respectively. The technique then performs a residue-by-residue scanning of the initial conformation, by exerting multiple factious external forces of both random direction and magnitude on each residue in the protein structure. After external force perturbation, the subset of residues/forces that invoke a conformational change closest to the target structure are recorded. To calculate the predicted displacement of all residues in relation to a perturbation at a single residue, PRS requires the construction of a variance-covariance matrix, which can be obtained from suitable length MD simulation trajectories of the initial protein structure. The quality of the predicted displacements is then assessed by correlating the predicted and experimental displacements, averaged over all affected residues. This results in a correlation coefficient for each residue in the protein, where a value close to 1 implies good agreement with the experimental change. PRS can thus be used to map regions on a protein whose perturbation leads to a conformational change that resembles the expected target structure. These regions are often active site residues on the protein, but also potentially point to locations involved in allostery and allosteric control. PRS has also been used in conjunction with molecular docking to calculate ligand bound conformations from an unbound structure, in a scheme for exploring protein-ligand interaction.

Performing PRS

Command:

prs.py <options> --final <final.xyz> --trajectory <trajectory> --topology <pdb>

Inputs:

	Input (*required)
	Input type
	Flag
	Description

	Trajectory *
	File
	
	A trajectory from a molecular dynamics simulation. Can be in DCD or XTC format.

	Topology *
	File
	--topology
	A PDB reference file for the trajectory.

	Initial
	File
	--initial
	Co-ordinate file (.xyz) depicting the initial conformation (default: co-ordinate file is generated from the first frame of the trajectory)

	Final *
	File
	--final
	Co-ordinate file (.xyz) depicting the target conformation

	Perturbations
	Integer
	--perturbations
	Number of perturbations to apply

	No. of frames in trajectory
	Integer
	--num-frames
	Optionally specify the number of frames in the trajectory. This will run the script in a memory efficient mode. Usefult for large trajectories that don’t fit into memory.

	Step
	Integer
	--step
	Step to use when iterating through trajectory frames i.e. how many frames will be skipped.

	Prefix
	Text
	--prefix
	Prefix used to name outputs

Given a trajectory, example_small.dcd, with initial and target co-odinate files, initial.xyz and final.xyz, respectively, and topology file, example_small.pdb, the following command could be used:

prs.py --initial initial.xyz --final final.xyz --perturbations 100 --step 100 --prefix result --topology example_small.pdb example_small.dcd

Outputs:

	Output
	Description

	Correlation CSV file
	Correlation coefficient for each residue in the protein, where a value close to 1 implies good agreement with the experimental change

Dynamic Cross-Correlation

Molecular Dynamics (MD) is a computational method that analyses the physical motions of atoms within a protein or protein complex. In a given system, the interactions between the atoms can be simulated in the presence of a force field and, following the application of Newtons’ equations of motion, trajectories corresponding to the dynamical motions of the atoms are obtained. The trajectories represent sequential snapshots of the system, by presenting the atomic coordinates at specific time intervals throughout the simulation. This allows for the investigation into the dynamical changes of the system over time. The applications of MD simulations are vast. By analysing the trajectories of the system, it is possible to calculate the dynamic correlation between all atoms within the molecule i.e. the degree to which they move together. This dynamic cross-correlation tool produces an NxN heatmap, where N = the number of (alpha carbon) atoms in the system, and each element corresponds to the dynamic cross-correlation between each i,j atom. The correlation values are calculated between -1 and 1, where 1=complete correlation; -1=complete anti-correlation; 0= no correlation.

Calculating dynamic cross-correlation

Command:

calc_correlation.py <options> --trajectory <trajectory> --topology <pdb>

Inputs:

	Input (*required)
	Input type
	Flag
	Description

	Trajectory *
	File
	
	A trajectory from a molecular dynamics simulation. Can be in DCD or XTC format.

	Topology *
	File
	--topology
	A PDB reference file for the trajectory.

	Step
	Integer
	--step
	Step to use when iterating through trajectory frames i.e. how many frames will be skipped.

	Prefix
	Text
	--prefix
	Prefix used to name outputs.

	Lazy load
	Boolean
	--lazy-load
	Load trajectory frames in a memory efficient manner - use for large trajectories.

Given a trajectory, example_small.dcd, and topology file, example_small.pdb, the following command could be used:

calc_correlation.py --step 100 --prefix example_corr --trajectory example_small.dcd --topology example_small.pdb --lazy-load

Outputs:

	Output
	Description

	Correlation heatmap
	PNG heatmap depicting the dynamic correlation between atoms in the trajectory

	Correlation text file
	Correlation data in text format

Index

 _static/comment.png

nav.xhtml

 Table of Contents

 		MD-TASK documentation

 		Introduction

 		Contribute

 		Citing MD-TASK

 		License

 		Installation

 		Platform compatibility

 		Install system dependencies

 		Install Python dependencies

 		Download the project

 		General

 		Activating the virtual environment

 		Add MD-TASK to your PATH

 		Trajectory vs Topology

 		Reducing your trajectory

 		Test Data

 		Logging

 		Network Analysis

 		Measurements

 		Calculating BC and L

 		Calculating ΔL

 		Calculating ΔBC

 		Calculating Average BC and L (and standard deviation)

 		SNP Analysis - wild-type vs mutant trajectories

 		SNP Analysis - wild-type vs mutants heatmap

 		SNP Analysis - residue contact map

 		Pertubation Response Scanning

 		Performing PRS

 		Dynamic Cross-Correlation

 		Calculating dynamic cross-correlation

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

