

Mixture of Common Factor Analysers

A mixture of common factor analysers (MCFA) is a method for modelling multi-dimensional data.
The model assumes that the data are generated by a set of mutually orthogonal latent factors
that are common to all data, but the scoring (or extent) of those factors is different for
each data point. It also assumes that the scoring in latent space can be modelled as a mixture
of multivariate Gaussian distributions. The latent space is assumed to be lower dimensional than the data.

Model parameters are estimated using the expectation-maximization algorithm, given some fixed number
of latent factors and components. If the number of latent factors and components is not known then
these are found through a grid search, where the minimum message length is adopted as the objective
function.

Using Mock [https://docs.python.org/3/library/unittest.mock-examples.html#getting-started] Getting started guide.

Contents:

	API
	MCFA

Index | Module Index | Search Page

API

MCFA

	
class mcfa.mcfa.MCFA(n_components, n_latent_factors, covariance_regularization=0, max_iter=10000, tol=1e-05, init_components='kmeans++', init_factors='svd', verbose=1, random_seed=None, **kwargs)

	A mixture of common factor analyzers model.

	
bic(X, theta=None, log_likelihood=None)

	Estimate the Bayesian Information Criterion given the model and the
data.

	Parameters

	
	X – The data, \(X\), which is expected to be an array of shape
[n_samples, n_features].

	theta – [optional]
The model parameters \(\theta\). If None is given then the
model parameters from self.theta_ will be used.

	Returns

	The Bayesian Information Criterion (BIC) for the model and the data.
A smaller BIC value is often used as a statistic to select a single
model from a class of models.

	
classmethod deserialize(data)

	De-serialize the data and return an object.

	Parameters

	data – Serialized data describing the object.

	Returns

	A mcfa.MCFA object.

	
expectation(X, pi, A, xi, omega, psi, **kwargs)

	Compute the conditional expectation of the complete-data log-likelihood
given the observed data \(X\) and the given model parameters.

	Parameters

	
	X – The data, which is expected to be an array with shape [n_samples,
n_features].

	pi – The relative weights for the components in the mixture. This should
have size n_components and the entries should sum to one.

	A – The common factor loads between mixture components. This should have
shape [n_features, n_latent_factors].

	xi – The mean factors for the components in the mixture. This should have
shape [n_latent_factors, n_components].

	omega – The covariance matrix of the mixture components in latent space.
This array should have shape [n_latent_factors, n_latent_factors,
n_components].

	psi – The variance in each dimension. This should have size [n_features].

	Raises

	scipy.linalg.LinAlgError – If the covariance matrix of any mixture component in latent space
is ill-conditioned or singular.

	Returns

	A two-length tuple containing the sum of the log-likelihood for the
data given the model, and the responsibility matrix \(\tau\)
giving the partial associations between each data point and each
component in the mixture.

	
factor_scores(X)

	Estimate the posterior factor scores given the model parameters.

	Parameters

	X – The data, \(X\), which is expected to be an array of shape
[n_samples, n_features].

	
fit(X, init_params=None, **kwargs)

	Fit the model to the data, \(Y\).

	Parameters

	
	X – The data, \(X\), which is expected to be an array of shape
[n_samples, n_features].

	init_params – [optional]
A dictionary of initial values to run expectation-maximization from.

	Returns

	The fitted model.

	
maximization(X, tau, pi, A, xi, omega, psi, **kwargs)

	Compute the updated estimates of the model parameters given the data,
the responsibility matrix \(\tau\), and the current estimates of the
model parameters.

	Parameters

	
	X – The data, which is expected to be an array with shape [n_samples,
n_features].

	tau – The responsibility matrix, which is expected to have shape
[n_samples, n_components]. The sum of each row is expected to equal
one, and the value in the i-th row (sample) of the j-th column
(component) indicates the partial responsibility (between zero and
one) that the j-th component has for the i-th sample.

	pi – The relative weights for the components in the mixture. This should
have size n_components and the entries should sum to one.

	A – The common factor loads between mixture components. This should have
shape [n_features, n_latent_factors].

	xi – The mean factors for the components in the mixture. This should have
shape [n_latent_factors, n_components].

	omega – The covariance matrix of the mixture components in latent space.
This array should have shape [n_latent_factors, n_latent_factors,
n_components].

	psi – The variance in each dimension. This should have size [n_features].

	Returns

	A five-length tuple containing the updated parameter estimates for
the mixing weights \(\pi\), the common factor loads \(A\),
the means of the components in latent space \(\xi\), the
covariance matrices of components in latent space \(\omega\),
and the variance in each dimension \(\psi\).

	
message_length(X, theta=None, log_likelihood=None)

	Estimate the explanation length given the model and the data.

	Parameters

	
	X – The data, \(X\), which is expected to be an array of shape
[n_samples, n_features].

	theta – [optional]
The model parameters \(\theta\). If None is given then the
model parameters from self.theta_ will be used.

	
number_of_parameters(D)

	Return the number of model parameters \(Q\) required to describe
data of \(D\) dimensions.

\[Q = (K - 1) + D + J(D + K) + \frac{1}{2}KJ(J + 1) - J^2\]

Where \(K\) is the number of components, \(D\) is the number of
dimensions in the data, and \(J\) is the number of latent factors.

	Parameters

	D – The dimensionality of the data (the number of features).

	Returns

	The number of model parameters, \(Q\).

	
parameter_names

	Return the names of the parameters in this model.

	
pseudo_bic(X, gamma=0.1, omega=1, theta=None)

	Estimate the pseudo Bayesian Information Criterion given the model and
the data as per Gao and Carroll (2017):

	Parameters

	
	X – The data, \(X\), which is expected to be an array of shape
[n_samples, n_features].

	theta – [optional]
The model parameters \(\theta\). If None is given then the
model parameters from self.theta_ will be used.

	Returns

	The Bayesian Information Criterion (BIC) for the model and the data.
A smaller BIC value is often used as a statistic to select a single
model from a class of models.

	
rotate(R, X=None, ensure_valid_rotation=True, atol=0.001, rtol=1e-05)

	Rotate the factor loads and factor scores by a valid rotation matrix.

	Parameters

	
	R – A J times J rotation matrix, where J is the number of latent
factors.

	X – [optional]
The data, which is expected to be an array with shape [n_samples,
n_features]. If given, the log-likelihood will be evaluated before
and after rotation. A warning will be raised if the log-likelihood
changes by more than the convergence tolerance.

	ensure_valid_rotation – [optional]
If the rotation matrix does not follow R @ R.T = I, then the nearest
rotation matrix with this property will be used.

	atol – [optional]
The absolute tolerance acceptable for individual entries in the
matrix I - R @ R.T. Default is 1e-3.

	rtol – The relative tolerance acceptable for individual entries in the
matrix I - R @ R.T. Default is 1e-5.

	Returns

	The actual rotation matrix applied.

	
sample(n_samples=1, theta=None)

	Generate random samples from the fitted model.

	Parameters

	n_samples – [optional]
Number of samples to generate. Defaults to 1.

TODO: return docs

	
serialize()

	Serialize the object so that it can be saved to disk.

Index

 B
 | D
 | E
 | F
 | M
 | N
 | P
 | R
 | S

B

 	
 	bic() (mcfa.mcfa.MCFA method)

D

 	
 	deserialize() (mcfa.mcfa.MCFA class method)

E

 	
 	expectation() (mcfa.mcfa.MCFA method)

F

 	
 	factor_scores() (mcfa.mcfa.MCFA method)

 	
 	fit() (mcfa.mcfa.MCFA method)

M

 	
 	maximization() (mcfa.mcfa.MCFA method)

 	
 	MCFA (class in mcfa.mcfa)

 	message_length() (mcfa.mcfa.MCFA method)

N

 	
 	number_of_parameters() (mcfa.mcfa.MCFA method)

P

 	
 	parameter_names (mcfa.mcfa.MCFA attribute)

 	
 	pseudo_bic() (mcfa.mcfa.MCFA method)

R

 	
 	rotate() (mcfa.mcfa.MCFA method)

S

 	
 	sample() (mcfa.mcfa.MCFA method)

 	
 	serialize() (mcfa.mcfa.MCFA method)

 nav.xhtml

 Table of Contents

 		
 Mixture of Common Factor Analysers

 		
 API

 		
 MCFA

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

