
mbpls Documentation
Release 1.0.2

Andreas Baum and Laurent Vermue

Jun 08, 2019

TABLE OF CONTENTS

1 Installation 2

2 Quick Start 3
2.1 Use the mbpls package for Partial Least Squares (PLS) prediction modeling 3
2.2 The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 3

3 Indices and tables 42

Python Module Index 43

Index 44

i

mbpls Documentation, Release 1.0.2

An easy to use Python package for (Multiblock) Partial Least Squares prediction modelling of univariate or multivariate
outcomes. Four state of the art algorithms have been implemented and optimized for robust performance on large data
matrices. The package has been designed to be able to handle missing data, such that application is straight forward
using the commonly known Scikit-learn API and its model selection toolbox.

The documentation is available at https://mbpls.readthedocs.io and elaborate (real-world) Jupyter Notebook examples
can be found at https://github.com/DTUComputeStatisticsAndDataAnalysis/MBPLS/tree/master/examples

This package can be cited using the following reference.

Baum et al., (2019). Multiblock PLS: Block dependent prediction modeling for Python. Journal of Open Source
Software, 4(34), 1190

TABLE OF CONTENTS 1

https://pypi.python.org/pypi/mbpls
https://travis-ci.com/DTUComputeStatisticsAndDataAnalysis/MBPLS
https://pypi.python.org/pypi/mbpls/
https://mbpls.readthedocs.io/en/latest/?badge=latest
https://doi.org/10.21105/joss.01190
https://mbpls.readthedocs.io
https://github.com/DTUComputeStatisticsAndDataAnalysis/MBPLS/tree/master/examples

CHAPTER

ONE

INSTALLATION

• Install the package for Python3 using the following command. Some dependencies might require an upgrade
(scikit-learn, numpy and scipy).
$ pip install mbpls

• Now you can import the MBPLS class by typing
from mbpls.mbpls import MBPLS

2

CHAPTER

TWO

QUICK START

2.1 Use the mbpls package for Partial Least Squares (PLS) prediction
modeling

import numpy as np
from mbpls.mbpls import MBPLS

num_samples = 40
num_features = 200

Generate random data matrix X
x = np.random.rand(num_samples, num_features)

Generate random reference vector y
y = np.random.rand(num_samples,1)

Establish prediction model using 2 latent variables (components)
pls = MBPLS(n_components=2)
pls.fit(x,y)
y_pred = pls.predict(x)

2.2 The mbpls package for Multiblock Partial Least Squares (MB-
PLS) prediction modeling

import numpy as np
from mbpls.mbpls import MBPLS

num_samples = 40
num_features_x1 = 200
num_features_x2 = 250

Generate two random data matrices X1 and X2 (two blocks)
x1 = np.random.rand(num_samples, num_features_x1)
x2 = np.random.rand(num_samples, num_features_x2)

Generate random reference vector y
y = np.random.rand(num_samples, 1)

Establish prediction model using 3 latent variables (components)

(continues on next page)

3

mbpls Documentation, Release 1.0.2

(continued from previous page)

mbpls = MBPLS(n_components=3)
mbpls.fit([x1, x2],y)
y_pred = mbpls.predict([x1, x2])

Use built-in plot method for exploratory analysis of multiblock pls models
mbpls.plot(num_components=3)

2.2.1 MB-PLS introduction example

This example refers to the mbpls package for Python (https://pypi.org/project/mbpls/).

The notebook intends to illustrate how to use Multiblock Partial Least Squares (MB-PLS) regression. To make things
easier we are going to use a very simple simulated dataset with two X blocks.

MB-PLS aims at establishing predictive models using latent variable spaces. In addition to PLS, it provides a measure
on how much each X block contributes to the actual prediction of the response Y.

First, we initialize our data simulation by defining the parameters below.

Let’s start without noise. Once you have run through this notebook just go ahead and increase the noise. It will give
you a feeling for the influence of noise on the MBPLS estimation.

[1]: rand_seed = 25
num_samples = 20
num_vars_x1 = 25
num_vars_x2 = 45
noise = 0 # add noise between 0..10

[2]: from matplotlib import pyplot as plt
import numpy as np
from scipy.stats import ortho_group

Generate loadings

To generate some data we define two loading vectors, which we will utilize to generate data for X1 and X2, respectively.
As you can see below these loading vectors have different characterstic shapes. Further down, we will refer to these
lodings as the “ground truth”.

[3]: np.random.seed(rand_seed)
p1 = np.expand_dims(np.random.randint(0, 10, num_vars_x1), 1)
p2 = np.expand_dims(np.sin(np.linspace(0, 5, num_vars_x2)), 1)

fig, ax = plt.subplots(ncols=2, figsize=(15,5))
ax[0].plot(p1, color='blue')
ax[0].set_title('Block Loading p_1 (X_1)', fontsize=18)
ax[0].set_xlabel('feature', fontsize=16)
ax[1].plot(p2, color='orange')
ax[1].set_title('Block Loading p_2 (X_2)', fontsize=18)
ax[1].set_xlabel('feature', fontsize=16);

4 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

Generate orthogonal scores

Here we generate some orthogonal scores. We impose orthogonality to make this example clear and simple (no mising
of the latent variables). Of course, real-world data would typically deviate from this condition. Further down, we will
refer to these scores as the “ground truth” (= Y).

[4]: t = ortho_group.rvs(num_samples, random_state=rand_seed)[:, 0:2]
t1 = t[:,0:1]
t2 = t[:,1:2]

plt.figure()
plt.scatter(t1, t2)
plt.xlabel('Score vector t_1', size=16)
plt.ylabel('Score vector t_2', size=16)
plt.title('The scores vectors are orthogonal ($t_1^Tt_2 = 0$)', fontsize=18);

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 5

mbpls Documentation, Release 1.0.2

Generate data using loadings and scores

Two data blocks are generated. Block X1 is formed as the outer vector product of loading vector p1 and score vector
t1. Similarily, the data block X2 is calculated as the outer vector product of loading vector p2 and score vector t2.

X1 = t1 · p𝑇
1

X2 = t2 · p𝑇
2

[5]: x1 = np.dot(t1, p1.T)
x2 = np.dot(t2, p2.T)

Add noise to the data (according to noise parameter)

Here we add some gaussian noise to show how this impacts the analysis.

[6]: x1 = np.random.normal(x1, 0.05*noise)
x2 = np.random.normal(x2, 0.05*noise)

Plot data blocks X1 and X2

Let’s look at the data blocks X1 and X2. The variance in X1 is related to the first score vector t1 while the variance in
X2 is related to the second score vector t2

[7]: fig, ax = plt.subplots(ncols=2, figsize=(15,5))
ax[0].plot(x1.T, color='blue')
ax[0].set_title('X_1 data', fontsize=18)
ax[0].set_xlabel('feature', size=16)
ax[1].plot(x2.T, color='orange')
ax[1].set_title('X_2 data', fontsize=18)
ax[1].set_xlabel('feature', size=16);

Perform MB-PLS

We perform MB-PLS to fit the data. As a result we will obtain super scores, block loadings and scores and block
importances. For further information on the algorithms please check out reference [1].

With this simple example we aim to find out about the following:

6 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

1. How much does each block contribute to the prediction of the score vectors t1 and t2 (= Y)? This measure we
call block importance 𝑎.

2. What are the feature contributions in each block (block loadings p̂1 and p̂2)?

3. Are the fitted block scores t̂1 and t̂2 describing the ground truth of our chosen block scores t1 and t2?

[8]: from mbpls.mbpls import MBPLS
mbpls_model = MBPLS(n_components=2, standardize=False)
mbpls_model.fit(X=[x1, x2], Y=t);

You can find further information on how the model is fitted to the data here:

https://mbpls.readthedocs.io/en/latest/mbpls.html

In this example we are fitting a MB-PLS model to predict Y from the two data blocks X1 and X2. As Y contains our
two known orthogonal score vectors we expect to require two latent variables (LV) to fit the data.

Usually, we strictly recommend to standardize the data. This is important to give the blocks similar weight on the
model, i.e. to correct for different feature variances across blocks. However, in this example we do not use standard-
ization because it would destroy the imposed orthogonality of the above defined scores.

Plot p̂1 and p̂2 and compare to ground truth loadings p1 and p2

[9]: p1_hat = mbpls_model.P_[0][:,0]
p2_hat = mbpls_model.P_[1][:,1]

[10]: fig, ax = plt.subplots(ncols=2, nrows=2, figsize=(15,7))
ax[0][0].plot(p1_hat, color='blue')
ax[0][0].set_title('Block Loading \hat{p}_1', size=18)
ax[0][0].set_xlabel('feature', size=16)
ax[0][1].plot(p2_hat, color='orange')
ax[0][1].set_title('Block Loading \hat{p}_2', size=18)
ax[0][1].set_xlabel('feature', size=16)
ax[1][0].plot(p1,color='blue',ls='--')
ax[1][0].set_title('ground truth: Block Loading p_1', size=18)
ax[1][0].set_xlabel('feature', size=16)
ax[1][1].plot(p2,color='orange',ls='--')
ax[1][1].set_title('ground truth: Block Loading p_2', size=18)
ax[1][1].set_xlabel('feature', size=16)
plt.tight_layout()

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 7

https://mbpls.readthedocs.io/en/latest/mbpls.html

mbpls Documentation, Release 1.0.2

As you can see above the fitted block loadings p̂1 and p̂2 describe our original feature loadings perfectly. Depending
on the initialization of the analysis the sign of the loading vectors might switch.

Block scores t̂1 in LV1 and t̂2 in LV2 are highly correlated to ground truth t1 and t2

[11]: t1_hat = mbpls_model.T_[0][:,0]
t2_hat = mbpls_model.T_[1][:,1]

[12]: fig, ax = plt.subplots(ncols=2, figsize=(10,5))
ax[0].scatter(t1, t1_hat)
ax[0].set_title('Block Scores \hat{t}_1 vs. ground truth t_1', fontsize=18)
ax[0].set_xlabel('t_1', size=15)
ax[0].set_ylabel('\hat{t}_1', size=15)
ax[1].scatter(t2, t2_hat)
ax[1].set_title('Block Scores \hat{t}_2 vs. ground truth t_2', fontsize=18)
ax[1].set_xlabel('t_2', size=15)
ax[1].set_ylabel('\hat{t}_2', size=15);

8 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

Explained variance and block importance

To show the importances and explained variance the MB-PLS model has detected, we extract these parameters from
the fitted model.

[13]: variances_x = mbpls_model.explained_var_xblocks_
blockimportances = mbpls_model.A_
variance_y = mbpls_model.explained_var_y_

[14]: import pandas as pd
variances_x = pd.DataFrame(data=variances_x.T, columns=['expl. var. X1',

'expl. var. X2'], index=['LV1', 'LV2'])
variance_y = pd.DataFrame(data=variance_y, columns=['expl. var. Y'],

index=['LV1', 'LV2'])
blockimportances = pd.DataFrame(data=blockimportances.T, columns=[

'block importance X1', 'block importance X2'], index=['LV1', 'LV2'])
pd.concat((variances_x, blockimportances, variance_y), axis=1).round(3)

[14]: expl. var. X1 expl. var. X2 block importance X1 block importance X2 \
LV1 1.0 0.0 1.0 0.0
LV2 0.0 1.0 0.0 1.0

expl. var. Y
LV1 0.5
LV2 0.5

As shown in the table above, the model perfectly fitted LV1 to describe block X1. Accordingly, it describes correctly
that the block importance for LV1 lies 100 % in the corresponding block X1. Analogue to this, it correctly detected
that block X2 has 100% importance in LV2.

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 9

mbpls Documentation, Release 1.0.2

Using the custom plot function

However, this can be done much easier with the automatic custom visualization through the build in plot method of
the mbpls package, which shows the main fitted attributes, i.e. scores, loadings, explained variance in Y and block
importances, of the fitted model by calling:

[15]: mbpls_model.plot(num_components=2)

10 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

Note: In this artificial case the block importance of both blocks is 0% for one of the respective components/LVs that
they do not contribute to and thus there is only one bar for each block.

References

[1] J. A. Westerhuis, T. Kourti, and J. F. MacGregor, “Analysis of multiblock and hierarchical PCA and PLS models,”
J. Chemom., vol. 12, no. 5, pp. 301–321, Sep. 1998.

2.2.2 Real World Examples

Predicting pectin extraction yield from FTIR (X1) and carbohydrate microarray (X2) data using Multi-
block Partial Least Squares regression (MB-PLS)

The data used in this notebook originates from [1]. Further information, analysis and results can be found in the paper.
If you re-use and/or re-distribute the data provided please cite the following paper to acknowledge the authorship [1].

In this example we use Multiblock Partial Least Squares regression to predict the pectin extraction yield for samples,
which were measured on FTIR and Carbohydrate Microarrays during the extraction process. The aim is to establish a
prediction model and to investigate how much each measurement block contributes to the prediction of the extraction
yield. In addition, MB-PLS gives us the opportunity to interpret the prediction model further, i.e. with respect to how
different extraction groups relate to this prediction model.

We recommend that you check out the FTIR_PLS.pynb and Carbohydrate_Microarray_PLS.pynb prior to working on
this notebook. These two notebooks elaborate on modeling pectin yield using both data sets independently (single
block PLS).

Load dependencies and data

If you encounter errors in this section you might need to install some of the python packages stated below (or upgrade).

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 11

mbpls Documentation, Release 1.0.2

[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from mbpls.data.get_data import load_Intro_Data
from scipy.io import loadmat

[2]: data = load_Intro_Data()

Following dataset were loaded as Pandas Dataframes:
dict_keys([’extraction1’, ’ftir1’, ’ftir3’, ’extraction3’, ’ftir2’, ’extraction2’])

[3]: # X1 part
ftir1 = data['ftir1']
ftir2 = data['ftir2']
ftir3 = data['ftir3']
X2 part
carb1 = data['extraction1']
carb2 = data['extraction2']
carb3 = data['extraction3']

Create X1 and X2

To get started with our MB-PLS modeling we merge all dataframes across the sample dimension, meaning that extrac-
tions 1, 2 and 3 are merged for FTIR (X1), carbohydrate microarray (X2) and pectin yield (Y) data.

[4]: x1 = pd.concat((ftir1, ftir2, ftir3))
x2 = pd.concat((carb1, carb2, carb3))
x2.index = x1.index
y = np.array(x2.index)
wavenumbers = x1.columns
x1x2 = pd.concat((x1, x2), axis=1)

Find number of latent variables using Leave-One-Out Cross Validation

To find the right number of latent variables (LV) we perform cross validation. Scikit-learn makes it easy for us using
the cross_val_predict function. We simply re-model the data using different numbers of latent variables and plot the
resulting Mean Square Errors (MSE). We pick the number of latent variables where the MSE is minimal to avoid
overfitting and to induce as much complexity for our model to obtain most accurate results. Please be aware that the
data size is very limited. Therefore, we are risking to overfit. In general, it is recommended to perform 5-fold Cross
Validation (CV). However, due to the small sample size we use Leave-One-Out CV.

[5]: from mbpls.mbpls import MBPLS
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import mean_squared_error

MSEs = []
for lv in range(15):

mbpls = MBPLS(n_components=lv+1)
prediction = cross_val_predict(mbpls, x1x2, y, cv=len(x1x2))
prediction = pd.DataFrame(prediction)
MSEs.append(mean_squared_error(prediction, y))

(continues on next page)

12 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

(continued from previous page)

plt.plot(np.arange(1,16), MSEs)
plt.xlabel('number of LVs', fontsize=16)
plt.xticks(np.arange(1,16), np.arange(1,16))
plt.ylabel('LOO-CV MSE', fontsize=16)
plt.title('Find the right number of LVs', fontsize=18);

Plot resulting calibration curve and evaluate model

Our plot above indicates that 3 LVs are necessary to establish our MBPLS model. We choose 3 instead of 6 LVs to
avoid overfitting due to the small sample size. We re-model using 3 LVs and plot the resulting calibration to evaluate
the Mean Square Error (MSE) of cross validation.

[7]: from mbpls.mbpls import MBPLS
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import mean_squared_error

mbpls = MBPLS(n_components=3)
prediction = cross_val_predict(mbpls, x1x2, y, cv=len(x1x2))
prediction = pd.DataFrame(prediction)
y = pd.DataFrame(y)
prediction = pd.concat((prediction, y), axis=1)
prediction.columns=['predicted yield [g]', 'known yield [g]']
prediction.plot.scatter(x='known yield [g]', y='predicted yield [g]')
plt.plot([prediction.min().min(), prediction.max().max()],

[prediction.min().min(), prediction.max().max()], color='red')
plt.ylabel(prediction.columns[0], fontsize=16)
plt.xlabel(prediction.columns[1], fontsize=16)
plt.title('MSE = {:.6f} g^2'.format(mean_squared_error(prediction['known yield [g]
→˓'],

prediction['predicted yield [g]'])), fontsize=18);

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 13

mbpls Documentation, Release 1.0.2

Interpret Multiblock PLS model

Up to now we have done nothing different than prediction modeling. Although we have used MB-PLS the solution is
equivalent to PLS. Further information on how the model is fitted can be found here:

https://mbpls.readthedocs.io/en/latest/mbpls.html

Now, we want to find out more about how each individual block contributes to the prediction of the final pectin yield.
To do so we fit an MBPLS estimator and look at the results using the built-in plot method

[8]: mbpls = MBPLS(n_components=3)
mbpls.fit(X=[x1, x2], Y=y)
Plot results for the first 3 components (=LVs)
mbpls.plot(num_components=3)

14 Chapter 2. Quick Start

https://mbpls.readthedocs.io/en/latest/mbpls.html

mbpls Documentation, Release 1.0.2

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 15

mbpls Documentation, Release 1.0.2

The results above show a lot of information. Let’s summarize what we can see from these results.

1. Component 1 (= LV1) explains 92.3% of variance in pectin yield (Y).

2. For the explanation of these 92.3% block X1 is of 98% and block X2 of 2% importance.

3. Because block X1 is of major importance to explain most of the variance in pectin yield we can go ahead
and look further at the block Loadings and scores for this component. We merged our data in the sequence
extraction 1 (samples 1-23), extraction 2 (samples 24-30) and extraction 3 (samples 31-37). It turns out that the
latent variable loading of component one indicates the FTIR spectral regions which explain differences in pectin
yield at different time points during extraction.

4. Component 2 explains 3.9% variance in pectin yield. Once again the FTIR block X1 is of most importance.
Looking at the block scores we can see that it differentiates between enzymatic extractions 1 and 2 and acid
extraction 3.

5. Component 3 explains only 1.1% of the variance in pectin yield. In this component the carbohydrate microarray
data block X2 contained more important information (78% importance). Looking at the block scores one can
find out which samples are highly affected by this component - mainly sample 35 and other samples of the acidic
extraction 3. The block loading helps to indentify which of the 30 monoclonal antibodies and/or carbohydrate
binding modules were responsible for these samples to vary from the rest.

6. We can conclude that FTIR data is of most importance for prediction of pectin yield. However, the data from the
carbohydrate microarrays contribute to the prediction model slightly and can explain minor differences between
the different samples. However, these results should be handled carfeully because of the small data size and,
hence, insufficient validation of the underlying prediction models.

Correct block importance for different number of features (variables) in the blocks X1 and X2

The block importance measure depends on the number of features in each block. The FTIR data (X1) contained 143
features, while the carbohydrate microarray data (X2) contained only 30 features. In such cases it might be desriable
to correct the block importance for such differences to represent a more realistic result. With our MBPLS package we
have built in a corrected measure which yields the corrected block importance for component 𝑘 and block 𝑖 such that:

𝐵𝐼𝑃𝑐𝑜𝑟𝑟,𝑖𝑘 = 𝐵𝐼𝑃𝑖𝑘 · (1− 𝑝𝑖

𝑝𝑡𝑜𝑡𝑎𝑙
)

In the table below BIPs and block size corrected BIPs are presented for our example.

16 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

[9]: print('The Block Importances [%] in each latent variable are:')
BIP = pd.DataFrame(mbpls.A_.round(2), columns=['LV1', 'LV2', 'LV3'],

index=['FTIR', 'Carb Micr Array'])
BIP

The Block Importances [%] in each latent variable are:

[9]: LV1 LV2 LV3
FTIR 0.98 0.96 0.24
Carb Micr Array 0.02 0.04 0.76

[10]: print('The corrected Block Importances [%] in each latent variable are:')
BIP_corrected = pd.DataFrame(mbpls.A_corrected_.round(2),

columns=['LV1', 'LV2', 'LV3'], index=['FTIR', 'Carb Micr Array'])
BIP_corrected

The corrected Block Importances [%] in each latent variable are:

[10]: LV1 LV2 LV3
FTIR 0.92 0.85 0.06
Carb Micr Array 0.08 0.15 0.94

Explorative analysis - Let’s look a bit closer at the (X1) results

As discussed above we can identify certain patterns in the block scores and loadings. Let’s go ahead and look a bit
closer at these results. Below you can see how the block scores and loadings are extracted from the mbpls model for
further analysis. We scatter the block scores of the three latent variables against each other and color them according
to extraction type. Extraction 3 was carried using acid. Again, we can see the difference between acidic and enzymatic
pectin extracts. This difference is decribed mostly by latent variable 2. If we look at the loading for LV2 we can
identify spectral regions which differentiate between acidic and enzymatic extracted pectin. Further analysis of these
results is well in line with the chemical interpretation in [1].

The block scores and loadings shown below are the similar to the results from the plot method output. However, we
simply aim to exemplify how to extract the data from the model and use it for further ad-hoc analysis. To compare
these loadings to the actual FTIR block data we have plotted the spectra for all extractions below as well. The spectral
greyscale is resembling the pectin yield (dark - lowest; white - highest)

[11]: # extract FTIR (X1) block scores from fitted mbpls model
block_scores_x1 = mbpls.T_[0]

extract FTIR (X1) loadings from fitted mbpls model
block_loadings_x1 = mbpls.P_[0].T

inverse transform loadings if standardize option was used during fitting
(by default)
block_loadings_x1 = np.hstack([mbpls.x_scalers_[0].inverse_transform(loading)

.reshape(-1, 1) for loading in block_loadings_x1])

Generate a vector which indicates color type for each sample according to
extraction 1, 2 and 3
import itertools
colors = [['Extraction 1']*23, ['Extraction 2']*7, ['Extraction 3']*7]
colors = list(itertools.chain(*colors))
colors = pd.DataFrame(colors, columns=['Type'])

Generate pandas dataframes for easy plotting using seaborn

(continues on next page)

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 17

mbpls Documentation, Release 1.0.2

(continued from previous page)

block_scores_x1 = pd.DataFrame(block_scores_x1, columns=['LV1', 'LV2', 'LV3'])
block_scores_x1 = pd.concat((block_scores_x1, colors), axis=1)
block_loadings_x1 = pd.DataFrame(block_loadings_x1,

columns=['LV1', 'LV2', 'LV3'], index=wavenumbers)

Plot block scores using pairs plot
import seaborn as sns
sns.set(style="ticks")
sns.pairplot(block_scores_x1, hue="Type")
plt.suptitle('Block Scores Pair Plot')
plt.figure(figsize=(9,5))
sns.set(style="whitegrid")

Plot FTIR (X1) loadings
sns.lineplot(data=block_loadings_x1, palette="tab10", linewidth=2.5)
plt.title('Block Loadings X_1', fontsize=18)
plt.xlabel('wavenumbers [cm^{-1}]', fontsize=16);

Plot function to plot FTIR spectra and color them according extraction
yield
def plot_spectra(spectra, ax, name):

pectin_yield = np.array(spectra.index)
color_code = (pectin_yield - pectin_yield.min())
color_code = color_code / color_code.max()
color_code = color_code[:]
for spectrum, color in zip(np.array(spectra), color_code):

ax.plot(wavenumbers, spectrum, color=(color, color, color),
linewidth=2)

ax.set_title(name, fontsize=18)
ax.set_xlabel('wavenumber cm^{-1}', fontsize=16)
plt.tight_layout()

Plot FTIR spectra in groups of extractions for explorative data
analysis
fig, ax = plt.subplots(figsize=(8,5))
plot_spectra(x1, ax, 'Extraction1-3 (X_1)')

/usr/local/lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureWarning:
→˓Using a non-tuple sequence for multidimensional indexing is deprecated; use
→˓`arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as
→˓an array index, `arr[np.array(seq)]`, which will result either in an error or a
→˓different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

18 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 19

mbpls Documentation, Release 1.0.2

Explorative analysis - Let’s look closer at the X2 results

We perform the same analysis as above, but this time for the carbohydrate microarray block (X2). Above we said
that Block X2 was most important in LV3. When we look at block scores and loadings for LV3 we can see that one
sample of extraction 3 performed as an outlier. This sample could have been measured incorrectly. We can also see
that all samples from extraction 1 and 2 (enzymatic) were not really affected by LV3 because they lay all close together

20 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

and indicate scores around zero in LV3. LV3 was therefore most important for the samples from acidic extraction 3.
However, we want to keep in mind that LV3 explains only 1.2% variance in pectin yield.

[12]: # extract Carb. Micr. Array (X2) block scores from fitted mbpls model
block_scores_x2 = mbpls.T_[1]

extract Carb. Micr. (X2) loadings from fitted mbpls model
block_loadings_x2 = mbpls.P_[1].T

inverse transform loadings if standardize option was used during fitting
(by default)
block_loadings_x2 = np.hstack([mbpls.x_scalers_[1].inverse_transform(loading)

.reshape(-1, 1) for loading in block_loadings_x2])

Generate pandas dataframes for easy plotting using seaborn
import itertools
colors = [['Extraction 1']*23, ['Extraction 2']*7, ['Extraction 3']*7]
colors = list(itertools.chain(*colors))
colors = pd.DataFrame(colors, columns=['Type'])

block_scores_x2 = pd.DataFrame(block_scores_x2, columns=['LV1', 'LV2', 'LV3'])
block_scores_x2 = pd.concat((block_scores_x2, colors), axis=1)
block_loadings_x2 = pd.DataFrame(block_loadings_x2,

columns=['LV1', 'LV2', 'LV3'], index=x2.columns)

Plot block scores using pairs plot
import seaborn as sns
sns.set(style="ticks")
sns.pairplot(block_scores_x2, hue="Type")
plt.suptitle('Block Scores Pair Plot')

Plot Carb. Micr. Array (X2) loadings
plt.figure(figsize=(10,5))
sns.set(style="whitegrid")
sns.lineplot(data=block_loadings_x2, palette="tab10", linewidth=2.5,

sort=False)
plt.xticks(rotation=90)
plt.title('Block Loadings X_2', fontsize=18)
plt.xlabel('monoclonal antibody/CBM', fontsize=16);

Plot Carb. Micr. Array data for comparison and exploratory data analysis
plt.figure(figsize=(9,12))
sns.heatmap(x2, annot=True, cbar=False)
plt.title('all Extractions concatenated', fontsize=18)
plt.xlabel('monoclonal Antibody / CBM', fontsize=16)
plt.ylabel('Pectin yield', fontsize=16);

/usr/local/lib/python3.5/dist-packages/scipy/stats/stats.py:1713: FutureWarning:
→˓Using a non-tuple sequence for multidimensional indexing is deprecated; use
→˓`arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as
→˓an array index, `arr[np.array(seq)]`, which will result either in an error or a
→˓different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 21

mbpls Documentation, Release 1.0.2

22 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 23

mbpls Documentation, Release 1.0.2

24 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

References

[1] Baum, Andreas, et al. “Prediction of pectin yield and quality by FTIR and carbohydrate microarray analysis.” Food
and Bioprocess Technology 10.1 (2017): 143-154.

PLS for prediction of pectin yield from carbohydrate microarray data

This notebook exemplifies the PLS modeling approach utilizing carbohydrate microarray data. The data used for
this notebook was derived from Baum et al. [1]. Carbohydrate microarrays are typically equipped with multiple
monoclonal antibodies and carbohydrate binding modules (CBM), which will specifically bind to unique structural
polysaccharide domains. Pectin is such a polysaccharide. It is typically extracted from citrus peel and used as a
gelling agent in jams etc. In the following we will establish Partial Least Squares (PLS) prediction models for pectin
yield from the underlying carbohydrate binding pattern of various extracted samples. Or said in a different way we
want to find a PLS model, which we could use on a newly measured carbydrate microarray row (= pectin extract
sample) to predict its final pectin yield.

Import dependencies and load data

If you encounter errors in this section you might need to install/upgrade one or several of the following packages.

[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from mbpls.data.get_data import load_CarbohydrateMicroarrays_Data

[2]: data = load_CarbohydrateMicroarrays_Data()

Following dataset were loaded as Pandas Dataframes:
dict_keys([’extraction2’, ’extraction3’, ’extraction1’])

[3]: extraction1 = data['extraction1']
extraction2 = data['extraction2']
extraction3 = data['extraction3']

Plot carbohydrate microarray data

During the study by Baum et al. [1] three extractions of pectin were carried out. These are shown as heatmaps below.
The reference values y (final pectin yield) are given as row labels. The extracted samples were measured against 30
monoclonal antibodies/CBMs (columns). Lighter color in the individual cells resemble high degree of interaction
between antibody/CBM with the extracted pectin.

[4]: fig, ax = plt.subplots(ncols=2, nrows=2, figsize=(18,12))
sns.heatmap(extraction1, ax=ax[0][0], annot=True, cbar=False)
sns.heatmap(extraction2, ax=ax[0][1], annot=True, cbar=False)
sns.heatmap(extraction3, ax=ax[1][0], annot=True, cbar=False)
ax[1][1].axis('off')

ax[0][0].set_title('Extraction1', fontsize=18)
ax[0][1].set_title('Extraction2', fontsize=18)
ax[1][0].set_title('Extraction3', fontsize=18)
ax[0][0].set_xlabel('monoclonal Antibody / CBM', fontsize=16)

(continues on next page)

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 25

mbpls Documentation, Release 1.0.2

(continued from previous page)

ax[0][1].set_xlabel('monoclonal Antibody / CBM', fontsize=16)
ax[1][0].set_xlabel('monoclonal Antibody / CBM', fontsize=16)
ax[0][0].set_ylabel('Pectin yield [g]', fontsize=16)
ax[0][1].set_ylabel('Pectin yield [g]', fontsize=16)
ax[1][0].set_ylabel('Pectin yield [g]', fontsize=16)
plt.tight_layout()

Concatenate data

To perform PLS modeling all three extractions are concatenated into a single matrix X for PLS modeling. Pectin yields
resemble reference values y for supervised learning.

[5]: extractions_all = pd.concat((extraction1, extraction2, extraction3),axis=0)
yield_all = extractions_all.index

[6]: plt.figure(figsize=(9,12))
sns.heatmap(extractions_all, annot=True, cbar=False)
plt.title('all Extractions concatenated', fontsize=18)
plt.xlabel('monoclonal Antibody / CBM', fontsize=16)
plt.ylabel('Pectin yield [g]', fontsize=16);

26 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 27

mbpls Documentation, Release 1.0.2

Perform Leave-One-Out Cross Validation for parameter tuning

To find the number of latent variables (LV) we perform LOO-CV. It is recommended to perform 5-fold CV to avoid
overfitting. However, in this example the number of samples are quite limited, hence the choice for LOO-CV.

[7]: from mbpls.mbpls import MBPLS
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import mean_squared_error

MSEs = []
for lv in range(15):

mbpls = MBPLS(n_components=lv+1)
prediction = cross_val_predict(mbpls, extractions_all, yield_all,

→˓cv=len(extractions_all))
prediction = pd.DataFrame(prediction)
MSEs.append(mean_squared_error(prediction, yield_all))

plt.plot(np.arange(1,16), MSEs)
plt.xlabel('number of LVs', fontsize=16)
plt.ylabel('LOO-CV MSE', fontsize =16)
plt.title('Find the right number of LVs', fontsize =18);

Finally, we show the calibration for a model with 5 LVs. The actual MSE minimum indicates 7 LVs. However, we
want to prevent from overfitting and choose only 5 LVs (increased bias).

[8]: mbpls = MBPLS(n_components=5)
prediction = cross_val_predict(mbpls, extractions_all, yield_all,

cv=len(extractions_all))
prediction = pd.DataFrame(prediction)
yield_all = pd.DataFrame(np.array(yield_all))
prediction = pd.concat((prediction, yield_all), axis=1)
prediction.columns=['predicted yield [g]', 'known yield [g]']
prediction.plot.scatter(x='known yield [g]', y='predicted yield [g]')
plt.plot([prediction.min().min(), prediction.max().max()],

[prediction.min().min(), prediction.max().max()], color='red')
plt.ylabel(prediction.columns[0], fontsize=16)
plt.xlabel(prediction.columns[1], fontsize=16)

(continues on next page)

28 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

(continued from previous page)

plt.title('MSE = {:.4f} g^2'.format(mean_squared_error(prediction['known yield [g]
→˓'],

prediction['predicted yield [g]'])),
→˓fontsize=18);

The calibration above indicates that carbohydrate microarrays can be used to predict pectin yield. The mean square
error (MSE) is 0.0013 𝑔

Let’s look at the regression vector 𝛽

To calculate the regression vector 𝛽 we first need to calculate a global model using our 5 LVs (we found these in the
cross validation section).

[9]: import seaborn as sns
mbpls = MBPLS(n_components=5)
mbpls.fit_transform(extractions_all, yield_all)
plt.figure(figsize=(18,5))
sns.barplot(x=extraction1.columns, y=mbpls.beta_[:,0])
plt.title('regression vector $\\beta$', fontsize=18)
plt.xlabel('antibody/CBM importance', fontsize=16)
plt.ylabel('amplitude', fontsize=16)

plt.figure(figsize=(18,12))
sns.heatmap(extractions_all, annot=True, cbar=False)
plt.title('all Extractions concatenated', fontsize=18)
plt.xlabel('monoclonal Antibody / CBM', fontsize=16)
plt.ylabel('Pectin yield [g]', fontsize=16);

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 29

mbpls Documentation, Release 1.0.2

From the regression vector 𝛽 (see above) one can understand which antibodies and/or CBMs are important for pre-
diction of prectin yield. Additionally, the signs of the individual coefficents indicate positive or negative correlations,
respectively.

References

[1] Baum, Andreas, et al. “Prediction of pectin yield and quality by FTIR and carbohydrate microarray analysis.” Food
and Bioprocess Technology 10.1 (2017): 143-154.

30 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

PLS for prediction of pectin yield from FTIR spectroscopic measurement of crude extracts

This Jupyter notebook illustrates the use of PLS to establish prediction models for the pectin yield from Fourier
Transform Infrared (FTIR) spectra measured on crude extracts at different time points and conditions. The data was
obtained from [1] and has been acquired using a FTIR instrument (FOSS FT2), which is capable of measuring light
absorption in the mid infrared spectral region. Depending on the extraction condition and extraction time point the
obtained spectra resemble fingerprints of the extract and its overall chemical complexity. Typically, such spectroscopic
data contains measurements at many wavenumbers (= features 𝑝). PLS is often used for these types of data because it
can handle high dimensional datasets with highly correlated features (as it is the case in this example).

We aim to establish a PLS prediction model such that:

Y = X𝛽 + E

The data matrix X indicates the shape 𝑛× 𝑝, where 𝑛 resembles the number of samples and 𝑝 the number of features.
Once we have found the regression vector 𝛽 we can apply it to newly measured samples of similar type to predict
the respective pectin yield of these samples. The variation in Y which is not explained by the model resembles the
residuals E

Import dependencies and load data

Three datasets are imported for this example. Extraction 1 and 2 were carried out enzymatically, while extraction 3
was carried out using an acid extraction procedure. The three datasets are merged to be analyzed collectively (named
ftir). The data in yield_all contains the final pectin yields (y). If you encounter errors in this section you might need
to install/upgrade some of the Python packages stated below.

[2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from mbpls.data.get_data import load_FTIR_Data
from scipy.io import loadmat

[3]: data = load_FTIR_Data()

Following dataset were loaded as Pandas Dataframes:
dict_keys([’ftir3’, ’ftir1’, ’ftir2’])

[4]: ftir1 = data['ftir1']
ftir2 = data['ftir2']
ftir3 = data['ftir3']
ftir = pd.concat((ftir1, ftir2, ftir3))
yield_all = np.array(ftir.index)
wavenumbers = ftir1.columns

Look at the data

First we want to look at our data. We have created a function which helps us to do so. Each of the three data sets
contains several time points at which the measurement was repeated during the extraction. The spectra are colored in
greyscale, resembling the final pectin yield (dark - lowest, white - highest).

One can observe that extractions 1 and 2 appear to have similar shape, while extraction 3 indicates a very different
characteristics. Remember that extraction 3 was carried out using acid. All extractions show changes in the spectra
which seem to be related to final pectin yield. These spectral changes are especially abundant in the wavenumber
range between 1000 and 1150 𝑐𝑚−1.

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 31

mbpls Documentation, Release 1.0.2

[5]: def plot_spectra(spectra, ax, name):
pectin_yield = np.array(spectra.index)
color_code = (pectin_yield - pectin_yield.min())
color_code = color_code / color_code.max()
color_code = color_code[:]
for spectrum, color in zip(np.array(spectra), color_code):

ax.plot(wavenumbers, spectrum, color=(color, color, color), linewidth=2)
ax.set_title(name, fontsize=18)
ax.set_xlabel('wavenumber cm^{-1}', fontsize=16)
ax.set_ylabel('Abs', fontsize=16)
plt.tight_layout()

fig, ax = plt.subplots(ncols=2, nrows=2, figsize=(10,8))
plot_spectra(ftir1, ax[0][0], 'Extraction1')
plot_spectra(ftir2, ax[0][1], 'Extraction2')
plot_spectra(ftir3, ax[1][0], 'Extraction3')
ax[1][1].axis('off');

When we look at all spectra plotted together we obtain the following situation. It is difficult to identify which spectral
wavenumbers are related to higher pectin yields. This is due to the fact, that both extraction patterns, enzymatic and
acidic, appear superimposed. In the following, we will use PLS regression to establish prediction models using this
combined data set.

32 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

[6]: yield_all = np.array(ftir.index)
fig, ax = plt.subplots(figsize=(10,8))
plot_spectra(ftir, ax, 'all extractions')

Find number of latent variables using Leave-One-Out Cross Validation

To find the right number of latent variables (LV) we perform cross validation. Scikit-learn makes it easy for us using
the cross_val_predict function. We simply re-model the data using different numbers of latent variables and plot the
result of the resulting Mean Square Errors (MSE). We pick the number of latent variables where the MSE is minimal
to avoid overfitting and to induce as much complexity into our model as to obtain most accurate results.

[7]: from mbpls.mbpls import MBPLS
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import mean_squared_error

MSEs = []
for lv in range(15):

mbpls = MBPLS(n_components=lv+1)
prediction = cross_val_predict(mbpls, ftir, yield_all, cv=len(ftir))
prediction = pd.DataFrame(prediction)
MSEs.append(mean_squared_error(prediction, yield_all))

(continues on next page)

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 33

mbpls Documentation, Release 1.0.2

(continued from previous page)

plt.plot(np.arange(1,16), MSEs)
plt.xlabel('number of LVs', fontsize=16)
plt.xticks(np.arange(1,16), np.arange(1,16))
plt.ylabel('LOO-CV MSE', fontsize=16)
plt.title('Find the right number of LVs', fontsize=18);

Plot resulting calibration and evaluate model

Once we have found the right number of latent variables we re-use this number to calculate our final model. Before
we do this using all data (no CV) we want to look at the predicted versus known pectin yield plot below. As you can
see our model predicts pectin yield quite well with a mean squared error of 0.0002 𝑔2.

[8]: mbpls = MBPLS(n_components=3, method='NIPALS')
prediction = cross_val_predict(mbpls, ftir, yield_all, cv=len(ftir))
prediction = pd.DataFrame(prediction)
yield_all = pd.DataFrame(np.array(yield_all))
prediction = pd.concat((prediction, yield_all), axis=1)
prediction.columns=['predicted yield [g]', 'known yield [g]']
prediction.plot.scatter(x='known yield [g]', y='predicted yield [g]')
plt.plot([prediction.min().min(), prediction.max().max()],

[prediction.min().min(), prediction.max().max()], color='red')
plt.ylabel(prediction.columns[0], fontsize=16)
plt.xlabel(prediction.columns[1], fontsize=16)
plt.title('MSE = {:.6f} g^2'.format(mean_squared_error(prediction['known yield [g]
→˓'],

prediction['predicted yield [g]'])),fontsize=18);

34 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

Calculate final model and look at regression vector 𝛽

Now we have validated our model and we are ready to calculate the final model using all available samples. After
doing so we can plot the regression vector 𝛽 and use it to pedict the pectin yield of future samples of similar type. To
compare 𝛽 to the actual spectral patterns in the data, we have plotted it below together with the extraction 1 samples.
It is easy to conclude which wavenumbers have positiv impact on pectin yield and vice versa. Of course, one could
also compare 𝛽 to the spectra of extractions 2 and 3. This can be done by replacing ftir1 with ftir2 or ftir3
in the code below. Note, that the regression vector 𝛽 is applied to standardized data (standardization is enabled by
default).

[9]: import seaborn as sns
mbpls = MBPLS(n_components=5)
mbpls.fit_transform(ftir, yield_all)
fig, ax = plt.subplots(nrows=2, figsize=(10,6))
sns.barplot(x=ftir.columns, y=mbpls.beta_[:,0], ax=ax[0])
ax[0].set_title('regression vector $\\beta$', fontsize=18)
ax[0].set_xlabel('wavenumber $[cm^{-1}]$', fontsize=16)
ax[0].set_ylabel('amplitude', fontsize=16)
ax[0].axes.xaxis.set_ticklabels([])
plot_spectra(ftir1, ax[1], 'Extraction 1\n(for reference)')
ax[1].set_xlim([wavenumbers.min(), wavenumbers.max()]);

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 35

mbpls Documentation, Release 1.0.2

References

[1] Baum, Andreas, et al. “Prediction of pectin yield and quality by FTIR and carbohydrate microarray analysis.” Food
and Bioprocess Technology 10.1 (2017): 143-154.

2.2.3 API Reference

Multi-Block Partial Least Squares (MB-PLS) for Python

The mbpls package contains three multi-block capable algorithms, i.e. KERNEL, NIPALS and UNIPALS, as well as
SIMPLS for fast predictions.

The aim of the package is to provide a unified interface and easy access to these algorithms.

mbpls.mbpls module

Module contents

class mbpls.mbpls.MBPLS(n_components=2, full_svd=False, method=’NIPALS’, standardize=True,
max_tol=1e-14, calc_all=True, sparse_data=False)

• PLS1: Predict a response vector 𝑦 from a single multivariate data block 𝑋

• PLS2: Predict a response matrix 𝑌 from a single multivariate data block 𝑋

• MBPLS: Predict a response vector/matrix 𝑌 from multiple data blocks 𝑋1, 𝑋2, ..., 𝑋𝑖

for detailed information check [ref]

36 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

method [string (default ‘NIPALS’)] The method being used to derive the model attributes, possible are ‘UNI-
PALS’, ‘NIPALS’, ‘SIMPLS’ and ‘KERNEL’

n_components [int] Number (𝑘) of Latent Variables (LV)

standardize [bool (default True)] Standardizing the data

full_svd [bool (default True)] Using full singular value decomposition when performing SVD method. Set to
‘False’ when using very large quadratic matrices 𝑋 .

max_tol [non-negative float (default 1e-14)] Maximum tolerance allowed when using the iterative NIPALS
algorithm

calc_all [bool (default True)] Calculate all internal attributes for the used method. Some methods do not need
to calculate all attributes, i.e. scores, weights etc., to obtain the regression coefficients used for prediction.
Setting this parameter to false will omit these calculations for efficiency and speed.

sparse_data [bool (default False)] NIPALS is the only algorithm that can handle sparse data using the method
of H. Martens and Martens (2001) (p. 381). If this parameter is set to ‘True’, the method will be forced
to NIPALS and sparse data is allowed. Without setting this parameter to ‘True’, sparse data will not be
accepted.

X-side

Ts_ : array, super scores [𝑛, 𝑘]

T_ : list, block scores [𝑖][𝑛, 𝑘]

W_ : list, block weights [𝑖][𝑝𝑖, 𝑘]

A_ : array, block importances/super weights [𝑖, 𝑘]

A_corrected_ : array, normalized block importances 𝐴𝑐𝑜𝑟𝑟,𝑖𝑘 = 𝐴𝑖𝑘 · (1− 𝑝𝑖

𝑝)

P_ : list, block loadings [𝑖][𝑝𝑖, 𝑘]

R_ : array, x_rotations 𝑅 = 𝑊 (𝑃𝑇𝑊)−1

explained_var_x_ : list, explained variance in 𝑋 per LV [𝑘]

explained_var_xblocks_ : array, explained variance in each block 𝑋𝑖 [𝑖, 𝑘]

beta_ : array, regression vector 𝛽 [𝑝, 𝑞]

Y-side

U_ : array, scoresInitialize [𝑛, 𝑘]

V_ : array, loadings [𝑞, 𝑘]

explained_var_y_ : list, explained variance in 𝑌 [𝑘]

Notes

According to literature one distinguishes between PLS1 [ref], PLS2 [ref] and MBPLS [ref]. Common goal is
to find loading vectors 𝑝 and 𝑣 which project the data to latent variable scores 𝑡𝑠 and 𝑢 indicating maximal
covariance. Subsequently, the explained variance is deflated and further LVs can be extracted. Deflation for the
𝑘-th LV is obtained as:

𝑋𝑘+1 = 𝑋𝑘 − 𝑡𝑘𝑝
𝑇
𝑘

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 37

mbpls Documentation, Release 1.0.2

PLS1: Matrices are computed such that:

𝑋 = 𝑇𝑠𝑃
𝑇 + 𝐸𝑋

𝑦 = 𝑋𝛽 + 𝑒

PLS2: Matrices are computed such that:

𝑋 = 𝑇𝑠𝑃
𝑇 + 𝐸𝑋

𝑌 = 𝑈𝑉 𝑇 + 𝐸𝑌

𝑌 = 𝑋𝛽 + 𝐸

MBPLS: In addition, MBPLS provides a measure for how important (𝑎𝑖𝑘) each block 𝑋𝑖 is for prediction of 𝑌
in the 𝑘-th LV. Matrices are computed such that:

𝑋 = [𝑋1|𝑋2|...|𝑋𝑖]

𝑋𝑖 = 𝑇𝑠𝑃
𝑇
𝑖 + 𝐸𝑖

𝑌 = 𝑈𝑉 𝑇 + 𝐸𝑌

𝑌 = 𝑋𝛽 + 𝐸

using the following calculation:

𝑋𝑘 = 𝑋

for k in K:

𝑤𝑘 = first eigenvector of 𝑋𝑇
𝑘 𝑌 𝑌 𝑇𝑋𝑘, ||𝑤𝑘||2 = 1

𝑤𝑘 = [𝑤1𝑘|𝑤2𝑘|...|𝑤𝑖𝑘]

𝑎𝑖𝑘 = ||𝑤𝑖𝑘||22

𝑡𝑖𝑘 =
𝑋𝑖𝑤𝑖𝑘

||𝑤𝑖𝑘||2
𝑡𝑠𝑘 =

∑︁
𝑎𝑖𝑘 * 𝑡𝑖𝑘

𝑣𝑘 =
𝑌 𝑇 𝑡𝑠𝑘
𝑡𝑇𝑠𝑘𝑡𝑠𝑘

𝑢𝑘 = 𝑌 𝑣𝑘

𝑢𝑘 =
𝑢𝑘

||𝑢𝑘||2

𝑝𝑘 =
𝑋𝑇 𝑡𝑠𝑘
𝑡𝑇𝑠𝑘𝑡𝑠𝑘

, 𝑝𝑘 = [𝑝1𝑘|𝑝2𝑘|...|𝑝𝑖𝑘]

𝑋𝑘+1 = 𝑋𝑘 − 𝑡𝑠𝑘𝑝𝑘

End loop

𝑃 = [𝑝1|𝑝2|...|𝑝𝐾]

𝑇𝑠 = [𝑡𝑠1|𝑡𝑠2|...|𝑡𝑠𝐾]

𝑈 = [𝑢1|𝑢2|...|𝑢𝐾]

𝑉 = [𝑣1|𝑣2|...|𝑣𝐾]

𝑊 = [𝑤1|𝑤2|...|𝑤𝑘]

𝑅 = 𝑊 (𝑃𝑇𝑊)−1

𝛽 = 𝑅𝑉 𝑇

38 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

Examples

Quick Start: Two random data blocks 𝑋1 and 𝑋2 and a random reference vector 𝑦 for predictive modeling.

import numpy as np
from mbpls.mbpls import MBPLS

mbpls = MBPLS(n_components=4)
x1 = np.random.rand(20,300)
x2 = np.random.rand(20,450)

y = np.random.rand(20,1)

mbpls.fit([x1, x2],y)
mbpls.plot(num_components=4)

y_pred = mbpls.predict([x1, x2])

More elaborate examples can be found at https://github.com/DTUComputeStatisticsAndDataAnalysis/MBPLS/
tree/master/examples

check_sparsity_level(data)

explained_variance_score(X, Y)

fit(X, Y)
Fit model to given data

Parameters

• X (list) – of all xblocks x1, x2, . . . , xn. Rows are observations, columns are fea-
tures/variables

• Y (array) – 1-dim or 2-dim array of reference values

fit_predict(X, Y, **fit_params)
Fit to data, then predict it.

fit_transform(X, y=None, **fit_params)
Fit the model and then, then transform the given data to lower dimensions.

plot(num_components=2)
Function that prints the fitted values of the instance. INPUT: num_components: Int or list

Int: The number of components that will be plotted, starting with the first component list: Indices
or range of the components that should be plotted

predict(X)
Predict y based on the fitted model

Parameters X (list) – of all xblocks x1, x2, . . . , xn. Rows are observations, columns are
features/variables

Returns

• y_hat (np.array)

• Predictions made based on trained model and supplied X

r2_score(X, Y)

transform(X, Y=None, return_block_scores=False)
Obtain scores based on the fitted model

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 39

https://github.com/DTUComputeStatisticsAndDataAnalysis/MBPLS/tree/master/examples
https://github.com/DTUComputeStatisticsAndDataAnalysis/MBPLS/tree/master/examples

mbpls Documentation, Release 1.0.2

Parameters

X [list] of arrays containing all xblocks x1, x2, . . . , xn. Rows are observations, columns are fea-
tures/variables

(optional) Y [array] 1-dim or 2-dim array of reference values

return_block_scores: bool (default False) Returning block scores T_ when transforming the data

Returns

• Super_scores (np.array)

• Block_scores (list)

• List of np.arrays containing the block scores

• Y_scores (np.array (optional))

• Y-scores, if y was given

mbpls.data module

Module contents

The mbpls.data module contains methods to load data real world datasets and to create artificial data than can be
used to test the mbpls methods.

mbpls.data.data_path()

mbpls.data.orthogonal_data(num_of_samples=11, params_block_one=4, params_block_two=4,
params_block_three=4, num_of_variables_main_lin_comb=0,
num_of_batches=1, random_state=None)

This function creates a dataset with three X-blocks, which are completely orthogonal amongst each other and
one Y-block, that has two response variables, which are a linear combination of the variables defined for the
three blocks.

num_of_samples: Amount of samples for the dataset params_block_one: Number of variables in the first block
params_block_two: Number of variables in the second block params_block_three: Number of variables in the
third block num_of_variables_main_lin_comb: Number of variables that are randon linear combinations of each
variable (Multi-Colliniearity) num_of_batches: Number of batches for each block (third dimension)

X_1 = First X-block - Dimensionality (num_of_samples, params_block_one*(num_of_variables_main_lin_comb+1),
num_of_batches) X_2 = Second X-block - Dimensionality (num_of_samples,
params_block_two*(num_of_variables_main_lin_comb+1), num_of_batches) X_3 = Third X-block - Dimen-
sionality (num_of_samples, params_block_three*(num_of_variables_main_lin_comb+1), num_of_batches) Y
= Y-block - Dimensionality (num_of_samples, 2, num_of_batches)

mbpls.data.load_CarbohydrateMicroarrays_Data()

mbpls.data.load_FTIR_Data()

mbpls.data.load_Intro_Data()

mbpls.tests module

40 Chapter 2. Quick Start

mbpls Documentation, Release 1.0.2

Module contents

The mbpls.tests module contains an installation test script, which contains a range of tests created for the pytest
package that ensure the correct installation of the mbpls package and subsequently the recreation of predefined results
for all methods. This is especially designed to verify the validity of results after making changes to the source code of
the implemented algorithms.

mbpls.tests.test_Installation module

2.2. The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling 41

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

42

PYTHON MODULE INDEX

m
mbpls, 36
mbpls.data, 40
mbpls.mbpls, 36
mbpls.tests, 41

43

INDEX

C
check_sparsity_level() (mbpls.mbpls.MBPLS

method), 39

D
data_path() (in module mbpls.data), 40

E
explained_variance_score() (mb-

pls.mbpls.MBPLS method), 39

F
fit() (mbpls.mbpls.MBPLS method), 39
fit_predict() (mbpls.mbpls.MBPLS method), 39
fit_transform() (mbpls.mbpls.MBPLS method), 39

L
load_CarbohydrateMicroarrays_Data() (in

module mbpls.data), 40
load_FTIR_Data() (in module mbpls.data), 40
load_Intro_Data() (in module mbpls.data), 40

M
MBPLS (class in mbpls.mbpls), 36
mbpls (module), 36
mbpls.data (module), 40
mbpls.mbpls (module), 36
mbpls.tests (module), 41

O
orthogonal_data() (in module mbpls.data), 40

P
plot() (mbpls.mbpls.MBPLS method), 39
predict() (mbpls.mbpls.MBPLS method), 39

R
r2_score() (mbpls.mbpls.MBPLS method), 39

T
transform() (mbpls.mbpls.MBPLS method), 39

44

	Installation
	Quick Start
	Use the mbpls package for Partial Least Squares (PLS) prediction modeling
	The mbpls package for Multiblock Partial Least Squares (MB-PLS) prediction modeling

	Indices and tables
	Python Module Index
	Index

