Math_ML Documentation

1.0 alpha

Herb

The code is open source, and available on GitHub.

The main documentation for the site is organized into a couple sections:

- •
- .
- •

				-4
CH	IΛ	D	\Box	- 1
\cup_{Γ}	ıA	Г	П	

A branch of artificial intelligence, concerns the construction and study of systems that can learn from data. (REF)

VS.

- Uncertainty
 - -
 - _
- –
 - _ 6699

- Using fancy tools like neural nets, boosting and support vector machines without understanding basic statistics like doing brain surgery before knowing how to use a band-aid.
- Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
 - Larry
- Larry Wasserman, All of Statistics: A Concise Course in Statistical Inference

4 Chapter 1.

CHAPTER 2

•

• Bayesian 0.5.

_

- 0.8

Indices and tables

- genindex
- modindex
- search

Install \$project by running:

$$e^{i\pi} + 1 = 0 (2.1)$$

Euler's identity, equation (6.1), was elected one of the most beautiful mathematical formulas.

Since Pythagoras, we know that $a^2 + b^2 = c^2$.

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$
(2.2)

way2

$$(a+b)^2 = (a+b)(a+b)$$

= $a^2 + 2ab + b^2$ (2.3)

way3

$$(a+b)^2 = a^2 + 2ab + b^2 (2.4)$$

Look how easy it is to use \$a_a\$:

import project

$$(a+b)^2 = a^2 + 2ab + b^2 (2.5)$$

Get your stuff done project.do_stuff()

$$y = ax^{2} + bx + c$$

$$f(x) = x^{2} + 2xy + y^{2}$$
(2.6)
(2.7)

$$f(x) = x^2 + 2xy + y^2 (2.7)$$

Contribute

- Issue Tracker: https://github.com/iphysresearch/Math_ML/issues
- Source Code: https://github.com/iphysresearch/Math_ML

Support

If you are having issues, please let us know. We have a mailing list located at: hewang@mail.bnu.edu.cn

License

The project is licensed under the MIT license. The code is open source, and available on GitHub.

The main documentation for the site is organized into a couple sections:

6 Chapter 2.

\cap L	łΑΡ⁻	LD	•
ОΓ	IAL	ı⊏⊓	

A branch of artificial intelligence, concerns the construction and study of systems that can learn from data. (REF)

VS.

- Uncertainty
 - _
 - _
- -
 - _ ""

- Using fancy tools like neural nets, boosting and support vector machines without understanding basic statistics like **doing brain surgery before knowing how to use a band-aid.**
- Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
 - Larry
- Larry Wasserman, All of Statistics: A Concise Course in Statistical Inference

-

• Bayesian 0.5.

_

8 Chapter 3.

- 0.8

3.2.

10 Chapter 3.

Indices and tables

- genindex
- modindex
- · search

Install \$project by running:

$$e^{i\pi} + 1 = 0 (4.1)$$

Euler's identity, equation (6.1), was elected one of the most beautiful mathematical formulas.

Since Pythagoras, we know that $a^2 + b^2 = c^2$.

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
(4.2)

way2

$$(a+b)^{2} = (a+b)(a+b)$$

$$= a^{2} + 2ab + b^{2}$$
(4.3)

way3

$$(a+b)^2 = a^2 + 2ab + b^2 (4.4)$$

Look how easy it is to use \$a_a\$:

import project

$$(a+b)^2 = a^2 + 2ab + b^2 (4.5)$$

Get your stuff done project.do_stuff()

$$y = ax^{2} + bx + c$$
 (4.6)
 $f(x) = x^{2} + 2xy + y^{2}$ (4.7)

$$f(x) = x^2 + 2xy + y^2 (4.7)$$

Contribute

- Issue Tracker: https://github.com/iphysresearch/Math_ML/issues
- Source Code: https://github.com/iphysresearch/Math_ML

Support

If you are having issues, please let us know. We have a mailing list located at: hewang@mail.bnu.edu.cn

License

The project is licensed under the MIT license. The code is open source, and available on GitHub.

The main documentation for the site is organized into a couple sections:

12 Chapter 4.

\cap L	·AAF	TED	
ΟГ	145	ı⊏⊓	. •

A branch of artificial intelligence, concerns the construction and study of systems that can learn from data. (REF)

VS.

- Uncertainty
 - _
 - _
- - _ ""

- Using fancy tools like neural nets, boosting and support vector machines without understanding basic statistics like **doing brain surgery before knowing how to use a band-aid.**
- Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012
 - Larry
- Larry Wasserman, All of Statistics: A Concise Course in Statistical Inference

-

• Bayesian 0.5.

_

14 Chapter 5.

- 0.8

5.2.

16 Chapter 5.

Indices and tables

- genindex
- modindex
- · search

Install \$project by running:

$$e^{i\pi} + 1 = 0 ag{6.1}$$

Euler's identity, equation (6.1), was elected one of the most beautiful mathematical formulas.

Since Pythagoras, we know that $a^2 + b^2 = c^2$.

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$
(6.2)

way2

$$(a+b)^{2} = (a+b)(a+b)$$

$$= a^{2} + 2ab + b^{2}$$
(6.3)

way3

$$(a+b)^2 = a^2 + 2ab + b^2 (6.4)$$

Look how easy it is to use \$a_a\$:

import project

$$(a+b)^2 = a^2 + 2ab + b^2 (6.5)$$

Get your stuff done project.do_stuff()

$$y = ax^{2} + bx + c$$

$$f(x) = x^{2} + 2xy + y^{2}$$
(6.6)
(6.7)

$$f(x) = x^2 + 2xy + y^2 (6.7)$$

Contribute

- Issue Tracker: https://github.com/iphysresearch/Math_ML/issues
- Source Code: https://github.com/iphysresearch/Math_ML

Support

If you are having issues, please let us know. We have a mailing list located at: hewang@mail.bnu.edu.cn

License

The project is licensed under the MIT license.

Chapter 6. 18

$\mathsf{CHAPTER}\ 7$

Contribute

- Issue Tracker: https://github.com/iphysresearch/Math_ML/issues
- Source Code: https://github.com/iphysresearch/Math_ML

CH	IΔ	РΊ	ГΕ	R	8
\mathcal{O}	ᇄ		ᆫ	11	$\mathbf{\mathcal{U}}$

Support

If you are having issues, please let us know. We have a mailing list located at: hewang@mail.bnu.edu.cn

\cap L	Λ	D_{\perp}	ГΕ	\Box	
GΓ	ᆩ			П	~

License

The project is licensed under the MIT license.