

    
      
          
            
  
Mastodon.py

Register your app! This only needs to be done once. Uncomment the code and substitute in your information:

from mastodon import Mastodon

'''
Mastodon.create_app(
     'pytooterapp',
     api_base_url = 'https://mastodon.social',
     to_file = 'pytooter_clientcred.secret'
)
'''





Then login. This can be done every time, or you can use the persisted information:

from mastodon import Mastodon

mastodon = Mastodon(
    client_id = 'pytooter_clientcred.secret',
    api_base_url = 'https://mastodon.social'
)
mastodon.log_in(
    'my_login_email@example.com',
    'incrediblygoodpassword',
    to_file = 'pytooter_usercred.secret'
)





To post, create an actual API instance:

from mastodon import Mastodon

mastodon = Mastodon(
    access_token = 'pytooter_usercred.secret',
    api_base_url = 'https://mastodon.social'
)
mastodon.toot('Tooting from python using #mastodonpy !')





Mastodon [https://github.com/tootsuite/mastodon] is an ActivityPub and OStatus based twitter-like federated social
network node. It has an API that allows you to interact with its
every aspect. This is a simple python wrapper for that api, provided
as a single python module. By default, it talks to the
Mastodon flagship instance [http://mastodon.social/], but it can be set to talk to any
node running Mastodon by setting api_base_url when creating the
api object (or creating an app).

Mastodon.py aims to implement the complete public Mastodon API. As
of this time, it is feature complete for Mastodon version 2.9.2. Pleromas
Mastodon API layer, while not an official target, should also be basically
compatible, and Mastodon.py does make some allowances for behaviour that isn’t
strictly like Mastodons.


A note about rate limits

Mastodons API rate limits per user account. By default, the limit is 300 requests
per 5 minute time slot. This can differ from instance to instance and is subject to change.
Mastodon.py has three modes for dealing with rate limiting that you can pass to
the constructor, “throw”, “wait” and “pace”, “wait” being the default.

In “throw” mode, Mastodon.py makes no attempt to stick to rate limits. When
a request hits the rate limit, it simply throws a MastodonRateLimitError. This is
for applications that need to handle all rate limiting themselves (i.e. interactive apps),
or applications wanting to use Mastodon.py in a multi-threaded context (“wait” and “pace”
modes are not thread safe).


Note

Rate limit information is available on the Mastodon object for applications that
implement their own rate limit handling.


	
Mastodon.ratelimit_remaining

	Number of requests allowed until the next reset.






	
Mastodon.ratelimit_reset

	Time at which the rate limit will next be reset, as a POSIX timestamp.






	
Mastodon.ratelimit_limit

	Total number of requests allowed between resets. Typically 300.






	
Mastodon.ratelimit_lastcall

	Time at which these values have last been seen and updated, as a POSIX timestamp.







In “wait” mode, once a request hits the rate limit, Mastodon.py will wait until
the rate limit resets and then try again, until the request succeeds or an error
is encountered. This mode is for applications that would rather just not worry about rate limits
much, don’t poll the api all that often, and are okay with a call sometimes just taking
a while.

In “pace” mode, Mastodon.py will delay each new request after the first one such that,
if requests were to continue at the same rate, only a certain fraction (set in the
constructor as ratelimit_pacefactor) of the rate limit will be used up. The fraction can
be (and by default, is) greater than one. If the rate limit is hit, “pace” behaves like
“wait”. This mode is probably the most advanced one and allows you to just poll in
a loop without ever sleeping at all yourself. It is for applications that would rather
just pretend there is no such thing as a rate limit and are fine with sometimes not
being very interactive.

In addition to the per-user limit, there is a per-IP limit of 7500 requests per 5
minute time slot, and tighter limits on logins. Mastodon.py does not make any effort
to respect these.

If your application requires many hits to endpoints that are available without logging
in, do consider using Mastodon.py without authenticating to get the full per-IP limit.




A note about pagination

Many of Mastodons API endpoints are paginated. What this means is that if you request
data from them, you might not get all the data at once - instead, you might only get the
first few results.

All endpoints that are paginated have four parameters: since_id, max_id, min_id and
limit. since_id allows you to specify the smallest id you want in the returned data, but
you will still always get the newest data, so if there are too many statuses between
the newest one and since_id, some will not be returned. min_id, on the other hand, gives
you statuses with that minimum id and newer, starting at the given id. max_id, similarly,
allows you to specify the largest id you want. By specifying either min_id or max_id
(generally, only one, not both) of them you can go through pages forwards and backwards.

limit allows you to specify how many results you would like returned. Note that an
instance may choose to return less results than you requested - by default, Mastodon
will return no more than 40 statues and no more than 80 accounts no matter how high
you set the limit.

The responses returned by paginated endpoints contain a “link” header that specifies
which parameters to use to get the next and previous pages. Mastodon.py parses these
and stores them (if present) in the first (for the previous page) and last (for the
next page) item of the returned list as _pagination_prev and _pagination_next. They
are accessible only via attribute-style access. Note that this means that if you
want to persist pagination info with your data, you’ll have to take care of that
manually (or persist objects, not just dicts).

There are convenience functions available for fetching the previous and next page of
a paginated request as well as for fetching all pages starting from a first page.




Two notes about IDs

Mastodons API uses IDs in several places: User IDs, Toot IDs, …

While debugging, it might be tempting to copy-paste in IDs from the
web interface into your code. This will not work, as the IDs on the web
interface and in the URLs are not the same as the IDs used internally
in the API, so don’t do that.


ID unpacking

Wherever Mastodon.py expects an ID as a parameter, you can also pass a
dict that contains an id - this means that, for example, instead of writing

mastodon.status_post("@somebody wow!", in_reply_to_id = toot["id"])





you can also just write

mastodon.status_post("@somebody wow!", in_reply_to_id = toot)





and everything will work as intended.






Error handling

When Mastodon.py encounters an error, it will raise an exception, generally with
some text included to tell you what went wrong.

The base class that all mastodon exceptions inherit from is MastodonError.
If you are only interested in the fact an error was raised somewhere in
Mastodon.py, and not the details, this is the exception you can catch.

MastodonIllegalArgumentError is generally a programming problem - you asked the
API to do something obviously invalid (i.e. specify a privacy option that does
not exist).

MastodonFileNotFoundError and MastodonNetworkError are IO errors - could be you
specified a wrong URL, could be the internet is down or your hard drive is
dying. They inherit from MastodonIOError, for easy catching. There is a sub-error
of MastodonNetworkError, MastodonReadTimeout, which is thrown when a streaming
API stream times out during reading.

MastodonAPIError is an error returned from the Mastodon instance - the server
has decided it can’t fullfill your request (i.e. you requested info on a user that
does not exist). It is further split into MastodonNotFoundError (API returned 404)
and MastodonUnauthorizedError (API returned 401). Different error codes might exist,
but are not currently handled separately.

MastodonMalformedEventError is raised when a streaming API listener receives an
invalid event. There have been reports that this can sometimes happen after prolonged
operation due to an upstream problem in the requests/urllib libraries.

MastodonRatelimitError is raised when you hit an API rate limit. You should try
again after a while (see the rate limiting section above).

MastodonServerError is raised when the server throws an internal error, likely due
to server misconfiguration.

MastodonVersionError is raised when a version check for an API call fails.




A brief note on block lists

The default distribution of Mastodon.py prevents you from logging in to instances on a very short list of domains. The purpose of this is to disassociate the developers of Mastodon.py from these instances and to disavow the ideology of violence that they represent. You could, of course, take that part out - Mastodon.py is free software, and you have the right to modify it to suit your needs.

While you take the extra step of removing the code, please take a moment to consider why reasonable people whose work you build and depend on every day thought it was necessary to put it in to begin with.




Return values

Unless otherwise specified, all data is returned as python dictionaries, matching
the JSON format used by the API. Dates returned by the API are in ISO 8601 format
and are parsed into python datetime objects.

To make access easier, the dictionaries returned are wrapped by a class that adds
read-only attributes for all dict values - this means that, for example, instead of
writing

description = mastodon.account_verify_credentials()["source"]["note"]





you can also just write

description = mastodon.account_verify_credentials().source.note





and everything will work as intended. The class used for this is exposed as
AttribAccessDict.


User dicts

mastodon.account(<numerical id>)
# Returns the following dictionary:
{
    'id': # Same as <numerical id>
    'username': # The username (what you @ them with)
    'acct': # The user's account name as username@domain (@domain omitted for local users)
    'display_name': # The user's display name
    'locked': # Denotes whether the account can be followed without a follow request
    'created_at': # Account creation time
    'following_count': # How many people they follow
    'followers_count': # How many followers they have
    'statuses_count': # How many statuses they have
    'note': # Their bio
    'url': # Their URL; usually 'https://mastodon.social/users/<acct>'
    'avatar': # URL for their avatar, can be animated
    'header': # URL for their header image, can be animated
    'avatar_static': # URL for their avatar, never animated
    'header_static': # URL for their header image, never animated
    'source': # Additional information - only present for user dict returned
              # from account_verify_credentials()
    'moved_to_account': # If set, an account dict of the account this user has
                        # set up as their moved-to address.
    'bot': # Boolean indicating whether this account is automated.
    'fields': # List of up to four dicts with free-form 'name' and 'value' profile info.
              # For fields with "this is me" type verification, verified_at is set to the
              # last verification date (It is None otherwise)
}

mastodon.account_verify_credentials()["source"]
# Returns the following dictionary:
{
    'privacy': # The users default visibility setting ("private", "unlisted" or "public")
    'sensitive': # Denotes whether user media should be marked sensitive by default
    'note': # Plain text version of the users bio
}








Toot dicts

mastodon.toot("Hello from Python")
# Returns the following dictionary:
{
    'id': # Numerical id of this toot
    'uri': # Descriptor for the toot
        # EG 'tag:mastodon.social,2016-11-25:objectId=<id>:objectType=Status'
    'url': # URL of the toot
    'account': # User dict for the account which posted the status
    'in_reply_to_id': # Numerical id of the toot this toot is in response to
    'in_reply_to_account_id': # Numerical id of the account this toot is in response to
    'reblog': # Denotes whether the toot is a reblog. If so, set to the original toot dict.
    'content': # Content of the toot, as HTML: '<p>Hello from Python</p>'
    'created_at': # Creation time
    'reblogs_count': # Number of reblogs
    'favourites_count': # Number of favourites
    'reblogged': # Denotes whether the logged in user has boosted this toot
    'favourited': # Denotes whether the logged in user has favourited this toot
    'sensitive': # Denotes whether media attachments to the toot are marked sensitive
    'spoiler_text': # Warning text that should be displayed before the toot content
    'visibility': # Toot visibility ('public', 'unlisted', 'private', or 'direct')
    'mentions': # A list of users dicts mentioned in the toot, as Mention dicts
    'media_attachments': # A list of media dicts of attached files
    'emojis': # A list of custom emojis used in the toot, as Emoji dicts
    'tags': # A list of hashtag used in the toot, as Hashtag dicts
    'application': # Application dict for the client used to post the toot (Does not federate
                   # and is therefore always None for remote toots, can also be None for
                   # local toots for some legacy applications).
    'language': # The language of the toot, if specified by the server,
                # as ISO 639-1 (two-letter) language code.
    'muted': # Boolean denoting whether the user has muted this status by
             # way of conversation muting
    'pinned': # Boolean denoting whether or not the status is currently pinned for the
              # associated account.
    'replies_count': # The number of replies to this status.
    'card': # A preview card for links from the status, if present at time of delivery,
            # as card dict.
    'poll': # A poll dict if a poll is attached to this status.
}








Mention dicts

{
    'url': # Mentioned users profile URL (potentially remote)
    'username': # Mentioned users user name (not including domain)
    'acct': # Mentioned users account name (including domain)
    'id': # Mentioned users (local) account ID
}








Scheduled toot dicts

mastodon.status_post("text", scheduled_at=the_future)
# Returns the following dictionary:
{
    'id': # Scheduled toot ID (note: Not the id of the toot once it gets posted!)
    'scheduled_at': # datetime object describing when the toot is to be posted
    'params': # Parameters for the scheduled toot, specifically
    {
        'text': # Toot text
        'in_reply_to_id': # ID of the toot this one is a reply to
        'media_ids': # IDs of media attached to this toot
        'sensitive': # Whether this toot is sensitive or not
        'visibility': # Visibility of the toot
        'idempotency': # Idempotency key for the scheduled toot
        'scheduled_at': # Present, but generally "None"
        'spoiler_text': # CW text for this toot
        'application_id': # ID of the application that scheduled the toot
        'poll': # Poll parameters, as a poll dict
    },
    'media_attachments': # Array of media dicts for the attachments to the scheduled toot
}








Poll dicts

# Returns the following dictionary:
mastodon.poll(id)
{
    'id': # The polls ID
    'expires_at': # The time at which the poll is set to expire
    'expired': # Boolean denoting whether you can still vote in this poll
    'multiple': # Boolean indicating whether it is allowed to vote for more than one option
    'votes_count': # Total number of votes cast in this poll
    'voted': # Boolean indicating whether the logged-in user has already voted in this poll
    'options': # The poll options as a list of dicts, each option with a title and a
               # votes_count field. votes_count can be None if the poll creator has
               # chosen to hide vote totals until the poll expires and it hasn't yet.
    'emojis': # List of emoji dicts for all emoji used in answer strings
}








Conversation dicts

mastodon.conversations()[0]
# Returns the following dictionary:
{
    'id': # The ID of this conversation object
    'unread': # Boolean indicating whether this conversation has yet to be
              # read by the user
    'accounts': # List of accounts (other than the logged-in account) that
                # are part of this conversation
    'last_status': # The newest status in this conversation
}








Hashtag dicts

{
    'name': # Hashtag name (not including the #)
    'url': # Hashtag URL (can be remote)
    'history': # List of usage history dicts for up to 7 days. Not present in statuses.
}








Hashtag usage history dicts

{
    'day': # Date of the day this history dict is for
    'uses': # Number of statuses using this hashtag on that day
    'accounts': # Number of accounts using this hashtag in at least one status on that day
}








Emoji dicts

{
    'shortcode': # Emoji shortcode, without surrounding colons
    'url': # URL for the emoji image, can be animated
    'static_url': # URL for the emoji image, never animated
}








Application dicts





{
    'name': # The applications name
    'website': # The applications website
    'vapid_key': # A vapid key that can be used in web applications
}








Relationship dicts

mastodon.account_follow(<numerical id>)
# Returns the following dictionary:
{
    'id': # Numerical id (same one as <numerical id>)
    'following': # Boolean denoting whether the logged-in user follows the specified user
    'followed_by': # Boolean denoting whether the specified user follows the logged-in user
    'blocking': # Boolean denoting whether the logged-in user has blocked the specified user
    'muting': # Boolean denoting whether the logged-in user has muted the specified user
    'muting_notifications': # Boolean denoting wheter the logged-in user has muted notifications
                            # related to the specified user
    'requested': # Boolean denoting whether the logged-in user has sent the specified
                 # user a follow request
    'domain_blocking': # Boolean denoting whether the logged-in user has blocked the
                       # specified users domain
    'showing_reblogs': # Boolean denoting whether the specified users reblogs show up on the
                       # logged-in users Timeline
    'endorsed': # Boolean denoting wheter the specified user is being endorsed / featured by the
                # logged-in user
}








Filter dicts

mastodon.account_follow(<numerical id>)
# Returns the following dictionary:
{
    'id': # Numerical id of the filter
    'phrase': # Filtered keyword or phrase
    'context': # List of places where the filters are applied ('home', 'notifications', 'public', 'thread')
    'expires_at': # Expiry date for the filter
    'irreversible': # Boolean denoting if this filter is executed server-side
                    # or if it should be ran client-side.
    'whole_word': # Boolean denoting whether this filter can match partial words
}








Notification dicts

mastodon.notifications()[0]
# Returns the following dictionary:
{
    'id': # id of the notification
    'type': # "mention", "reblog", "favourite" or "follow"
    'created_at': # The time the notification was created
    'account': # User dict of the user from whom the notification originates
    'status': # In case of "mention", the mentioning status
              # In case of reblog / favourite, the reblogged / favourited status
}








Context dicts

mastodon.status_context(<numerical id>)
# Returns the following dictionary:
{
    'ancestors': # A list of toot dicts
    'descendants': # A list of toot dicts
}








List dicts

mastodon.list(<numerical id>)
# Returns the following dictionary:
{
    'id': # id of the list
    'title': # title of the list
}








Media dicts

mastodon.media_post("image.jpg", "image/jpeg")
# Returns the following dictionary:
{
    'id': # The ID of the attachment.
    'type': # Media type: 'image', 'video', 'gifv', 'audio' or 'unknown'.
    'url': # The URL for the image in the local cache
    'remote_url': # The remote URL for the media (if the image is from a remote instance)
    'preview_url': # The URL for the media preview
    'text_url': # The display text for the media (what shows up in toots)
    'meta': # Dictionary of two image metadata dicts (see below),
            # 'original' and 'small' (preview). Either may be empty.
            # May additionally contain an "fps" field giving a videos frames per second (possibly
            # rounded), and a "length" field giving a videos length in a human-readable format.
            # Note that a video may have an image as preview.
            # May also contain a 'focus' dict.
    'blurhash': # The blurhash for the image, used for preview / placeholder generation
    'description': # If set, the user-provided description for this media.
}

# Metadata dicts (image) - all fields are optional:
{
   'width': # Width of the image in pixels
   'height': # Height of the image in pixels
   'aspect': # Aspect ratio of the image as a floating point number
   'size': # Textual representation of the image size in pixels, e.g. '800x600'
}

# Metadata dicts (video, gifv) - all fields are optional:
{
    'width': # Width of the video in pixels
    'heigh': # Height of the video in pixels
    'frame_rate': # Exact frame rate of the video in frames per second.
                  # Can be an integer fraction (i.e. "20/7")
    'duration': # Duration of the video in seconds
    'bitrate': # Average bit-rate of the video in bytes per second
}

# Focus Metadata dict:
{
    'x': Focus point x coordinate (between -1 and 1)
    'y': Focus point x coordinate (between -1 and 1)
}








Card dicts

mastodon.status_card(<numerical id>):
# Returns the following dictionary
{
    'url': # The URL of the card.
    'title': # The title of the card.
    'description': # The description of the card.
    'type': # Embed type: 'link', 'photo', 'video', or 'rich'
    'image': # (optional) The image associated with the card.

    # OEmbed data (all optional):
    'author_name': # Name of the embedded contents author
    'author_url': # URL pointing to the embedded contents author
    'description': # Description of the embedded content
    'width': # Width of the embedded object
    'height': # Height of the embedded object
    'html': # HTML string of the embed
    'provider_name': # Name of the provider from which the embed originates
    'provider_url': # URL pointing to the embeds provider
}








Search result dicts

mastodon.search("<query>")
# Returns the following dictionary
{
    'accounts': # List of account dicts resulting from the query
    'hashtags': # List of hashtag dicts resulting from the query
    'statuses': # List of toot dicts resulting from the query
}








Instance dicts

mastodon.instance()
# Returns the following dictionary
{
    'description': # A brief instance description set by the admin
    'short_description': # An even briefer instance description
    'email': # The admin contact e-mail
    'title': # The instances title
    'uri': # The instances URL
    'version': # The instances mastodon version
    'urls': # Additional URLs dict, presently only 'streaming_api' with the
            # stream websocket address.
    'stats: # A dictionary containing three stats, user_count (number of local users),
            # status_count (number of local statuses) and domain_count (number of known
            # instance domains other than this one).
    'contact_account': # Account dict of the primary contact for the instance
    'languages': # Array of ISO 639-1 (two-letter) language codes the instance
                 # has chosen to advertise.
    'registrations': # Boolean indication whether registrations on this instance are open
                     # (True) or not (False)
    'approval_required': # True if account approval is required when registering
}








Activity dicts

mastodon.instance_activity()[0]
# Returns the following dictionary
{
    'week': # Date of the first day of the week the stats were collected for
    'logins': # Number of users that logged in that week
    'registrations': # Number of new users that week
    'statuses': # Number of statuses posted that week
}








Report dicts

mastodon.admin_reports()[0]
# Returns the following dictionary
{
    'id': # Numerical id of the report
    'action_taken': # True if a moderator or admin has processed the
                    # report, False otherwise.

    # The following fields are only present in the report dicts returned by moderation API:
    'comment': # Text comment submitted with the report
    'created_at': # Time at which this report was created, as a datetime object
    'updated_at': # Last time this report has been updated, as a datetime object
    'account': # Account dict of the user that filed this report
    'target_account': # Account that has been reported with this report
    'assigned_account': # If the report as been assigned to an account,
                        # account dict of that account (None if not)
    'action_taken_by_account': # Account dict of the account that processed this report
    'statuses': # List of statuses attached to the report, as toot dicts
}








Push subscription dicts

mastodon.push_subscription()
# Returns the following dictionary
{
    'id': # Numerical id of the push subscription
    'endpoint': # Endpoint URL for the subscription
    'server_key': # Server pubkey used for signature verification
    'alerts': # Subscribed events - dict that may contain keys 'follow',
              # 'favourite', 'reblog' and 'mention', with value True
              # if webpushes have been requested for those events.
}








Push notification dicts

mastodon.push_subscription_decrypt_push(...)
# Returns the following dictionary
{
    'access_token': # Access token that can be used to access the API as the
                    # notified user
    'body': # Text body of the notification
    'icon': # URL to an icon for the notification
    'notification_id': # ID that can be passed to notification() to get the full
                       # notification object,
    'notification_type': # 'mention', 'reblog', 'follow' or 'favourite'
    'preferred_locale': # The users preferred locale
    'title': # Title for the notification
}








Preference dicts

mastodon.preferences()
# Returns the following dictionary
{
    'posting:default:visibility': # The default visibility setting for the users posts,
                                  # as a string
    'posting:default:sensitive': # Boolean indicating whether the users uploads should
                                 # be marked sensitive by default
    'posting:default:language': # The users default post language, if set (None if not)
    'reading:expand:media': # How the user wishes to be shown sensitive media. Can be
                            # 'default' (hide if sensitive), 'hide_all' or 'show_all'
    'reading:expand:spoilers': # Boolean indicating whether the user wishes to expand
                               # content warnings by default
}








Admin account dicts

mastodon.admin_account(id)
# Returns the following dictionary
{
    'id': # The users id,
    'username': # The users username, no leading @
    'domain': # The users domain
    'created_at': # The time of account creation
    'email': # For local users, the users e-mail
    'ip': # For local users, the users last known IP address
    'role': # 'admin', 'moderator' or None
    'confirmed': # For local users, False if the user has not confirmed their e-mail, True otherwise
    'suspended': # Boolean indicating whether the user has been suspended
    'silenced': # Boolean indicating whether the user has been suspended
    'disabled': # For local users, boolean indicating whether the user has had their login disabled
    'approved': # For local users, False if the user is pending, True otherwise
    'locale': # For local users, the locale the user has set,
    'invite_request': # If the user requested an invite, the invite request comment of that user. (TODO permanent?)
    'invited_by_account_id': # Present if the user was invited by another user and set to the inviting users id.
    'account': # The users account, as a standard account dict
}










App registration and user authentication

Before you can use the mastodon API, you have to register your
application (which gets you a client key and client secret)
and then log in (which gets you an access token). These functions
allow you to do those things. Additionally, it is also possible
to programmatically register a new user.

For convenience, once you have a client id, secret and access token,
you can simply pass them to the constructor of the class, too!

Note that while it is perfectly reasonable to log back in whenever
your app starts, registering a new application on every
startup is not, so don’t do that - instead, register an application
once, and then persist your client id and secret. A convenient method
for this is provided by the functions dealing with registering the app,
logging in and the Mastodon classes constructor.

To talk to an instance different from the flagship instance, specify
the api_base_url (usually, just the URL of the instance, i.e.
https://mastodon.social/ for the flagship instance). If no protocol
is specified, Mastodon.py defaults to https.


	
static Mastodon.create_app(client_name, scopes=['read', 'write', 'follow', 'push'], redirect_uris=None, website=None, to_file=None, api_base_url='https://mastodon.social', request_timeout=300, session=None)

	Create a new app with given client_name and scopes (The basic scropse are “read”, “write”, “follow” and “push” 
- more granular scopes are available, please refere to Mastodon documentation for which).

Specify redirect_uris if you want users to be redirected to a certain page after authenticating in an oauth flow.
You can specify multiple URLs by passing a list. Note that if you wish to use OAuth authentication with redirects,
the redirect URI must be one of the URLs specified here.

Specify to_file to persist your apps info to a file so you can use them in the constructor.
Specify api_base_url if you want to register an app on an instance different from the flagship one.        
Specify website to give a website for your app.

Specify session with a requests.Session for it to be used instead of the deafult. This can be
used to, amongst other things, adjust proxy or ssl certificate settings.

Presently, app registration is open by default, but this is not guaranteed to be the case for all
future mastodon instances or even the flagship instance in the future.

Returns client_id and client_secret, both as strings.






	
Mastodon.__init__(client_id=None, client_secret=None, access_token=None, api_base_url='https://mastodon.social', debug_requests=False, ratelimit_method='wait', ratelimit_pacefactor=1.1, request_timeout=300, mastodon_version=None, version_check_mode='created', session=None)

	Create a new API wrapper instance based on the given client_secret and client_id. If you
give a client_id and it is not a file, you must also give a secret. If you specify an
access_token then you don’t need to specify a client_id. It is allowed to specify
neither - in this case, you will be restricted to only using endpoints that do not
require authentication.

You can also specify an access_token, directly or as a file (as written by log_in()).

Mastodon.py can try to respect rate limits in several ways, controlled by ratelimit_method.
“throw” makes functions throw a MastodonRatelimitError when the rate
limit is hit. “wait” mode will, once the limit is hit, wait and retry the request as soon
as the rate limit resets, until it succeeds. “pace” works like throw, but tries to wait in
between calls so that the limit is generally not hit (How hard it tries to not hit the rate
limit can be controlled by ratelimit_pacefactor). The default setting is “wait”. Note that
even in “wait” and “pace” mode, requests can still fail due to network or other problems! Also
note that “pace” and “wait” are NOT thread safe.

Specify api_base_url if you wish to talk to an instance other than the flagship one.
If a file is given as client_id, client ID and secret are read from that file.

By default, a timeout of 300 seconds is used for all requests. If you wish to change this,
pass the desired timeout (in seconds) as request_timeout.

For fine-tuned control over the requests object use session with a requests.Session.

The mastodon_version parameter can be used to specify the version of Mastodon that Mastodon.py will
expect to be installed on the server. The function will throw an error if an unparseable 
Version is specified. If no version is specified, Mastodon.py will set mastodon_version to the 
detected version.

The version check mode can be set to “created” (the default behaviour), “changed” or “none”. If set to 
“created”, Mastodon.py will throw an error if the version of Mastodon it is connected to is too old
to have an endpoint. If it is set to “changed”, it will throw an error if the endpoints behaviour has
changed after the version of Mastodon that is connected has been released. If it is set to “none”,
version checking is disabled.






	
Mastodon.log_in(username=None, password=None, code=None, redirect_uri='urn:ietf:wg:oauth:2.0:oob', refresh_token=None, scopes=['read', 'write', 'follow', 'push'], to_file=None)

	Get the access token for a user.

The username is the e-mail used to log in into mastodon.

Can persist access token to file to_file, to be used in the constructor.

Handles password and OAuth-based authorization.

Will throw a MastodonIllegalArgumentError if the OAuth or the
username / password credentials given are incorrect, and
MastodonAPIError if all of the requested scopes were not granted.

For OAuth2, obtain a code via having your user go to the url returned by 
auth_request_url() and pass it as the code parameter. In this case,
make sure to also pass the same redirect_uri parameter as you used when
generating the auth request URL.

Returns the access token as a string.






	
Mastodon.auth_request_url(client_id=None, redirect_uris='urn:ietf:wg:oauth:2.0:oob', scopes=['read', 'write', 'follow', 'push'], force_login=False)

	Returns the url that a client needs to request an oauth grant from the server.

To log in with oauth, send your user to this URL. The user will then log in and
get a code which you can pass to log_in.

scopes are as in log_in(), redirect_uris is where the user should be redirected to
after authentication. Note that redirect_uris must be one of the URLs given during
app registration. When using urn:ietf:wg:oauth:2.0:oob, the code is simply displayed,
otherwise it is added to the given URL as the “code” request parameter.

Pass force_login if you want the user to always log in even when already logged
into web mastodon (i.e. when registering multiple different accounts in an app).






	
Mastodon.create_account(username, password, email, agreement=False, locale='en', scopes=['read', 'write', 'follow', 'push'], to_file=None)

	Creates a new user account with the given username, password and email. “agreement”
must be set to true (after showing the user the instances user agreement and having
them agree to it), “locale” specifies the language for the confirmation e-mail as an
ISO 639-1 (two-letter) language code.

Does not require an access token, but does require a client grant.

By default, this method is rate-limited by IP to 5 requests per 30 minutes.

Returns an access token (just like log_in), which it can also persist to to_file,
and sets it internally so that the user is now logged in. Note that this token 
can only be used after the user has confirmed their e-mail.

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0








Versioning

Mastodon.py will check if a certain endpoint is available before doing API
calls. By default, it checks against the version of Mastodon retrieved on
init(), or the version you specified. Mastodon.py can be set (in the
constructor) to either check if an endpoint is available at all (this is the
default) or to check if the endpoint is available and behaves as in the newest
Mastodon version (with regards to parameters as well as return values).
Version checking can also be disabled altogether. If a version check fails,
Mastodon.py throws a MastodonVersionError.

With the following functions, you can make Mastodon.py re-check the server
version or explicitly determine if a specific minimum Version is available.
Long-running applications that aim to support multiple Mastodon versions
should do this from time to time in case a server they are running against
updated.


	
Mastodon.retrieve_mastodon_version()

	Determine installed mastodon version and set major, minor and patch (not including RC info) accordingly.

Returns the version string, possibly including rc info.






	
Mastodon.verify_minimum_version(version_str, cached=False)

	Update version info from server and verify that at least the specified version is present.

If you specify “cached”, the version info update part is skipped.

Returns True if version requirement is satisfied, False if not.








Reading data: Instances

These functions allow you to fetch information associated with the
current instance.


	
Mastodon.instance()

	Retrieve basic information about the instance, including the URI and administrative contact email.

Does not require authentication.

Returns an instance dict.

Added: Mastodon v1.1.0, last changed: Mastodon v2.3.0






	
Mastodon.instance_activity()

	Retrieve activity stats about the instance. May be disabled by the instance administrator - throws
a MastodonNotFoundError in that case.

Activity is returned for 12 weeks going back from the current week.

Returns a list of activity dicts.

Added: Mastodon v2.1.2, last changed: Mastodon v2.1.2






	
Mastodon.instance_peers()

	Retrieve the instances that this instance knows about. May be disabled by the instance administrator - throws
a MastodonNotFoundError in that case.

Returns a list of URL strings.

Added: Mastodon v2.1.2, last changed: Mastodon v2.1.2








Reading data: Timelines

This function allows you to access the timelines a logged in
user could see, as well as hashtag timelines and the public (federated)
and local timelines. For the public, local and hashtag timelines,
access is allowed even when not authenticated.


	
Mastodon.timeline(timeline='home', max_id=None, min_id=None, since_id=None, limit=None)

	Fetch statuses, most recent ones first. timeline can be ‘home’, ‘local’, ‘public’,
‘tag/hashtag’ or ‘list/id’. See the following functions documentation for what those do.
Local hashtag timelines are supported via the timeline_hashtag() function.

The default timeline is the “home” timeline.

Media only queries are supported via the timeline_public() and timeline_hashtag() functions.

Returns a list of toot dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0






	
Mastodon.timeline_home(max_id=None, min_id=None, since_id=None, limit=None)

	Fetch the logged-in users home timeline (i.e. followed users and self).

Returns a list of toot dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0






	
Mastodon.timeline_local(max_id=None, min_id=None, since_id=None, limit=None)

	Fetches the local / instance-wide timeline, not including replies.

Returns a list of toot dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0






	
Mastodon.timeline_public(max_id=None, min_id=None, since_id=None, limit=None, only_media=False)

	Fetches the public / visible-network timeline, not including replies.

Set only_media to True to retrieve only statuses with media attachments.

Returns a list of toot dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0






	
Mastodon.timeline_hashtag(hashtag, local=False, max_id=None, min_id=None, since_id=None, limit=None, only_media=False)

	Fetch a timeline of toots with a given hashtag. The hashtag parameter
should not contain the leading #.

Set local to True to retrieve only instance-local tagged posts.
Set only_media to True to retrieve only statuses with media attachments.

Returns a list of toot dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0






	
Mastodon.timeline_list(id, max_id=None, min_id=None, since_id=None, limit=None)

	Fetches a timeline containing all the toots by users in a given list.

Returns a list of toot dicts.

Added: Mastodon v2.1.0, last changed: Mastodon v2.6.0






	
Mastodon.conversations(max_id=None, min_id=None, since_id=None, limit=None)

	Fetches a users conversations.

Returns a list of conversation dicts.

Added: Mastodon v2.6.0, last changed: Mastodon v2.6.0








Reading data: Statuses

These functions allow you to get information about single statuses.


	
Mastodon.status(id)

	Fetch information about a single toot.

Does not require authentication for publicly visible statuses.

Returns a toot dict.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0






	
Mastodon.status_context(id)

	Fetch information about ancestors and descendants of a toot.

Does not require authentication for publicly visible statuses.

Returns a context dict.

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0






	
Mastodon.status_reblogged_by(id)

	Fetch a list of users that have reblogged a status.

Does not require authentication for publicly visible statuses.

Returns a list of user dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0






	
Mastodon.status_favourited_by(id)

	Fetch a list of users that have favourited a status.

Does not require authentication for publicly visible statuses.

Returns a list of user dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0






	
Mastodon.status_card(id)

	Fetch a card associated with a status. A card describes an object (such as an
external video or link) embedded into a status.

Does not require authentication for publicly visible statuses.

Returns a card dict.

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0






Reading data: Scheduled statuses

These functions allow you to get information about scheduled statuses.


	
Mastodon.scheduled_statuses()

	Fetch a list of scheduled statuses

Returns a list of scheduled toot dicts.

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0






	
Mastodon.scheduled_status(id)

	Fetch information about the scheduled status with the given id.

Returns a scheduled toot dict.

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0








Reading data: Polls

This function allows you to get and refresh information about polls.


	
Mastodon.poll(id)

	Fetch information about the poll with the given id

Returns a poll dict.

Added: Mastodon v2.8.0, last changed: Mastodon v2.8.0










Reading data: Notifications

This function allows you to get information about a users notifications.


	
Mastodon.notifications(id=None, account_id=None, max_id=None, min_id=None, since_id=None, limit=None)

	Fetch notifications (mentions, favourites, reblogs, follows) for the logged-in
user. Pass account_id to get only notifications originating from the given account.

Can be passed an id to fetch a single notification.

Returns a list of notification dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.9.0








Reading data: Accounts

These functions allow you to get information about accounts and
their relationships.


	
Mastodon.account(id)

	Fetch account information by user id.

Does not require authentication.

Returns a user dict.

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0






	
Mastodon.account_verify_credentials()

	Fetch logged-in user’s account information.

Returns a user dict (Starting from 2.1.0, with an additional “source” field).

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0






	
Mastodon.account_statuses(id, only_media=False, pinned=False, exclude_replies=False, max_id=None, min_id=None, since_id=None, limit=None)

	Fetch statuses by user id. Same options as timeline() are permitted.
Returned toots are from the perspective of the logged-in user, i.e.
all statuses visible to the logged-in user (including DMs) are
included.

If only_media is set, return only statuses with media attachments.
If pinned is set, return only statuses that have been pinned. Note that 
as of Mastodon 2.1.0, this only works properly for instance-local users.
If exclude_replies is set, filter out all statuses that are replies.

Does not require authentication for Mastodon versions after 2.7.0 (returns
publicly visible statuses in that case).

Returns a list of toot dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.7.0






	
Mastodon.account_following(id, max_id=None, min_id=None, since_id=None, limit=None)

	Fetch users the given user is following.

Returns a list of user dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0






	
Mastodon.account_followers(id, max_id=None, min_id=None, since_id=None, limit=None)

	Fetch users the given user is followed by.

Returns a list of user dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0






	
Mastodon.account_relationships(id)

	Fetch relationship (following, followed_by, blocking, follow requested) of 
the logged in user to a given account. id can be a list.

Returns a list of relationship dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0






	
Mastodon.account_search(q, limit=None, following=False)

	Fetch matching accounts. Will lookup an account remotely if the search term is
in the username@domain format and not yet in the database. Set following to
True to limit the search to users the logged-in user follows.

Returns a list of user dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.3.0








Reading data: Keyword filters

These functions allow you to get information about keyword filters.


	
Mastodon.filters()

	Fetch all of the logged-in users filters.

Returns a list of filter dicts. Not paginated.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3






	
Mastodon.filter(id)

	Fetches information about the filter with the specified id.

Returns a filter dict.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3






	
Mastodon.filters_apply(objects, filters, context)

	Helper function: Applies a list of filters to a list of either statuses 
or notifications and returns only those matched by none. This function will
apply all filters that match the context provided in context, i.e.
if you want to apply only notification-relevant filters, specify
‘notifications’. Valid contexts are ‘home’, ‘notifications’, ‘public’ and ‘thread’.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3








Reading data: Follow suggestions


	
Mastodon.suggestions()

	Fetch follow suggestions for the logged-in user.

Returns a list of user dicts.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3








Reading data: Lists

These functions allow you to view information about lists.


	
Mastodon.lists()

	Fetch a list of all the Lists by the logged-in user.

Returns a list of list dicts.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0






	
Mastodon.list(id)

	Fetch info about a specific list.

Returns a list dict.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0






	
Mastodon.list_accounts(id, max_id=None, min_id=None, since_id=None, limit=None)

	Get the accounts that are on the given list.

Returns a list of user dicts.

Added: Mastodon v2.1.0, last changed: Mastodon v2.6.0








Reading data: Follows




Reading data: Favourites


	
Mastodon.favourites(max_id=None, min_id=None, since_id=None, limit=None)

	Fetch the logged-in user’s favourited statuses.

Returns a list of toot dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0








Reading data: Follow requests


	
Mastodon.follow_requests(max_id=None, min_id=None, since_id=None, limit=None)

	Fetch the logged-in user’s incoming follow requests.

Returns a list of user dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0








Reading data: Searching


	
Mastodon.search(q, resolve=True, result_type=None, account_id=None, offset=None, min_id=None, max_id=None)

	Fetch matching hashtags, accounts and statuses. Will perform webfinger
lookups if resolve is True. Full-text search is only enabled if
the instance supports it, and is restricted to statuses the logged-in
user wrote or was mentioned in.

result_type can be one of “accounts”, “hashtags” or “statuses”, to only
search for that type of object.

Specify account_id to only get results from the account with that id.

offset, min_id and max_id can be used to paginate.

Will use search_v1 (no tag dicts in return values) on Mastodon versions before 
2.4.1), search_v2 otherwise. Parameters other than resolve are only available
on Mastodon 2.8.0 or above - this function will throw a MastodonVersionError
if you try to use them on versions before that. Note that the cached version
number will be used for this to avoid uneccesary requests.

Returns a search result dict, with tags as hashtag dicts.

Added: Mastodon v1.1.0, last changed: Mastodon v2.8.0






	
Mastodon.search_v2(q, resolve=True, result_type=None, account_id=None, offset=None, min_id=None, max_id=None)

	Identical to search_v1(), except in that it returns tags as
hashtag dicts, has more parameters, and resolves by default.

Returns a search result dict.

Added: Mastodon v2.4.1, last changed: Mastodon v2.8.0








Reading data: Mutes and blocks

These functions allow you to get information about accounts that are
muted or blocked by the logged in user.


	
Mastodon.mutes(max_id=None, min_id=None, since_id=None, limit=None)

	Fetch a list of users muted by the logged-in user.

Returns a list of user dicts.

Added: Mastodon v1.1.0, last changed: Mastodon v2.6.0






	
Mastodon.blocks(max_id=None, min_id=None, since_id=None, limit=None)

	Fetch a list of users blocked by the logged-in user.

Returns a list of user dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0








Reading data: Reports (REMOVED IN 2.5.0)


	
Mastodon.reports()

	Fetch a list of reports made by the logged-in user.

Returns a list of report dicts.

Warning: This method has now finally been removed, and will not 
work on mastodon versions 2.5.0 and above.

Added: Mastodon v1.1.0, last changed: Mastodon v1.1.0








Reading data: Domain blocks


	
Mastodon.domain_blocks(max_id=None, min_id=None, since_id=None, limit=None)

	Fetch the logged-in user’s blocked domains.

Returns a list of blocked domain URLs (as strings, without protocol specifier).

Added: Mastodon v1.4.0, last changed: Mastodon v2.6.0








Reading data: Emoji


	
Mastodon.custom_emojis()

	Fetch the list of custom emoji the instance has installed.

Does not require authentication.

Returns a list of emoji dicts.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0








Reading data: Apps


	
Mastodon.app_verify_credentials()

	Fetch information about the current application.

Returns an application dict.

Added: Mastodon v2.0.0, last changed: Mastodon v2.7.2








Reading data: Endorsements


	
Mastodon.endorsements()

	Fetch list of users endorsemed by the logged-in user.

Returns a list of user dicts.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0








Reading data: Preferences


	
Mastodon.preferences()

	Fetch the users preferences, which can be used to set some default options.
As of 2.8.0, apps can only fetch, not update preferences.

Returns a preference dict.

Added: Mastodon v2.8.0, last changed: Mastodon v2.8.0








Writing data: Statuses

These functions allow you to post statuses to Mastodon and to
interact with already posted statuses.


	
Mastodon.status_post(status, in_reply_to_id=None, media_ids=None, sensitive=False, visibility=None, spoiler_text=None, language=None, idempotency_key=None, content_type=None, scheduled_at=None, poll=None)

	Post a status. Can optionally be in reply to another status and contain
media.

media_ids should be a list. (If it’s not, the function will turn it
into one.) It can contain up to four pieces of media (uploaded via 
media_post()). media_ids can also be the media dicts returned 
by media_post() - they are unpacked automatically.

The sensitive boolean decides whether or not media attached to the post
should be marked as sensitive, which hides it by default on the Mastodon
web front-end.

The visibility parameter is a string value and accepts any of:
‘direct’ - post will be visible only to mentioned users
‘private’ - post will be visible only to followers
‘unlisted’ - post will be public but not appear on the public timeline
‘public’ - post will be public

If not passed in, visibility defaults to match the current account’s
default-privacy setting (starting with Mastodon version 1.6) or its
locked setting - private if the account is locked, public otherwise
(for Mastodon versions lower than 1.6).

The spoiler_text parameter is a string to be shown as a warning before
the text of the status.  If no text is passed in, no warning will be
displayed.

Specify language to override automatic language detection. The parameter
accepts all valid ISO 639-2 language codes.

You can set idempotency_key to a value to uniquely identify an attempt
at posting a status. Even if you call this function more than once,
if you call it with the same idempotency_key, only one status will
be created.

Pass a datetime as scheduled_at to schedule the toot for a specific time
(the time must be at least 5 minutes into the future). If this is passed,
status_post returns a scheduled toot dict instead.

Pass poll to attach a poll to the status. An appropriate object can be
constructed using make_poll() . Note that as of Mastodon version
2.8.2, you can only have either media or a poll attached, not both at 
the same time.

Specify content_type to set the content type of your post on Pleroma.
It accepts ‘text/plain’ (default), ‘text/markdown’, and ‘text/html’.
This parameter is not supported on Mastodon servers, but will be
safely ignored if set.

Returns a toot dict with the new status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0






	
Mastodon.status_reply(to_status, status, media_ids=None, sensitive=False, visibility=None, spoiler_text=None, language=None, idempotency_key=None, content_type=None, scheduled_at=None, poll=None, untag=False)

	Helper function - acts like status_post, but prepends the name of all
the users that are being replied to to the status text and retains
CW and visibility if not explicitly overridden.

Set untag to True if you want the reply to only go to the user you
are replying to, removing every other mentioned user from the
conversation.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0






	
Mastodon.toot(status)

	Synonym for status_post() that only takes the status text as input.

Usage in production code is not recommended.

Returns a toot dict with the new status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0






	
Mastodon.make_poll(options, expires_in, multiple=False, hide_totals=False)

	Generate a poll object that can be passed as the poll option when posting a status.

options is an array of strings with the poll options (Maximum, by default: 4),
expires_in is the time in seconds for which the poll should be open.
Set multiple to True to allow people to choose more than one answer. Set
hide_totals to True to hide the results of the poll until it has expired.

Added: Mastodon v2.8.0, last changed: Mastodon v2.8.0






	
Mastodon.status_reblog(id, visibility=None)

	Reblog / boost a status.

The visibility parameter functions the same as in status_post() and
allows you to reduce the visibility of a reblogged status.

Returns a toot dict with a new status that wraps around the reblogged one.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0






	
Mastodon.status_unreblog(id)

	Un-reblog a status.

Returns a toot dict with the status that used to be reblogged.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0






	
Mastodon.status_favourite(id)

	Favourite a status.

Returns a toot dict with the favourited status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0






	
Mastodon.status_unfavourite(id)

	Un-favourite a status.

Returns a toot dict with the un-favourited status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0






	
Mastodon.status_mute(id)

	Mute notifications for a status.

Returns a toot dict with the now muted status

Added: Mastodon v1.4.0, last changed: Mastodon v2.0.0






	
Mastodon.status_unmute(id)

	Unmute notifications for a status.

Returns a toot dict with the status that used to be muted.

Added: Mastodon v1.4.0, last changed: Mastodon v2.0.0






	
Mastodon.status_pin(id)

	Pin a status for the logged-in user.

Returns a toot dict with the now pinned status

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0






	
Mastodon.status_unpin(id)

	Unpin a pinned status for the logged-in user.

Returns a toot dict with the status that used to be pinned.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0






	
Mastodon.status_delete(id)

	Delete a status

Returns the now-deleted status, with an added “source” attribute that contains
the text that was used to compose this status (this can be used to power
“delete and redraft” functionality)

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0






Writing data: Scheduled statuses

Mastodon allows you to schedule statuses (using status_post().
The functions in this section allow you to update or delete thusly
scheduled statuses.


	
Mastodon.scheduled_status_update(id, scheduled_at)

	Update the scheduled time of a scheduled status.

New time must be at least 5 minutes into the future.

Returns a scheduled toot dict

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0






	
Mastodon.scheduled_status_delete(id)

	Deletes a scheduled status.

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0








Writing data: Polls

This function allows you to vote in polls.


	
Mastodon.poll_vote(id, choices)

	Vote in the given poll.

choices is the index of the choice you wish to register a vote for 
(i.e. its index in the corresponding polls options field. In case 
of a poll that allows selection of more than one option, a list of
indices can be passed.

You can only submit choices for any given poll once in case of
single-option polls, or only once per option in case of multi-option
polls.

Returns the updated poll dict

Added: Mastodon v2.8.0, last changed: Mastodon v2.8.0










Writing data: Notifications

These functions allow you to clear all or some notifications.


	
Mastodon.notifications_clear()

	Clear out a users notifications

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0






	
Mastodon.notifications_dismiss(id)

	Deletes a single notification

Added: Mastodon v1.3.0, last changed: Mastodon v1.3.0








Writing data: Conversations

This function allows you to mark conversations read.


	
Mastodon.conversations_read(id)

	Marks a single conversation as read.

Returns the updated conversation dict.

WARNING: This method is currently not documented in the official API and
might therefore be unstable.

Added: Mastodon v2.6.0, last changed: Mastodon v2.6.0








Writing data: Accounts

These functions allow you to interact with other accounts: To (un)follow and
(un)block.


	
Mastodon.account_follow(id, reblogs=True)

	Follow a user.

Set reblogs to False to hide boosts by the followed user.

Returns a relationship dict containing the updated relationship to the user.

Added: Mastodon v1.0.0, last changed: Mastodon v2.4.3






	
Mastodon.follows(uri)

	Follow a remote user by uri (username@domain).

Returns a user dict.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0






	
Mastodon.account_unfollow(id)

	Unfollow a user.

Returns a relationship dict containing the updated relationship to the user.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0






	
Mastodon.account_block(id)

	Block a user.

Returns a relationship dict containing the updated relationship to the user.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0






	
Mastodon.account_unblock(id)

	Unblock a user.

Returns a relationship dict containing the updated relationship to the user.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0






	
Mastodon.account_mute(id, notifications=True)

	Mute a user.

Set notifications to False to receive notifications even though the user is
muted from timelines.

Returns a relationship dict containing the updated relationship to the user.

Added: Mastodon v1.1.0, last changed: Mastodon v2.4.3






	
Mastodon.account_unmute(id)

	Unmute a user.

Returns a relationship dict containing the updated relationship to the user.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.0






	
Mastodon.account_pin(id)

	Pin / endorse a user.

Returns a relationship dict containing the updated relationship to the user.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0






	
Mastodon.account_unpin(id)

	Unpin / un-endorse a user.

Returns a relationship dict containing the updated relationship to the user.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0






	
Mastodon.account_update_credentials(display_name=None, note=None, avatar=None, avatar_mime_type=None, header=None, header_mime_type=None, locked=None, fields=None)

	Update the profile for the currently logged-in user.

‘note’ is the user’s bio.

‘avatar’ and ‘header’ are images. As with media uploads, it is possible to either
pass image data and a mime type, or a filename of an image file, for either.

‘locked’ specifies whether the user needs to manually approve follow requests.

‘fields’ can be a list of up to four name-value pairs (specified as tuples) to 
appear as semi-structured information in the users profile.

Returns the updated user dict of the logged-in user.

Added: Mastodon v1.1.1, last changed: Mastodon v2.4.0








Writing data: Keyword filters

These functions allow you to manipulate keyword filters.


	
Mastodon.filter_create(phrase, context, irreversible=False, whole_word=True, expires_in=None)

	Creates a new keyword filter. phrase is the phrase that should be
filtered out, context specifies from where to filter the keywords.
Valid contexts are ‘home’, ‘notifications’, ‘public’ and ‘thread’.

Set irreversible to True if you want the filter to just delete statuses
server side. This works only for the ‘home’ and ‘notifications’ contexts.

Set whole_word to False if you want to allow filter matches to
start or end within a word, not only at word boundaries.

Set expires_in to specify for how many seconds the filter should be
kept around.

Returns the filter dict of the newly created filter.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3






	
Mastodon.filter_update(id, phrase=None, context=None, irreversible=None, whole_word=None, expires_in=None)

	Updates the filter with the given id. Parameters are the same
as in filter_create().

Returns the filter dict of the updated filter.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3






	
Mastodon.filter_delete(id)

	Deletes the filter with the given id.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3








Writing data: Follow suggestions


	
Mastodon.suggestion_delete(account_id)

	Remove the user with the given account_id from the follow suggestions.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3








Writing data: Lists

These functions allow you to create, maintain and delete lists.

When creating lists, note that a user can only
have a maximum of 50 lists.


	
Mastodon.list_create(title)

	Create a new list with the given title.

Returns the list dict of the created list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0






	
Mastodon.list_update(id, title)

	Update info about a list, where “info” is really the lists title.

Returns the list dict of the modified list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0






	
Mastodon.list_delete(id)

	Delete a list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0






	
Mastodon.list_accounts_add(id, account_ids)

	Add the account(s) given in account_ids to the list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0






	
Mastodon.list_accounts_delete(id, account_ids)

	Remove the account(s) given in account_ids from the list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0








Writing data: Follow requests

These functions allow you to accept or reject incoming follow requests.


	
Mastodon.follow_request_authorize(id)

	Accept an incoming follow request.

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0






	
Mastodon.follow_request_reject(id)

	Reject an incoming follow request.

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0








Writing data: Media

This function allows you to upload media to Mastodon. The returned
media IDs (Up to 4 at the same time) can then be used with post_status
to attach media to statuses.


	
Mastodon.media_post(media_file, mime_type=None, description=None, focus=None)

	Post an image, video or audio file. media_file can either be image data or
a file name. If image data is passed directly, the mime
type has to be specified manually, otherwise, it is
determined from the file name. focus should be a tuple
of floats between -1 and 1, giving the x and y coordinates
of the images focus point for cropping (with the origin being the images
center).

Throws a MastodonIllegalArgumentError if the mime type of the
passed data or file can not be determined properly.

Returns a media dict. This contains the id that can be used in
status_post to attach the media file to a toot.

Added: Mastodon v1.0.0, last changed: Mastodon v2.9.1






	
Mastodon.media_update(id, description=None, focus=None)

	Update the metadata of the media file with the given id. description and 
focus are as in media_post() .

Returns the updated media dict.

Added: Mastodon v2.3.0, last changed: Mastodon v2.3.0








Writing data: Reports


	
Mastodon.report(account_id, status_ids=None, comment=None, forward=False)

	Report statuses to the instances administrators.

Accepts a list of toot IDs associated with the report, and a comment.

Set forward to True to forward a report of a remote user to that users
instance as well as sending it to the instance local administrators.

Returns a report dict.

Added: Mastodon v1.1.0, last changed: Mastodon v2.5.0








Writing data: Domain blocks

These functions allow you to block and unblock all statuses from a domain
for the logged-in user.


	
Mastodon.domain_block(domain=None)

	Add a block for all statuses originating from the specified domain for the logged-in user.

Added: Mastodon v1.4.0, last changed: Mastodon v1.4.0






	
Mastodon.domain_unblock(domain=None)

	Remove a domain block for the logged-in user.

Added: Mastodon v1.4.0, last changed: Mastodon v1.4.0








Pagination

These functions allow for convenient retrieval of paginated data.


	
Mastodon.fetch_next(previous_page)

	Fetches the next page of results of a paginated request. Pass in the
previous page in its entirety, or the pagination information dict
returned as a part of that pages last status (‘_pagination_next’).

Returns the next page or None if no further data is available.






	
Mastodon.fetch_previous(next_page)

	Fetches the previous page of results of a paginated request. Pass in the
previous page in its entirety, or the pagination information dict
returned as a part of that pages first status (‘_pagination_prev’).

Returns the previous page or None if no further data is available.






	
Mastodon.fetch_remaining(first_page)

	Fetches all the remaining pages of a paginated request starting from a
first page and returns the entire set of results (including the first page
that was passed in) as a big list.

Be careful, as this might generate a lot of requests, depending on what you are
fetching, and might cause you to run into rate limits very quickly.








Blurhash decoding

This function allows for easy basic decoding of blurhash strings to images.
This requires Mastodon.pys optional “blurhash” feature dependencies.


	
Mastodon.decode_blurhash(media_dict, out_size=(16, 16), size_per_component=True, return_linear=True)

	Basic media-dict blurhash decoding.

out_size is the desired result size in pixels, either absolute or per blurhash
component (this is the default).

By default, this function will return the image as linear RGB, ready for further
scaling operations. If you want to display the image directly, set return_linear 
to False.

Returns the decoded blurhash image as a three-dimensional list: [height][width][3],
with the last dimension being RGB colours.

For further info and tips for advanced usage, refer to the documentation for the
blurhash module: https://github.com/halcy/blurhash-python








Streaming

These functions allow access to the streaming API. For the public, local and hashtag streams,
access is generally possible without authenticating.

If async is False, these  methods block forever (or until an error is encountered).

If async is True, the listener will listen on another thread and these methods
will return a handle corresponding to the open connection. If, in addition, async_reconnect is True,
the thread will attempt to reconnect to the streaming API if any errors are encountered, waiting
async_reconnect_wait_sec seconds between reconnection attempts. Note that no effort is made
to “catch up” - events created while the connection is broken will not be received. If you need to make
sure to get absolutely all notifications / deletes / toots, you will have to do that manually, e.g.
using the on_abort handler to fill in events since the last received one and then reconnecting.

The connection may be closed at any time by calling the handles close() method. The
current status of the handler thread can be checked with the handles is_alive() function,
and the streaming status can be checked by calling is_receiving().

The streaming functions take instances of StreamListener as the listener parameter.
A CallbackStreamListener class that allows you to specify function callbacks
directly is included for convenience.

When in not-async mode or async mode without async_reconnect, the stream functions may raise
various exceptions: MastodonMalformedEventError if a received event cannot be parsed and
MastodonNetworkError if any connection problems occur.


	
Mastodon.stream_user(listener, run_async=False, timeout=300, reconnect_async=False, reconnect_async_wait_sec=5)

	Streams events that are relevant to the authorized user, i.e. home
timeline and notifications.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2






	
Mastodon.stream_public(listener, run_async=False, timeout=300, reconnect_async=False, reconnect_async_wait_sec=5)

	Streams public events.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2






	
Mastodon.stream_local(listener, run_async=False, timeout=300, reconnect_async=False, reconnect_async_wait_sec=5)

	Streams local public events.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2






	
Mastodon.stream_hashtag(tag, listener, local=False, run_async=False, timeout=300, reconnect_async=False, reconnect_async_wait_sec=5)

	Stream for all public statuses for the hashtag ‘tag’ seen by the connected
instance.

Set local to True to only get local statuses.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2






	
Mastodon.stream_list(id, listener, run_async=False, timeout=300, reconnect_async=False, reconnect_async_wait_sec=5)

	Stream events for the current user, restricted to accounts on the given
list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0






	
Mastodon.stream_healthy()

	Returns without True if streaming API is okay, False or raises an error otherwise.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0






StreamListener


	
class mastodon.StreamListener

	Callbacks for the streaming API. Create a subclass, override the on_xxx
methods for the kinds of events you’re interested in, then pass an instance
of your subclass to Mastodon.user_stream(), Mastodon.public_stream(), or
Mastodon.hashtag_stream().






	
StreamListener.on_update(status)

	A new status has appeared! ‘status’ is the parsed JSON dictionary
describing the status.






	
StreamListener.on_notification(notification)

	A new notification. ‘notification’ is the parsed JSON dictionary
describing the notification.






	
StreamListener.on_delete(status_id)

	A status has been deleted. status_id is the status’ integer ID.






	
StreamListener.on_conversation(conversation)

	A direct message (in the direct stream) has been received. conversation
contains the resulting conversation dict.






	
StreamListener.on_abort(err)

	There was a connection error, read timeout or other error fatal to
the streaming connection. The exception object about to be raised
is passed to this function for reference.

Note that the exception will be raised properly once you return from this
function, so if you are using this handler to reconnect, either never
return or start a thread and then catch and ignore the exception.






	
StreamListener.handle_heartbeat()

	The server has sent us a keep-alive message. This callback may be
useful to carry out periodic housekeeping tasks, or just to confirm
that the connection is still open.








CallbackStreamListener


	
class mastodon.CallbackStreamListener(update_handler=None, local_update_handler=None, delete_handler=None, notification_handler=None, conversation_handler=None)

	Simple callback stream handler class.
Can optionally additionally send local update events to a separate handler.










Push subscriptions

These functions allow you to manage webpush subscriptions and to decrypt received
pushes. Note that the intended setup is not mastodon pushing directly to a users client -
the push endpoint should usually be a relay server that then takes care of delivering the
(encrypted) push to the end user via some mechanism, where it can then be decrypted and
displayed.

Mastodon allows an application to have one webpush subscription per user at a time.

All crypto utilities require Mastodon.pys optional “webpush” feature dependencies
(specifically, the “cryptography” and “http_ece” packages).


	
Mastodon.push_subscription()

	Fetch the current push subscription the logged-in user has for this app.

Returns a push subscription dict.

Added: Mastodon v2.4.0, last changed: Mastodon v2.4.0






	
Mastodon.push_subscription_set(endpoint, encrypt_params, follow_events=None, favourite_events=None, reblog_events=None, mention_events=None)

	Sets up or modifies the push subscription the logged-in user has for this app.

endpoint is the endpoint URL mastodon should call for pushes. Note that mastodon
requires https for this URL. encrypt_params is a dict with key parameters that allow
the server to encrypt data for you: A public key pubkey and a shared secret auth.
You can generate this as well as the corresponding private key using the 
push_subscription_generate_keys() function.

The rest of the parameters controls what kind of events you wish to subscribe to.

Returns a push subscription dict.

Added: Mastodon v2.4.0, last changed: Mastodon v2.4.0






	
Mastodon.push_subscription_update(follow_events=None, favourite_events=None, reblog_events=None, mention_events=None)

	Modifies what kind of events the app wishes to subscribe to.

Returns the updated push subscription dict.

Added: Mastodon v2.4.0, last changed: Mastodon v2.4.0






	
Mastodon.push_subscription_generate_keys()

	Generates a private key, public key and shared secret for use in webpush subscriptions.

Returns two dicts: One with the private key and shared secret and another with the 
public key and shared secret.






	
Mastodon.push_subscription_decrypt_push(data, decrypt_params, encryption_header, crypto_key_header)

	Decrypts data received in a webpush request. Requires the private key dict 
from push_subscription_generate_keys() (decrypt_params) as well as the 
Encryption and server Crypto-Key headers from the received webpush

Returns the decoded webpush as a push notification dict.








Moderation API

These functions allow you to perform moderation actions on users and generally
process reports using the API. To do this, you need access to the “admin:read” and/or
“admin:write” scopes or their more granular variants (both for the application and the
access token), as well as at least moderator access. Mastodon.py will not request these
by default, as that would be very dangerous.

BIG WARNING: TREAT ANY ACCESS TOKENS THAT HAVE ADMIN CREDENTIALS AS EXTREMELY, MASSIVELY
SENSITIVE DATA AND MAKE EXTRA SURE TO REVOKE THEM AFTER TESTING, NOT LET THEM SIT IN FILES
SOMEWHERE, TRACK WHICH ARE ACTIVE, ET CETERA. ANY EXPOSURE OF SUCH ACCESS TOKENS MEANS YOU
EXPOSE THE PERSONAL DATA OF ALL YOUR USERS TO WHOEVER HAS THESE TOKENS. TREAT THEM WITH
EXTREME CARE.

This is not to say that you should not treat access tokens from admin accounts that do not
have admin: scopes attached with a lot of care, but be extra careful with those that do.


	
Mastodon.admin_accounts(remote=False, by_domain=None, status='active', username=None, display_name=None, email=None, ip=None, staff_only=False, max_id=None, min_id=None, since_id=None, limit=None)

	Fetches a list of accounts that match given criteria. By default, local accounts are returned.


	Set remote to True to get remote accounts, otherwise local accounts are returned (default: local accounts)


	Set by_domain to a domain to get only accounts from that domain.


	Set status to one of “active”, “pending”, “disabled”, “silenced” or “suspended” to get only accounts with that moderation status (default: active)


	Set username to a string to get only accounts whose username contains this string.


	Set display_name to a string to get only accounts whose display name contains this string.


	Set email to an email to get only accounts with that email (this only works on local accounts).


	Set ip to an ip (as a string, standard v4/v6 notation) to get only accounts whose last active ip is that ip (this only works on local accounts).


	Set staff_only to True to only get staff accounts (this only works on local accounts).




Note that setting the boolean parameters to False does not mean “give me users to which this does not apply” but
instead means “I do not care if users have this attribute”.

Returns a list of admin account dicts.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_account(id)

	Fetches a single admin account dict for the user with the given id.

Returns that dict.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_account_enable(id)

	Reenables login for a local account for which login has been disabled.

Returns the updated admin account dict.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_account_approve(id)

	Approves a pending account.

Returns the updated admin account dict.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_account_reject(id)

	Rejects and deletes a pending account.

Returns the updated admin account dict for the account that is now gone.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_account_unsilence(id)

	Unsilences an account.

Returns the updated admin account dict.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_account_unsuspend(id)

	Unsuspends an account.

Returns the updated admin account dict.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_account_moderate(id, action=None, report_id=None, warning_preset_id=None, text=None, send_email_notification=True)

	Perform a moderation action on an account.


	Valid actions are:

	
	“disable” - for a local user, disable login.


	“silence” - hide the users posts from all public timelines.


	“suspend” - irreversibly delete all the users posts, past and future.








If no action is specified, the user is only issued a warning.

Specify the id of a report as report_id to close the report with this moderation action as the resolution.
Specify warning_preset_id to use a warning preset as the notification text to the user, or text to specify text directly.
If both are specified, they are concatenated (preset first). Note that there is currently no API to retrieve or create
warning presets.

Set send_email_notification to False to not send the user an e-mail notification informing them of the moderation action.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_reports(resolved=False, account_id=None, target_account_id=None, max_id=None, min_id=None, since_id=None, limit=None)

	Fetches the list of reports.

Set resolved to True to search for resolved reports. account_id and target_account_id
can be used to get reports filed by or about a specific user.

Returns a list of report dicts.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_report(id)

	Fetches the report with the given id.

Returns a report dict.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_report_assign(id)

	Assigns the given report to the logged-in user.

Returns the updated report dict.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_report_unassign(id)

	Unassigns the given report from the logged-in user.

Returns the updated report dict.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_report_reopen(id)

	Reopens a closed report.

Returns the updated report dict.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1






	
Mastodon.admin_report_resolve(id)

	Marks a report as resolved (without taking any action).

Returns the updated report dict.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1








Acknowledgements

Mastodon.py contains work by a large amount of contributors, many of which have
put significant work into making it a better library. You can find some information
about who helped with which particular feature or fix in the changelog.







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	
       	
       mastodon	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 


_


  	
      	__init__() (mastodon.Mastodon method)


  





A


  	
      	account() (mastodon.Mastodon method)


      	account_block() (mastodon.Mastodon method)


      	account_follow() (mastodon.Mastodon method)


      	account_followers() (mastodon.Mastodon method)


      	account_following() (mastodon.Mastodon method)


      	account_mute() (mastodon.Mastodon method)


      	account_pin() (mastodon.Mastodon method)


      	account_relationships() (mastodon.Mastodon method)


      	account_search() (mastodon.Mastodon method)


      	account_statuses() (mastodon.Mastodon method)


      	account_unblock() (mastodon.Mastodon method)


      	account_unfollow() (mastodon.Mastodon method)


      	account_unmute() (mastodon.Mastodon method)


      	account_unpin() (mastodon.Mastodon method)


      	account_update_credentials() (mastodon.Mastodon method)


      	account_verify_credentials() (mastodon.Mastodon method)


  

  	
      	admin_account() (mastodon.Mastodon method)


      	admin_account_approve() (mastodon.Mastodon method)


      	admin_account_enable() (mastodon.Mastodon method)


      	admin_account_moderate() (mastodon.Mastodon method)


      	admin_account_reject() (mastodon.Mastodon method)


      	admin_account_unsilence() (mastodon.Mastodon method)


      	admin_account_unsuspend() (mastodon.Mastodon method)


      	admin_accounts() (mastodon.Mastodon method)


      	admin_report() (mastodon.Mastodon method)


      	admin_report_assign() (mastodon.Mastodon method)


      	admin_report_reopen() (mastodon.Mastodon method)


      	admin_report_resolve() (mastodon.Mastodon method)


      	admin_report_unassign() (mastodon.Mastodon method)


      	admin_reports() (mastodon.Mastodon method)


      	app_verify_credentials() (mastodon.Mastodon method)


      	auth_request_url() (mastodon.Mastodon method)


  





B


  	
      	blocks() (mastodon.Mastodon method)


  





C


  	
      	CallbackStreamListener (class in mastodon)


      	conversations() (mastodon.Mastodon method)


      	conversations_read() (mastodon.Mastodon method)


  

  	
      	create_account() (mastodon.Mastodon method)


      	create_app() (mastodon.Mastodon static method)


      	custom_emojis() (mastodon.Mastodon method)


  





D


  	
      	decode_blurhash() (mastodon.Mastodon method)


      	domain_block() (mastodon.Mastodon method)


  

  	
      	domain_blocks() (mastodon.Mastodon method)


      	domain_unblock() (mastodon.Mastodon method)


  





E


  	
      	endorsements() (mastodon.Mastodon method)


  





F


  	
      	favourites() (mastodon.Mastodon method)


      	fetch_next() (mastodon.Mastodon method)


      	fetch_previous() (mastodon.Mastodon method)


      	fetch_remaining() (mastodon.Mastodon method)


      	filter() (mastodon.Mastodon method)


      	filter_create() (mastodon.Mastodon method)


      	filter_delete() (mastodon.Mastodon method)


  

  	
      	filter_update() (mastodon.Mastodon method)


      	filters() (mastodon.Mastodon method)


      	filters_apply() (mastodon.Mastodon method)


      	follow_request_authorize() (mastodon.Mastodon method)


      	follow_request_reject() (mastodon.Mastodon method)


      	follow_requests() (mastodon.Mastodon method)


      	follows() (mastodon.Mastodon method)


  





H


  	
      	handle_heartbeat() (mastodon.StreamListener method)


  





I


  	
      	instance() (mastodon.Mastodon method)


  

  	
      	instance_activity() (mastodon.Mastodon method)


      	instance_peers() (mastodon.Mastodon method)


  





L


  	
      	list() (mastodon.Mastodon method)


      	list_accounts() (mastodon.Mastodon method)


      	list_accounts_add() (mastodon.Mastodon method)


      	list_accounts_delete() (mastodon.Mastodon method)


  

  	
      	list_create() (mastodon.Mastodon method)


      	list_delete() (mastodon.Mastodon method)


      	list_update() (mastodon.Mastodon method)


      	lists() (mastodon.Mastodon method)


      	log_in() (mastodon.Mastodon method)


  





M


  	
      	make_poll() (mastodon.Mastodon method)


      	mastodon (module)


  

  	
      	media_post() (mastodon.Mastodon method)


      	media_update() (mastodon.Mastodon method)


      	mutes() (mastodon.Mastodon method)


  





N


  	
      	notifications() (mastodon.Mastodon method)


  

  	
      	notifications_clear() (mastodon.Mastodon method)


      	notifications_dismiss() (mastodon.Mastodon method)


  





O


  	
      	on_abort() (mastodon.StreamListener method)


      	on_conversation() (mastodon.StreamListener method)


  

  	
      	on_delete() (mastodon.StreamListener method)


      	on_notification() (mastodon.StreamListener method)


      	on_update() (mastodon.StreamListener method)


  





P


  	
      	poll() (mastodon.Mastodon method)


      	poll_vote() (mastodon.Mastodon method)


      	preferences() (mastodon.Mastodon method)


      	push_subscription() (mastodon.Mastodon method)


  

  	
      	push_subscription_decrypt_push() (mastodon.Mastodon method)


      	push_subscription_generate_keys() (mastodon.Mastodon method)


      	push_subscription_set() (mastodon.Mastodon method)


      	push_subscription_update() (mastodon.Mastodon method)


  





R


  	
      	ratelimit_lastcall (mastodon.Mastodon attribute)


      	ratelimit_limit (mastodon.Mastodon attribute)


      	ratelimit_remaining (mastodon.Mastodon attribute)


  

  	
      	ratelimit_reset (mastodon.Mastodon attribute)


      	report() (mastodon.Mastodon method)


      	reports() (mastodon.Mastodon method)


      	retrieve_mastodon_version() (mastodon.Mastodon method)


  





S


  	
      	scheduled_status() (mastodon.Mastodon method)


      	scheduled_status_delete() (mastodon.Mastodon method)


      	scheduled_status_update() (mastodon.Mastodon method)


      	scheduled_statuses() (mastodon.Mastodon method)


      	search() (mastodon.Mastodon method)


      	search_v2() (mastodon.Mastodon method)


      	status() (mastodon.Mastodon method)


      	status_card() (mastodon.Mastodon method)


      	status_context() (mastodon.Mastodon method)


      	status_delete() (mastodon.Mastodon method)


      	status_favourite() (mastodon.Mastodon method)


      	status_favourited_by() (mastodon.Mastodon method)


      	status_mute() (mastodon.Mastodon method)


      	status_pin() (mastodon.Mastodon method)


      	status_post() (mastodon.Mastodon method)


  

  	
      	status_reblog() (mastodon.Mastodon method)


      	status_reblogged_by() (mastodon.Mastodon method)


      	status_reply() (mastodon.Mastodon method)


      	status_unfavourite() (mastodon.Mastodon method)


      	status_unmute() (mastodon.Mastodon method)


      	status_unpin() (mastodon.Mastodon method)


      	status_unreblog() (mastodon.Mastodon method)


      	stream_hashtag() (mastodon.Mastodon method)


      	stream_healthy() (mastodon.Mastodon method)


      	stream_list() (mastodon.Mastodon method)


      	stream_local() (mastodon.Mastodon method)


      	stream_public() (mastodon.Mastodon method)


      	stream_user() (mastodon.Mastodon method)


      	StreamListener (class in mastodon)


      	suggestion_delete() (mastodon.Mastodon method)


      	suggestions() (mastodon.Mastodon method)


  





T


  	
      	timeline() (mastodon.Mastodon method)


      	timeline_hashtag() (mastodon.Mastodon method)


      	timeline_home() (mastodon.Mastodon method)


  

  	
      	timeline_list() (mastodon.Mastodon method)


      	timeline_local() (mastodon.Mastodon method)


      	timeline_public() (mastodon.Mastodon method)


      	toot() (mastodon.Mastodon method)


  





V


  	
      	verify_minimum_version() (mastodon.Mastodon method)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Mastodon.py
        


      


    
  

_static/ajax-loader.gif





_static/minus.png





_static/plus.png





_static/file.png





_static/up.png





_static/up-pressed.png





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





