
maspy Documentation
Release

Author

Jun 06, 2017

Contents

1 Introduction to basic concepts of MasPy 3
1.1 MS spectra in MasPy . 3

1.1.1 The mzML file format . 3
1.1.2 MsrunContainer . 4
1.1.3 Run metadata (Rm) . 4
1.1.4 Spectrum array item (Sai), spectrum metadata item (Smi) 4
1.1.5 Chromatogram item (Ci) . 5
1.1.6 Spectrum item (Si) . 5
1.1.7 MsrunContainer.info . 5
1.1.8 MasPy file formats . 5
1.1.9 Basic code examples . 6

1.1.9.1 Importing an mzML file . 6
1.1.9.2 Saving an MsrunContainer to the hard disk . 6
1.1.9.3 Loading an MsrunContainer from the hard disk 6
1.1.9.4 Deleting data from an MsrunContainer . 7
1.1.9.5 Exporting specfiles from MsrunContainer to mzML files 8
1.1.9.6 Accessing data from an MsrunContainer . 8

1.2 Spectrum identifications in MasPy . 8
1.2.1 The mzIdentML file format . 8
1.2.2 Representation of spectrum identifications in MasPy . 9
1.2.3 The spectrum identification item container (SiiContainer) 10
1.2.4 Basic code examples . 11
1.2.5 Depricated - work in progress . 12

1.3 Peptide LC-MS features in MasPy . 13
1.3.1 Representation of LC-MS features in MasPy . 13
1.3.2 Supported feature detection algorithms . 14
1.3.3 Basic code examples . 14

1.4 Fasta files in MasPy . 15
1.4.1 The FASTA file format . 15
1.4.2 Protein database in MasPy . 15
1.4.3 Basic code examples . 16
1.4.4 Depricated . 17

2 maspy package 19
2.1 Submodules . 19
2.2 maspy.auxiliary module . 19

i

2.3 maspy.constants module . 24
2.4 maspy.core module . 25
2.5 maspy.errors module . 39
2.6 maspy.featuremethods module . 39
2.7 maspy.inference module . 40

2.7.1 Relevant terms from the PSI-MS ontology . 42
2.7.2 Additional terms used in maspy . 43

2.8 maspy.isobar module . 45
2.9 maspy.mit_stats module . 45
2.10 maspy.peptidemethods module . 46
2.11 maspy.proteindb module . 48
2.12 maspy.reader module . 51
2.13 maspy.writer module . 55
2.14 maspy.sil module . 56
2.15 maspy.xml module . 58
2.16 Module contents . 61

3 Indices and tables 63

Python Module Index 65

ii

maspy Documentation, Release

Contents:

Contents 1

maspy Documentation, Release

2 Contents

CHAPTER 1

Introduction to basic concepts of MasPy

Contents:

MS spectra in MasPy

The mzML file format

Every vendor software produces mass spectrometer output files in a different proprietary format. It is a difficult and
time consuming task for software developers to support all of these different formats and format versions. Therefore
the file format mzML has been developed by the Proteomics Standards Initiative (PSI) as the community standard
for representation of mass spectrometry results. mzML is an open, XML- based format that not only allows to store
recorded mass spectrum information but also metadata of the instrument configuration, acquisition settings, software
used for data processing and sample descriptions. Ultimately, it is desirable to universally use mzML for archiving,
sharing, and processing of mass spectrometry data and thus for all software to support and use the mzML format.

Note: Refer to www.psidev.info for details on the XML schema definition and mzML file specifications, see also the
publication Mass Spectrometer Output File Format mzML)

Note: We recommend using ProteoWizard for conversion of vendor format files to mzML. The software can be
downloaded from their website, a detailed protocol how to use ProteoWizard can be found here.

The raw spectral data recorded by an instrument can be either stored as profile or centroid data. Meassured mass spectra
are initially recorded in profile mode, where each mass peak is represented by a number of m/z and intensity values
describing a peak shape. In centroid mode this information is reduced to the centroid of the peak shape, storing only
one single pair of a dinstinct m/z value and an intensity. The process of converting profile data to centroid data is called
peak picking and can be applied as a filter while converting vendor format files to mzML files using ProteoWizard, see
the ProteoWizard protocol. The representation as centroid data is easier to work with, saves memory and is sufficient
for most applications. Therefore we recommend the utilization of centroid data for MasPy.

3

http://www.psidev.info/index.php?q=node/257
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073315
http://proteowizard.sourceforge.net
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113728

maspy Documentation, Release

MsrunContainer

Modern mass spectrometers can generate tens of thousands of spectra per hour resulting in huge mzML files. Opening
and parsing such large XML files takes a lot of time. MzML files can contain a byte-offset index which allows directly
reading certain spectra without parsing the whole file. This can increase performance when only one or a few specific
spectra have to be accessed at a time.

The actual spectral information takes up to largest part of a typical mzML file. However, sometimes only a certain
type of information needs to be accessed, for example the spectrum metadata. Therefore we split the information that
is contained in mzML files into four data groups; run metadata (Rm), spectrum metadata items (Smi), spectrum array
items (Sai) and chromatogram items (Ci). Each of these data groups is stored separately in MasPy and has its own
file type, thus it can be accessed, saved and loaded independently of the others. All four data types are stored in the
MasPy class MsrunContainer. Altough the data is split into multiple parts, all information originally contained in
an mzML file is still present. This allows the conversion from MsrunContainer to mzML at any given time. #TODO:
Why do we want to be able to export mzML files? (Preffered data format for archiving and sharing data and to use as
input for other software packages)

See tutorial/docstrings xxx for details on the MsrunContainer file format. #TODO:

Fig.: MsrunContainer #TODO: make figure

• run metadata

• spectrum metadata items

• spectrum array items

• chromatogram items

• spectrum items

Run metadata (Rm)

The run metadata element contains all information of an mzML file, which is not directly part of the acquired spectra
and chromatograms. This covers, amongst others, a description of the instrument configuration, a list of software used
for data processing and a list of applied data processing steps. In addition it is possible to add contact information and
a description of the analyzed samples to the mzML file. In MasPy all of these mzML elements are converted to an
lxml.etree.Element and stored in MsrunContainer.rmc (Rm container).

Note: Software which is used to process data of an mzML file should be listed in the mzML element “softwareList”,
and all applied data processing steps should be documented in the “dataProcessingList” element.

Spectrum array item (Sai), spectrum metadata item (Smi)

An mzML spectrum element contains all information of an acquired MS spectrum, including numerical arrays con-
taining at least recorded m/z and intensity values of the observed ions but also plenty of metadata describing for
example details of the acquisition like base peak m/z and intensity, scan start time, ms level, MS2 isolation window
or precursor information of MS2 scans. In MasPy this information is split into a metadata containing part and the
spectrum array data and put into two separate data structures; spectrum metadata item (Smi) and spectrum array item
(Sai), respectively. Smi elements are stored in MsrunContainer.smic (Smi container) and Sai elements in
MsrunContainer.saic (Sai container). In order to recreate an mzML spectrum element the information of both
MasPy data types (Smi and Sai) is necessary.

4 Chapter 1. Introduction to basic concepts of MasPy

maspy Documentation, Release

Chromatogram item (Ci)

An mzML chromatogram element is similar to a spectrum element, containing metadata and numerical ar-
rays. Common chromatogram types are total ion current chromatogram, selected ion current
chromatogram and basepeak chromatogram. All of them contain time and intensity data points, however,
other chromatogram types can also contain absorption or emission values instead of intensities. In the current MasPy
implementation chromatogram elements are not split into two data types but the metadata and array information is
put into one single data structure called chromatogram item (Ci), which is stored in MsrunContainer.cic (Ci
container).

Spectrum item (Si)

The mzML file serves as a data container for active data processing but also for data sharing and archiving. Thus
the spectrum elements contain a lot of metadata information not needed for most data analysis applications. In ad-
dition all information stored in spectrum elements have to be in accordance with the mzML xml scheme definition
and the Controlled Vocabularies (CV’s) of the PSI, see. Altough in principle this standardization is beneficial and
perfectly reasonable, when actively working with the data it is not always required and can make things unnecessarily
complicated.

To circumvent this problem MasPy provides a simpler data type for working with spectrum metadata, called spectrum
item (Si). The Si class has a flat structure, meaning that attributes are not nested inside other elements but are stored
directly as attributes of the class. Si attributes can be manipulated without restrictions and new attributes can simply
be added. Specific functions can be used to selectively extract information from Smi. This allows import only the
currently needed spectrum metadata attributes, like retention time, ms level or MS2 precursor information, thereby
making the Si more memory efficient. In order to make lasting changes to the mzML file Si attributes have to be
translated to the respective Smi elements. These changes however have to strictly follow the mzML specifications and
syntax. Thus it is recommend to use existing functions or implement new ones that make changes to Smi elements in
a controlled manner.

Each spectrum present in an mzML file is therefore represented threefold in MasPy. First the Smi contains a complete
representation of all metadata information present in an mzML spectrum element. However, this data type is not
intended to be used for standard data analysis and will normally only be accessed to make lasting, documented changes
to spectrum metadata and for generating new mzML files. Second the Sai contains the actual ion information recorded
by the mass spectrometer. This data type will be used whenever the ion spectra have to be analyzed or manipulated. In
addition it is also required for generating new mzML files. And third the Si, which can be considered as the spectrum
metadata workspace in MasPy, allowing convenient access to metadata and simple processing of this data without
directly altering the original mzML information. This data type will be used for most data processing and analysis
steps in MasPy.

MsrunContainer.info

MsrunContainer.info -> which specfiles are present, what is the current path (used for loading or saving) , which data
types are currently imported

MasPy file formats

This section will contain information about how the data contained in an MsrunContainer is written to the hard drive.
(one file type per data type: mrc_rm, mrc_si, mrc_sai, mrc_smi, mrc_ci)

1.1. MS spectra in MasPy 5

http://www.psidev.info/groups/controlled-vocabularies

maspy Documentation, Release

Basic code examples

Importing an mzML file

mzML files can be imported by using the function maspy.reader.importMzml(), the imported specfile is then
added to the MsrunContainer instance passed to the function.

import maspy.core
import maspy.reader

mzmlfilepath = 'filedirectory/specfile_name_1.mzML'
msrunContainer = maspy.core.MsrunContainer()
maspy.reader.importMzml(mzmlfilepath, msrunContainer)

Saving an MsrunContainer to the hard disk

An MsrunContainer can be saved to the hard disk by calling its .save() method.

msrunContainer.save()

By default all files are saved into the folder specified in .info. This can be altered by changing the path variable in
.info or temporarely by passing the “path” parameter to .save().

msrunContainer.save(path='../an_alternative_location')

In addition, multiple parameters can be set to specify which part of the data should be written to the hard disk. The
keywords “rm”, “ci”, “smi”, “sai” and “si” can be set to True or False and specify which container types are
selected for saving. By default all of them are set to False which is however interpreted as selecting all of them.
Setting at least one to True changes this behaviour and only the specified ones are selected. If multiple specfiles are
present in an MsrunContainer it is possible to only select a subset for saving by passing the “specfiles” argument
to .save(). The value of “specfiles” can either be the name of one single specfile or a list of specfile names. In the
following example only the spectrum array item container (saic) and the spectrum metadata item container (smic) of
the specfiles “specfile_name_1” and “specfile_name_3” are saved.

msrunContainer.save(specfiles=["specfile_name_1", "specfile_name_3"],
sai=True, smi=True
)

Loading an MsrunContainer from the hard disk

Before loading an MsrunContainer from the hard disk, a specfile entry has to be added to its .info attribute. This
can be done by calling .addSpecfile() with the name of the specfile and the path to the filedirectory. Afterwards
the files can be loaded by calling .load(), which will import all specfiles present in .info and update the status
variable of .info.

>>> msrunContainer = maspy.core.MsrunContainer()
>>> msrunContainer.addSpecfile('specfile_name_1', 'filedirectory')
>>> msrunContainer.info
{u'specfile_name_1': {u'path': u'filedirectory',

u'status': {u'ci': False,
u'rm': False,
u'sai': False,
u'si': False,
u'smi': False}}}

6 Chapter 1. Introduction to basic concepts of MasPy

maspy Documentation, Release

>>> msrunContainer.load()
>>> msrunContainer.info
{u'specfile_name_1': {u'path': u'filedirectory',

u'status': {u'ci': True,
u'rm': True,
u'sai': True,
u'si': True,
u'smi': True}}}

Similar to saving only parts of an MsrunContainer it is also possible to only select a subset of specfiles present in
.info and specify which data types are imported.

>>> msrunContainer = maspy.core.MsrunContainer()
>>> msrunContainer.addSpecfile('specfile_name_1', 'filedirectory')
>>> msrunContainer.info
{u'specfile_name_1': {u'path': u'filedirectory',

u'status': {u'ci': False,
u'rm': False,
u'sai': False,
u'si': False,
u'smi': False}}}

>>> msrunContainer.load(specfiles='specfile_name_1', sai=True, smi=True)
>>> msrunContainer.info
{u'specfile_name_1': {u'path': u'filedirectory',

u'status': {u'ci': False,
u'rm': False,
u'sai': True,
u'si': False,
u'smi': True}}}

Deleting data from an MsrunContainer

If specific data types are not needed anymore, they can be removed to free memory. This can be done by using .
removeData() and parsing arguments to specify specfiles and which data types to remove. It is recommended to
always use this method to remove data instead of manually deleting container entries, because using .removeData
automatically updates the .info attribute of the MsrunContainer. The following command removes the Sai
and Smi items of the specfile “specfile_name_1”.

>>> msrunContainer.info
{u'specfile_name_1': {u'path': u'filedirectory',

u'status': {u'ci': True,
u'rm': True,
u'sai': True,
u'si': True,
u'smi': True}}}

>>> msrunContainer.removeData('specfile_name_1', sai=True, smi=True)
>>> msrunContainer.info
{u'specfile_name_1': {u'path': u'filedirectory',

u'status': {u'ci': True,
u'rm': True,
u'sai': False,
u'si': True,
u'smi': False}}}

A specfile can be completely removed from an MsrunContainer by calling .removeSpecfile(), which
deletes all data from the containers and in addition the entry from the .info attribute.

1.1. MS spectra in MasPy 7

maspy Documentation, Release

msrunContainer.removeSpecfile('specfile_name_1')

Exporting specfiles from MsrunContainer to mzML files

After working in MasPy it might be desirable to export the MsrunContainer back into an mzML file which can be used
as input for another software or simply for archiving and sharing mass spectrometry data. An mzML file is generated
by using the function maspy.writer.writeMzml() and passing at least the specfile name that should be
exported, an MsrunContainer and the output directory. In order to write a valid and complete mzML file
all data types except for Si have to be present in the MsrunContainer.

import maspy.writer
maspy.writer.writeMzml('specfile_name_1', msrunContainer, '/filedirectory')

Note: Optionally it is possible to supply a list of spectrumIds and chromatogramIds to only select a subset
of spectra and chromatograms that should be written to the mzML file. The supplied lists of element ids have to be
sorted in the order they should be written to the mzML file.

Accessing data from an MsrunContainer

#TODO: *examples of .getItem, .getArrays, ... *

Spectrum identifications in MasPy

In bottom up proteomic experiments proteins are analysed indirectly by peptides generated by proteolytic digestion.
In most cases the resulting peptides are separated by liquid chromatography before they are ionized and subsequently
analysed by the mass spectrometer in a setup called liquid chromatography-tandem mass spectrometry (LC-MS/MS).
During the chromatographic separation the mass spectrometer records in certain intervals the mass to charge ratios
(m/z) of all ions eluting at a given time point, which produces so called MS1 spectra. However, altough the m/z value
of a peptide ion is known with very high accuracy, it is not possible to infer its amino acid sequence. This is because
a huge number of theoretical peptides exist which have nearly or exactly the same mass but a different amino acid
sequence. To solve this, ions present in the MS1 scan are isolated consequtively by a mass filter, fragmented and the
m/z values of the resulting fragment ions are recorded, which generates an MS2 spectrum. It is also possible to isolate
a fragment ion from an MS2 spectrum, fragment it again and measure the resulting ions, which is then called MS3.
This procedure could be repeated multiple times and would result in consequent MSn scans, where “n” stands for the
number of isolation and fragmentation cycles +1. Peptide sequence identification can now be inferred by comparing
the observed MSn spectra with theoretical fragmentation spectra generated in silico. This procedure is called peptide
spectrum matching. Another possibility is to compare the observed MS2 spectra with already identified observed
fragmentation spectra from a library, which is called spectral library matching. For details see Protein Analysis by
Shotgun/Bottom-up Proteomics #TODO: open access would be better, is it open?

The mzIdentML file format

#TODO: description of mzIdentML format

8 Chapter 1. Introduction to basic concepts of MasPy

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751594/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751594/

maspy Documentation, Release

Representation of spectrum identifications in MasPy

Elements describing the identification of a peptide from a fragmentation spectrum are called spectrum identification
items (Sii) in MasPy. The term Sii is interchangeable with the more commonly used term peptide spectrum match
(PSM). However, we choose Sii since it is in analogy to the mzIdentML format which we are planning to support in
the future.

The Sii class has a very simple structure with all its variables being directly stored as attributes of the class.
The attributes id and specfile are mandatory and used to unambiguously link the Sii to a Si element of an
MsrunContainer. The Sii.id is typically the scan number of a spectrum and should be equal to the Si.id
entry, the Si.specfile refers to the specfile name which is used to identify a single ms-run. Other attributes can
be manipulated without restrictions and new attributes can simply be added.

Further attributes which can be necessary for a reasonable utilization of Sii and their naming convention in MasPy:

• peptide the peptide sequence containing amino acid modifications in the MasPy format, see below.

• sequence the plain amino acid sequence of the spectrum identification, does not contain modifications.

• score or any other score attribute name which is used to rank the quality of a spectrum identifications.
The name of this attribute and wheter a large or a small number indicates a higher confidence is specified in
SiiContainer.info.

• isValid can be used to flag if a Sii has passed a given quality threshold or has been validated as correct.

• rank the rank of this Sii compared to others for the same MSn spectrum. The rank is based on the specified
score attribute.

• charge the charge state of the identified precursor ion.

• rt the retention time in seconds of the corresponding spectrum.

• obsMz the experimentally observed mass to charge ratio of the precursor ion (Dalton / charge). Usually the
monoisotopic ion.

• obsMh the experimentally observed mass to charge ratio of the precursor ion, calculated for the mono protonated
ion (Dalton / charge). Usually the monoisotopic ion.

• obsMass the experimentally observed not protonated mass of precursor ion, calculated by using the mz and
charge values (Dalton / charge). Usually the monoisotopic mass.

• excMz the exact calculated mass to charge ratio of the peptide (Dalton / charge). Usually the monoisotopic ion.

• excMh the exact calculated mass to charge ratio of the peptide, calculated for the mono protonated peptide
(Dalton / charge). Usually the monoisotopic ion.

• excMass the exact calculated mass of the not protonated peptide (Dalton / charge). Usually the monoisotopic
mass.

Note: The amino acid sequence itself is commonly written in single letter code. However, there is no common style
how to depict amino acid modifications in a linear string. Very often each modification is represented by a single
symbol or a short string specifically highlighted for example by using brackets. This modification represenation is
then written next to the modified amino acid residue, i.e. on the right side.

In MasPy we decided to highlight modifications by using square brackets positioned right of the modified amino
acid. It is possible to add multiple modifications to one single residue by writing multiple bracket pairs, eg
PEP[mod1][mod2]TIDE. This format allows simple parsing of peptide strings to retrieve modifications and their
position in the amino acid sequence. In addition every character, except square brackets, could be used as a symbol
for an additional amino acid.

Unimod provides a comprehensive database of protein modifications and is to our knowledge widely-used in the field
of mass spectrometry based proteomics. Therefore we decided to refer to the unimod accession number whenever a

1.2. Spectrum identifications in MasPy 9

maspy Documentation, Release

modification is present in the database. Such modifications are then written in the form of [u:X], where X is the
unimod accession number. Modifications not present in the database should be represented by a short acronym, for
example [DSS]. Such additional modifications have to be added to the MasPy modification database. (at the moment
this is only a dictionary maspy.constants.aaModComp)

The spectrum identification item container (SiiContainer)

The SiiContainer is used to store spectrum identification results of one or multiple specfiles. The container allows
saving and loading of imported results and provides methods for convenient access to the data.

Importing peptide spectrum matching results

During the import all PSMs have to be converted to Sii and added to SiiContainer.container. Since for
one spectrum multiple Sii can exist, they have to be ranked according to how well they can explain the observed
fragmentation ions, typically described by a score or the q-value. All Sii of the same spectrum are put into a list,
ranked and sorted according to a user defined score. This sorted list is then stored in .container, for details see
below. Only the Sii at the first position of this list gets the attribute .isValid set to True, this is even the case
if multiple Sii with .rank == 1 exist. Afterwards all valid Sii are additional evaluated if they surpass a user
defined quality threshold, typically this threshold is a false discovery rate (FDR) of 1%.

The import routines currently provided by MasPy are not very extensive, covering only the import from percolator
.tsv files of certain PSM search engines and mzIdentML files generated by MS-GF+. However, adjusting the existing
methods to any .tsv file should be possible within minutes and will be added on demand. Two things are important to
consider when doing this:

• The spectrum identifier (scan number) is not always present in a separate field. It is very often part of a so called
scan header string, which also contains the specfilename and sometimtes the precursor charge state. Thus it is
necessary to provide a function which extracts the scan number.

• For the import it is necessary to provide a function which translates a modification containing peptide string into
the aforementioned MasPy representation. In most cases this can be achieved by a simple mapping function:

>>> def translatePeptide(peptide, modificationMapping):
>>> for oldMod, maspyMod in modificationMapping:
>>> peptide = peptide.replace(oldMod, '[' + maspyMod + ']')
>>> return peptide

>>> modificationMapping = [('#', 'u:21'), ('*', 'u:35')]
>>> translatePeptide('S#PEPM*K', modificationMapping)
u'S[u:21]PEPM[u:35]K'

Note: It might be necessary for the function that translates a modified peptide string into the MasPy format to be able
to deal with modification strings which are a substring of another modification string, for example “ox” and “diox”
in PoxEPdioxTIDE. In such a case if “ox” is simply converted both instances would be affected and the “di” would
remain untreated. For most cases this can be solved by replacing the modifications which are a substring of another
modification after the others.

The minimal information that should be imported from peptide spectrum matching results are the scan identifier,
modified peptide sequence and a score, which can be used to apply a quality cut off. Other parameters can either be
generated from the modified peptide sequence (calculated mass, plain amino acid sequence) or transferred from the
MsrunContainer

10 Chapter 1. Introduction to basic concepts of MasPy

maspy Documentation, Release

Basic code examples

Importing spectrum identification results

A percolator tab separated file can be imported by using the function maspy.reader.
importPercolatorResults(), the imported Sii elements are then added to the SiiContainer instance
passed to the function.

import maspy.core
import maspy.reader

siiContainer = maspy.core.SiiContainer()
maspy.reader.importPercolatorResults(siiContainer, 'filelocation/out.tsv',

'specfile_name_1', 'psmEngine')

If necessary, spectrum attributes can be added from the MsrunContainer by using the function SiiContainer.
addSiInfo. This adds the selected attributes to all Sii elements of the specified specfiles.

import maspy.core
import maspy.reader

mzmlfilepath = 'filedirectory/specfile_name_1.mzML'
msrunContainer = maspy.core.MsrunContainer()
maspy.reader.importMzml(mzmlfilepath, msrunContainer)

siiContainer.addSiInfo(msrunContainer, specfiles='specfile_name_1',
attributes=['obsMz', 'rt', 'charge']
)

It is also possible to calculate the exact mass for all Sii elements of the specified specfiles by using the function
SiiContainer.calcMz(). The calculated mass to charge ratio is written to the attribute .excMz.

siiContainer.calcMz(specfiles='specfile_name_1')

Accessing data stored in a SiiContainer

There are multiple ways how to access single Sii elements stored in a SiiContainer. The method
SiiContainer.getValidItem() can be used to directly access Sii which .isValid argument is True
by using its specfile and identifier. If no such Sii exists for the specified identifier None is returned. In this example
there is a valid entry for the identifier ‘10’, but not for ‘11’.:

>>> sii = siiContainer.getValidItem('specfile_name_1', '10')
>>> sii.isValid
True
>>> sii == None
False
>>> sii = siiContainer.getValidItem('specfile_name_1', '11')
>>> sii == None
True

It is possible to access all Sii elements of a given identifier by directly accessing the container SiiContainer.
container. In this example, there are multiple Sii elements present for the same spectrum, but only one is valid.

>>> siiContainer.container['specfile_name_1']['10']
[<maspy.core.Sii at 0xb354a90>,
<maspy.core.Sii at 0xb354c50>,
<maspy.core.Sii at 0xb354b38>]

>>> for sii in siiContainer.container['specfile_name_1']['10']:

1.2. Spectrum identifications in MasPy 11

maspy Documentation, Release

>>> print(sii.id, sii.rank, sii.isValid)
10 1 True
10 2 False
10 3 False

By using the function SiiContainer.getItems() it is possible to iterate over all Sii elements present in the
SiiContainer. Multiple arguments can be passed to the function that allow selecting only a specific subset of
items but also to return the items in a sorted order. For details consult the docstring.

Depricated - work in progress

Outline

• Typical MS/MS experimental setup: MS1 detection -> isolation -> fragmentation

• Identification of MS/MS spectra -> assigning a peptide which generated the fragmentation spectrum

This process can be described as peptide spectrum matching and is done by three major methods:

– Comparison of theoretical spectra derived by an in silico digestion of a protein database

– Comparison of observed spectra with spectra of known peptide origin (spectral library search)

– De novo sequencing by comparing the mass differences of the observed ions to the actual mass
differences of the peptide bulding blocks, amino acids and modified amino acids.

• How well does the assigned peptide explain the spectrum, described by an arbitrary score or a probability that
the match is wrong

• What is the official format to record this identification information, mzIdentML. Not yet supported in MasPy

• Represenation of PSMs in MasPy (How to depict amino acid modifications in maspy)

• How are Sii stored in MasPy (SiiContainer), how to access Sii

• Importing PSM results into Maspy - minimal requirements (peptide, scanId, score), a function to translate
modifications.

From thermo homepage

Tandem mass spectrometry (MS/MS) offers additional information about specific ions. In this approach, distinct ions
of interest are selected based on their m/z from the first round of MS and are fragmented by a number of methods
of dissociation. One such method involves colliding the ions with a stream of inert gas, which is known as collision-
induced dissociation (CID) or higher energy collision dissociation (HCD). Other methods of ion fragmentation include
electron-transfer dissociation (ETD) and electron-capture dissociation (ECD).

From abc and xyz (link)

Having determined the m/z values and the intensities of all the peaks in the spectrum, the mass spectrometer then
proceeds to obtain primary structure (sequence) information about these peptides. This is called tandem MS, because
it couples two stages of MS. In tandem MS, a particular peptide ion is isolated, energy is imparted by collisions
with an inert gas (such as nitrogen molecules, or argon or helium atoms), and this energy causes the peptide to break
apart. A mass spectrum of the resulting fragments — the tandem MS (also called MS/MS or MS2) spectrum —
is then generated (Fig. 3c). In MS jargon, the species that is fragmented is called the ‘precursor ion’ and the ions
in the tandem-MS spectrum are called ‘product ions’ (more endearingly, but less politically correct, they used to be
described as parent and daughter ions). Note that the MS2 spectrum is the result of an ensemble of one particular
precursor ion fragmenting at different amide bonds. Throughout the chromatographic run, the instrument will cycle
through a sequence that consists of obtaining a mass spectrum followed by obtaining tandem mass spectra of the most
abundant peaks that were found in this spectrum.

12 Chapter 1. Introduction to basic concepts of MasPy

http://www.nature.com/nrm/journal/v5/n9/full/nrm1468.html

maspy Documentation, Release

Peptide LC-MS features in MasPy

Chromatographic separation coupled directly to the mass spectrometer results in analytes to appear over time as they
emerge from the chromatography column in a more or less Gaussian peak shape. The elution profile of an analyte
can be recapitulated by using the spectral information present in the MS1 scans. The simplest way to do this is by
extracting the intensities of an ion species with a given m/z value in consecutive MS1 scans as long as the ion is
detectable. Combining the extracted intensities with the respective MS1 retention times results in a so called extracted
ion chromatogram (EIC or XIC). The intensity area obtained by integrating the XIC is frequently used as a measure
of abundance in label free quantification (LFQ) and stable isotope labeling (SIL) workflows.

In MS spectra each peptide species consists of an isotope envelope of multiple ion species with different m/z values.
Combining the XICs of the different isotope states of the same analyte allows the inference of its charge state and
therefore its mass. In addition the availability of more information results in more accurate intensity area estimates
and thus increased accuracy for quantification. The combined information of XICs and isotope clusters can be referred
to as a peptide LC-MS feature or more commonly simply as a feature.

Representation of LC-MS features in MasPy

Peptide LC-MS features, but also XICs, are represented in MasPy with the feature item class maspy.core.Fi.
Its structure is kept very simple, similar to Si and Sii, with only a few mandatory attributes. Each instance is
uniquely identified by the combination of the Fi.id and Fi.specfile attributes. However, the id attribute is not
associated with any particular MS scan, which was the case for Si and Sii. Further attributes that should always be
supplied when importing features into MasPy are mz, rt, rtLow, rtHigh and intensity. Altough not absolutely
mandatory the charge attribute should also be supplied whenever possible, since the charge information is used in
some algorithms.

The FiContainer is used to store feature items of one or multiple specfiles. The container allows saving and
loading of imported results and provides methods for convenient access to the data.

Attribute naming conventions in MasPy and additional attributes that might be necessary for working with feature
items:

#TODO: maybe change mz to obsMz to be consistent between data types

• mz the experimentally observed mass to charge ratio (Dalton / charge). Normally the m/z value of the monoiso-
topic peak.

• rt the retention time center of the feature.

• rtLow the lower retention time boundary of the feature.

• rtHigh the upper retention time boundary of the feature.

• intensity an estimator for the feature abundance. The preferred value is the integrated intensity area, but
the feature apex intensity is also possible.

• charge the charge state of the feature.

• peptide the peptide sequence of the Sii that is used for annotating the feature.

• sequence the plain amino acid sequence of the Sii that is used for annotating the feature.

• score or any other score attribute name of the Sii that is used for annotating the feature. It describes the
quality of a spectrum identifications.

• obsMz the experimentally observed mass to charge ratio of the feature (Dalton / charge). Normally the m/z
value of the monoisotopic peak.

• obsMh the experimentally observed mass to charge ratio of the feature, calculated for the mono protonated ion
(Dalton / charge). Normally the monoisotopic peak.

1.3. Peptide LC-MS features in MasPy 13

maspy Documentation, Release

• obsMass the experimentally observed not protonated mass of a feature calculated by using the mz and charge
values (Dalton / charge). Normally the monoisotopic mass.

• excMz the exact calculated mass to charge ratio of the peptide (Dalton / charge). Normally the monoisotopic
ion.

• excMh the exact calculated mass to charge ratio of the peptide, calculated for the mono protonated state (Dalton
/ charge). Normally the monoisotopic ion.

• excMass the exact calculated mass of the not protonated peptide (Dalton / charge). Normally the monoisotopic
mass.

MasPy internal feature item attributes:

• isValid can be used to flag if a Fi has passed a given quality threshold.

• isMatched can be used to flag if a Fi has been matched to any Si or Sii elements.

• isAnnotated can be used to flag if a Fi has been annotated with a Sii element and therefore with an
identified peptide sequence.

• siIds a list of Si elements that have been matched to the feature item.

• siiIds a list of Sii elements that have been matched to the feature item.

Supported feature detection algorithms

Currently MasPy supports the import of two feature containing file types; the openMS feature file format .
featureXML and the .feature.tsv format generated by the open source tool Dinosaur. However, adding import
routines for additional file formats should be trivial an can be done on demand.

The FeatureFinderCentroided node from openMS is one of the best established open source LC-MS feature defining
algorithms. It can be used independently of a data analysis pipeline and other processing steps. It was published in
2013 as part of a complete openMS pipeline: An Automated Pipeline for High- Throughput Label-Free Quantitative
Proteomics. Since its publication it was applied in numerous publications and has been reused in at least two additional
open source projects: DeMix and DeMix-Q.

Dinosaur: A Refined Open- Source Peptide MS Feature Detector published in 2016, is an algorithm based on the
graph model concept for feature detection introduced by MaxQuant in 2008. Dinosaur seems to provide similar or
better results then the FeatureFinderCentroided node of openMS with a substantial increase in runtime performance.
It is available on Github.

Basic code examples

Importing peptide features

The function maspy.reader.importPeptideFeatures() is used to import LC- MS features from a file. It
automatically recognises the file type by the file name extension and executes the respective import routine. Therefore
the file extension has to be either .featurexml (openMS) or .feature.tsv (Dinosaur) and is not case sensitive.
The imported feature items are stored in the FiContainer instance passed to the function.

import maspy.core
import maspy.reader

fiContainer = maspy.core.FiContainer()
maspy.reader.importPeptideFeatures(fiContainer, 'filelocation/f.featureXML',

'specfile_name_1')

14 Chapter 1. Introduction to basic concepts of MasPy

http://pubs.acs.org/doi/abs/10.1021/pr300992u
http://pubs.acs.org/doi/abs/10.1021/pr300992u
http://www.mcponline.org/content/13/11/3211.long
http://www.mcponline.org/content/15/4/1467.long
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.6b00016
https://github.com/fickludd/dinosaur

maspy Documentation, Release

Matching spectrum identification items to feature items

The peptide underlying a LC-MS feature can be determined by using the information of identified MSn scans. In
MasPy this can be achieved by using maspy.featuremethods.matchToFeatures(), which allows matching
Sii to Fi elements by comparing their m/z, retention time and charge information. User defined tolerance values for
matching should be passed to the function, for details see the docstring documentation. However, the default settings
should be appropriate for typical high resolution MS1 data as obtained by Thermo Orbitrap instruments.

#TODO: describe the print output

>>> import maspy.featuremethods
>>> maspy.featuremethods.matchToFeatures(fiContainer, siiContainer,
>>> specfiles='specfile_name_1')
------ specfile_name_1 ------
Annotated features: 3802 / 20437 = 18.6 %
Spectra matched to features: 4240 / 4898 = 86.6 %

Note: #TODO: describe which attributes must be present in the Sii items and link to the tutorial that describes how
to obtain these attributes. #charge, m/z, rentention time

Accessing data stored in a FiContainer

#TODO: describe .getItem(), .getArrays()

Fasta files in MasPy

The FASTA file format

The fasta format is the standard file format for storing protein sequence information in the field of protoeomics. A
fasta file can store from only a few up to tens of thousands protein entries, for example when it contains the collection
of all known protein coding genes of an organism.

Each protein entry begins with a headerline, which is followed by lines describing the amino acid sequence in the
single letter code. A headerline always starts with the greater than symbol >, which dinstinguishes it from the sequence
part. Headerlines can contain various amounts of information typically starting with an unique identifier of the entry
followed for example by the protein name and a protein description. However, there are no common rules for the
content as well as the syntax of the headerline. As a consequence each protein database might use its own fasta header
format, which has to be known to allow a proper parsing of fasta files.

MasPy provides functions to import proteins from a fasta file and perform an in silico digestion thereof. For parsing
of the fasta protein headers we rely on the Pyteomics library, which provides automatic recognition and parsing
of the formats UniProtKB, UniRef, UniParc and UniMES (UniProt Metagenomic and Environmental Sequences),
described at uniprot.org. In addition we have added a custom header parser for fasta files in the SGD format from
yeastgenome.org, which can also serve as a template for additional parser functions, see maspy.proteindb.
fastaParseSgd().

Protein database in MasPy

Upon import parsed protein entries are represented as maspy.proteindb.ProteinSequence elements. They
are stored in the maspy.proteindb.ProteinDatabase class and can be accessed with their unique ids
in ProteinDatabase.proteins. Thereafter each protein sequence is digested in silico by using the spec-
ified cleavage rules, yielding smaller maspy.proteindb.PeptideSequence elements, which are stored in

1.4. Fasta files in MasPy 15

http://pythonhosted.org/pyteomics/api/fasta.html#pyteomics.fasta.std_parsers
http://www.uniprot.org/help/fasta-headers
http://www.yeastgenome.org

maspy Documentation, Release

ProteinDatabase.peptides and can be accessed with their amino acid sequence. Their proteins at-
tribute contains a set() of protein ids and references all proteins that have generated the specific peptide se-
quence during digestion. In addition the peptide positions within the protein sequence are stored in the attribute
proteinPositions. If the peptide was generated by only one protein, its isUnique attribute is set True. Each
ProteinSequence contains a list of such unique and not unique peptides that were generated during the diges-
tion, the attributes uniquePeptides and sharedPeptides respectively. In addition it also has an isUnique
attribute, which is set True if the protein digestion has generated at least one unique peptide for a certain protein.

Basic code examples

Importing a fasta file

The function maspy.proteindb.importProteinDatabase() is used to import fasta files, perform an in-
silico digestion and return a ProteinDatabase instance. The parameters minLength and maxLength specify
which peptides are stored in the ProteinDatabase after digestion. The default digestion rule is for a tryptic
digestion, cutting c-terminally to Lysine and Arginine.

import maspy.proteindb
fastaPath = 'filelocation/human.fasta'
proteindb = maspy.proteindb.importProteinDatabase(fastaPath, minLength=7,

maxLength=50
)

By passing the headerParser argument it is possible to specify an alternative function which is called to interpret
the fasta header line.

parser = maspy.proteindb.fastaParseSgd
proteindb = maspy.proteindb.importProteinDatabase(fastaPath,

headerParser=parser
)

If a fasta file contains decoy proteins or contamination proteins specifically marked by their unique ids starting with
a certain tag it should be specified with the attributes decoyTag and contaminationTag respectively to allow a
proper parsing of the fasta headers.

proteindb = maspy.proteindb.importProteinDatabase(fastaPath,
decoyTag='[decoy]',
contaminationTag='[cont]'
)

Specifying parameters for in silico digestion

The protein cleavage rule can be changed by passing a regular expression with the argument cleavageRule. The
dictionary maspy.constants.expasy_rules contains cleavage rules of the most popular proteolytic enzymes.
The concept for finding cleavage positions with regular expressions was adapted from the python library Pyteomics
and the expasy_rules collection of cleavage rules was copied from pyteomics.parser.expasy_rules.
The asp-n cleavage rule provides an example of an enzyme that cuts n-terminally of a specific amino acid.

>>> import maspy.constants
>>> aspN = maspy.constants.expasy_rules['asp-n']
>>> proteindb = maspy.proteindb.importProteinDatabase(fastaPath,
>>> cleavageRule=aspN
>>>)
>>> aspN
u'\\w(?=D)'

16 Chapter 1. Introduction to basic concepts of MasPy

maspy Documentation, Release

Besides defining the cleavage rule it is possible to specify the number of allowed missed cleavage positions, wheter
protein n-terminal peptides should also be generated with the initial Methionine removed and if Leucine and Isoleucine
should be treated as indistinguishable when assigning peptide sequences to proteins.

proteindb = maspy.proteindb.importProteinDatabase(fastaPath,
missedCleavage=2,
removeNtermM=True
ignoreIsoleucine=True
)

...

...

...

...

Depricated

The fasta format has become the standard format for storing protein sequences, where each amino acid is represented
in the single letter code. “A sequence in FASTA format begins with a single-line description, followed by lines of
sequence data. The description line is distinguished from the sequence data by a greater-than (“>”) symbol in the first
column. The word following the “>” symbol is the identifier of the sequence, and the rest of the line is the description
(both are optional). The sequence ends if another line starting with a “>” appears; this indicates the start of another
sequence.” [https://en.wikipedia.org/wiki/FASTA_format]

1.4. Fasta files in MasPy 17

https://en.wikipedia.org/wiki/FASTA_format

maspy Documentation, Release

18 Chapter 1. Introduction to basic concepts of MasPy

CHAPTER 2

maspy package

Submodules

maspy.auxiliary module

A collection of helper functions used in different modules. Functions deal for example with saving files, encoding and
decoding data in the json format, filtering of numpy arrays, data fitting, etc.

class maspy.auxiliary.DataFit(dependentVarInput, independentVarInput)
Bases: object

#TODO: docstring

Parameters

• splines – #TODO: docstring

• splineCycles – #TODO: docstring

• splineMinKnotPoins – #TODO: docstring

• splineOrder – #TODO: docstring

• splineInitialKnots – #TODO: docstring

• splineSubsetPercentage – #TODO: docstring

• splineTerminalExpansion – #TODO: docstring

• dependentVar – #TODO: docstring

• independentVar – #TODO: docstring

corrArray(inputArray)
#TODO: docstring

Parameters inputArray – #TODO: docstring

Returns #TODO docstring

19

maspy Documentation, Release

generateSplines()
#TODO: docstring

processInput(dataAveraging=False, windowSize=None)
#TODO: docstring

Parameters

• dataAveraging – #TODO: docstring

• windowSize – #TODO: docstring

class maspy.auxiliary.MaspyJsonEncoder(skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None,
default=None)

Bases: json.encoder.JSONEncoder

Extension of the json.JSONEncoder to serialize MasPy classes.

Maspy classes need to define a _reprJSON() method, which returns a json serializable object.

default(obj)

Returns obj._reprJSON() if it is defined, else json.JSONEncoder.default(obj)

class maspy.auxiliary.Memoize(function)
Bases: object

A general memoization class, specify a function when creating a new instance of the class. The functions return
value is returned and stored in self.memo when the instance is called with an argument for the first time.
Later calls with the same argument return the cached value, instead of calling the function again.

Variables

• function – when Memoize is called this functions return value is returned.

• memo – a dictionary that records the function return values of already called variables.

class maspy.auxiliary.PartiallySafeReplace
Bases: object

Indirectly overwrite files by writing to temporary files and replacing them at once.

This is a context manager. When the context is entered, subsequently opened files will actually open temporary
files. Each time the same file-path is opened, the same temporary file will be used.

When the context is closed, it will attempt to replace the original files with the content of the temporary files.
Thus, several files can be prepared with less risk of data loss. Data loss is still possible if the replacement-
operation fails (due to locking, not handled yet) or is interrupted.

open(filepath, mode=’w+b’)
Opens a file - will actually return a temporary file but replace the original file when the context is closed.

maspy.auxiliary.applyArrayFilters(array, posL, posR, matchMask)
#TODO: docstring

Parameters

• array – #TODO: docstring

• posL – #TODO: docstring

• posR – #TODO: docstring

• matchMask – #TODO: docstring

20 Chapter 2. maspy package

maspy Documentation, Release

Returns numpy.array, a subset of the input array.

maspy.auxiliary.averagingData(array, windowSize=None, averagingType=’median’)
#TODO: docstring

Parameters

• array – #TODO: docstring

• windowSize – #TODO: docstring

• averagingType – “median” or “mean”

Returns #TODO: docstring

maspy.auxiliary.calcDeviationLimits(value, tolerance, mode)
Returns the upper and lower deviation limits for a value and a given tolerance, either as relative or a absolute
difference.

Parameters

• value – can be a single value or a list of values if a list of values is given, the minimal
value will be used to calculate the lower limit and the maximum value to calculate the upper
limit

• tolerance – a number used to calculate the limits

• mode – either absolute or relative, specifies how the tolerance should be applied
to the value.

maspy.auxiliary.factorial = <maspy.auxiliary.Memoize object>
Returns the factorial of a number, the results of already calculated numbers are stored in factorial.memo

maspy.auxiliary.findAllSubstrings(string, substring)
Returns a list of all substring starting positions in string or an empty list if substring is not present in string.

Parameters

• string – a template string

• substring – a string, which is looked for in the string parameter.

Returns a list of substring starting positions in the template string

maspy.auxiliary.joinpath(path, *paths)
Join two or more pathname components, inserting “/” as needed and replacing all “” by “/”.

Returns str

maspy.auxiliary.listFiletypes(targetfilename, directory)
Looks for all occurences of a specified filename in a directory and returns a list of all present file extensions of
this filename.

In this cas everything after the first dot is considered to be the file extension: "filename.txt" -> "txt",
"filename.txt.zip" -> "txt.zip"

Parameters

• targetfilename – a filename without any extensions

• directory – only files present in this directory are compared to the targetfilename

Returns a list of file extensions (str)

maspy.auxiliary.loadBinaryItemContainer(zippedfile, jsonHook)
Imports binaryItems from a zipfile generated by writeBinaryItemContainer().

2.2. maspy.auxiliary module 21

maspy Documentation, Release

Parameters

• zipfile – can be either a path to a file (a string) or a file-like object

• jsonHook – a custom decoding function for JSON formated strings of the binaryItems
stored in the zipfile.

Returns a dictionary containing binaryItems {binaryItem.id: binaryItem, ... }

maspy.auxiliary.log10factorial = <maspy.auxiliary.Memoize object>
Returns the log10 factorial of a number, the results of already calculated numbers are stored in
log10factorial.memo

maspy.auxiliary.matchingFilePaths(targetfilename, directory, targetFileExtension=None, selec-
tor=None)

Search for files in all subfolders of specified directory, return filepaths of all matching instances.

Parameters

• targetfilename – filename to search for, only the string before the last ”.” is used for
filename matching. Ignored if a selector function is specified.

• directory – search directory, including all subdirectories

• targetFileExtension – string after the last ”.” in the filename, has to be identical if
specified. ”.” in targetFileExtension are ignored, thus ”.txt” is treated equal to “txt”.

• selector – a function which is called with the value of targetfilename and has to return
True (include value) or False (discard value). If no selector is specified, equality to target-
filename is used.

Returns list of matching file paths (str)

maspy.auxiliary.openSafeReplace(filepath, mode=’w+b’)
Context manager to open a temporary file and replace the original file on closing.

maspy.auxiliary.returnArrayFilters(arr1, arr2, limitsArr1, limitsArr2)
#TODO: docstring

Parameters

• arr1 – #TODO: docstring

• arr2 – #TODO: docstring

• limitsArr1 – #TODO: docstring

• limitsArr2 – #TODO: docstring

Returns #TODO: docstring

maspy.auxiliary.returnSplineList(dependentVar, independentVar, subsetPercentage=0.4,
cycles=10, minKnotPoints=10, initialKnots=200, spline-
Order=2, terminalExpansion=0.1)

#TODO: docstring

Note: Expects sorted arrays.

Parameters

• dependentVar – #TODO: docstring

• independentVar – #TODO: docstring

• subsetPercentage – #TODO: docstring

• cycles – #TODO: docstring

22 Chapter 2. maspy package

maspy Documentation, Release

• minKnotPoints – #TODO: docstring

• initialKnots – #TODO: docstring

• splineOrder – #TODO: docstring

• terminalExpansion – expand subsets on both sides

Returns #TODO: docstring

maspy.auxiliary.searchFileLocation(targetFileName, targetFileExtension, rootDirectory, recur-
sive=True)

Search for a filename with a specified file extension in all subfolders of specified rootDirectory, returns first
matching instance.

Parameters

• targetFileName (str) – #TODO: docstring

• rootDirectory (str) – #TODO: docstring

• targetFileExtension (str) – #TODO: docstring

• recursive – bool, specify whether subdirectories should be searched

Returns a filepath (str) or None

maspy.auxiliary.toList(variable, types=(<class ‘str’>, <class ‘int’>, <class ‘float’>))
Converts a variable of type string, int, float to a list, containing the variable as the only element.

Parameters variable ((str, int, float, others)) – any python object

Returns [variable] or variable

maspy.auxiliary.tolerantArrayMatching(referenceArray, matchArray, matchTolerance,
matchUnit)

#TODO: docstring Note: arrays must be sorted

Parameters

• referenceArray – #TODO: docstring

• matchArray – #TODO: docstring

• matchTolerance – #TODO: docstring

• matchUnit – #TODO: docstring

Returns #TODO: docstring

#TODO: change matchUnit to “absolute”, “relative” and remove the “*1e-6”

maspy.auxiliary.writeBinaryItemContainer(filelike, binaryItemContainer, compress=True)
Serializes the binaryItems contained in binaryItemContainer and writes them into a zipfile archive.

Examples of binaryItem classes are maspy.core.Ci and maspy.core.Sai. A binaryItem class has to
define the function _reprJSON() which returns a JSON formated string representation of the class instance.
In addition it has to contain an attribute .arrays, a dictionary which values are numpy.array, that are
serialized to bytes and written to the binarydata file of the zip archive. See _dumpArrayDictToFile()

The JSON formated string representation of the binaryItems, together with the metadata, necessary to re-
store serialized numpy arrays, is written to the metadata file of the archive in this form: [[serialized
binaryItem, [metadata of a numpy array, ...]], ...]

Use the method loadBinaryItemContainer() to restore a binaryItemContainer from a zipfile.

Parameters

2.2. maspy.auxiliary module 23

maspy Documentation, Release

• filelike – path to a file (str) or a file-like object

• binaryItemContainer – a dictionary containing binaryItems

• compress – bool, True to use zip file compression

maspy.auxiliary.writeJsonZipfile(filelike, data, compress=True, mode=’w’, name=’data’)
Serializes the objects contained in data to a JSON formated string and writes it to a zipfile.

Parameters

• filelike – path to a file (str) or a file-like object

• data – object that should be converted to a JSON formated string. Objects and types in data
must be supported by the json.JSONEncoder or have the method ._reprJSON() defined.

• compress – bool, True to use zip file compression

• mode – ‘w’ to truncate and write a new file, or ‘a’ to append to an existing file

• name – the file name that will be given to the JSON output in the archive

maspy.constants module

Contains frequently used variables and constants as for example the exact masses of atoms and amino acids or cleavage
rules of the most common proteolytic enzymes.

maspy.constants.COMPOSITION = <MagicMock name=’mock.mass.Composition’ id=‘140015506912648’>
A Composition object stores a chemical composition of a substance. Basically, it is a dict object, with the names
of chemical elements as keys and values equal to an integer number of atoms of the corresponding element in a
substance.

The main improvement over dict is that Composition objects allow adding and subtraction. For details see
pyteomics.mass.Composition.

maspy.constants.aaComp = {‘E’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘I’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘C’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘K’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘T’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘Q’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘L’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘R’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘A’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘H’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘D’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘M’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘P’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘N’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘V’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘G’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘F’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘W’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘S’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘Y’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>}
A dictionary with elemental compositions of the twenty standard amino acid residues. This concept was inher-
ited from pyteomics.mass.std_aa_comp.

maspy.constants.aaMass = {}
A dictionary with exact monoisotopic masses of the twenty standard amino acid residues. This concept was
inherited from pyteomics.mass.std_aa_comp.

maspy.constants.aaModComp = {‘u:1’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:1020’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:36’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:4’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:3’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:21’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:34’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:1356’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:188’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘DSS’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:7’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:28’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:35’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘*’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:374’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:5’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:27’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:121’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>, ‘u:199’: <MagicMock name=’mock.mass.Composition()’ id=‘140015505763464’>}
A dictionary with elemental compositions of the peptide modifications. Modifications present at www.
unimod.org should be written as “u:X”, where X is the unimod accession number. If a modification is not
present in unimod a text abbriviation should be used. This concept was inherited from pyteomics.mass.
std_aa_comp.

TODO: in the future this table should be imported from two external files. The first is directly obtained from
www.unimod.org, the second contains user specified entries. It is also possible to specify a modification folder
where multiple user specified files can be deposited for importing.

maspy.constants.aaModMass = {}
A dictionary with exact monoisotopic masses of peptide modifications.

maspy.constants.expasy_rules = {‘hydroxylamine’: ‘N(?=G)’, ‘trypsin’: ‘([KR](?=[^P]))|((?<=W)K(?=P))|((?<=M)R(?=P))’, ‘caspase 8’: ‘(?<=[IL]ET)D(?=[^PEDQKR])’, ‘caspase 2’: ‘(?<=DVA)D(?=[^PEDQKR])’, ‘caspase 4’: ‘(?<=LEV)D(?=[^PEDQKR])’, ‘thrombin’: ‘((?<=G)R(?=G))|((?<=[AFGILTVM][AFGILTVWA]P)R(?=[^DE][^DE]))’, ‘trypsin simple’: ‘[KR]’, ‘asp-n’: ‘\\w(?=D)’, ‘pepsin ph2.0’: ‘((?<=[^HKR][^P])[^R](?=[FL][^P]))|((?<=[^HKR][^P])[FL](?=\\w[^P]))’, ‘cnbr’: ‘M’, ‘granzyme b’: ‘(?<=IEP)D’, ‘caspase 5’: ‘(?<=[LW]EH)D’, ‘factor xa’: ‘(?<=[AFGILTVM][DE]G)R’, ‘proteinase k’: ‘[AEFILTVWY]’, ‘ntcb’: ‘\\w(?=C)’, ‘chymotrypsin low specificity’: ‘([FLY](?=[^P]))|(W(?=[^MP]))|(M(?=[^PY]))|(H(?=[^DMPW]))’, ‘glutamyl endopeptidase’: ‘E’, ‘caspase 10’: ‘(?<=IEA)D’, ‘staphylococcal peptidase i’: ‘(?<=[^E])E’, ‘caspase 3’: ‘(?<=DMQ)D(?=[^PEDQKR])’, ‘arg-c’: ‘R’, ‘bnps-skatole’: ‘W’, ‘caspase 7’: ‘(?<=DEV)D(?=[^PEDQKR])’, ‘caspase 1’: ‘(?<=[FWYL]\\w[HAT])D(?=[^PEDQKR])’, ‘chymotrypsin high specificity’: ‘([FY](?=[^P]))|(W(?=[^MP]))’, ‘thermolysin’: ‘[^DE](?=[AFILMV])’, ‘formic acid’: ‘D’, ‘clostripain’: ‘R’, ‘caspase 6’: ‘(?<=VE[HI])D(?=[^PEDQKR])’, ‘pepsin ph1.3’: ‘((?<=[^HKR][^P])[^R](?=[FLWY][^P]))|((?<=[^HKR][^P])[FLWY](?=\\w[^P]))’, ‘caspase 9’: ‘(?<=LEH)D’, ‘iodosobenzoic acid’: ‘W’, ‘proline endopeptidase’: ‘(?<=[HKR])P(?=[^P])’, ‘lysc’: ‘K’, ‘enterokinase’: ‘(?<=[DE]{3})K’}
The dictionary expasy_rules contains regular expressions for cleavage rules of the most popular proteolytic
enzymes. The rules were copied from Pyteomics and initially taken from the PeptideCutter tool at Expasy.

24 Chapter 2. maspy package

http://pythonhosted.org/pyteomics/
http://ca.expasy.org/tools/peptidecutter/peptidecutter_enzymes.html

maspy Documentation, Release

maspy.core module

The core module contains python classes to represent spectra, peptide spectrum matches and peptide LC-MS features,
and containers which manage storage, data access, saving and loading of these data types.

class maspy.core.Ci(identifier, specfile)
Bases: object

Chromatogram item (Ci), representation of a mzML chromatogram.

Variables

• id – The unique id of this chromatogram. Typically descriptive for the chromatogram, eg
“TIC” (total ion current). Is used together with self.specfile as a key to access the
spectrum in its container MsrunContainer.cic.

• specfile – An id representing a group of spectra, typically of the same mzML file /
ms-run.

• id –

• dataProcessingRef – This attribute can optionally reference the ‘id’ of the appropriate
dataProcessing, from mzML.

• precursor – The method of precursor ion selection and activation, from mzML.

• product – The method of product ion selection and activation in a precursor ion scan,
from mzML.

• params – A list of parameter tuple, #TODO: as described elsewhere

• arrays – a dictionary containing the binary data of a chromatogram as numpy.
array. Keys are derived from the specified mzML cvParam, see maspy.xml.
findBinaryDataType(). Typically contains at least a time parameter rt (retention
time) Ci.arrays = {'rt': numpy.array(), ...}

• arrayInfo – dictionary describing each data type present in .arrays.

{dataType: {'dataProcessingRef': str,
'params': [paramTuple, paramTuple, ...]
}

}

code example:

{u'i': {u'dataProcessingRef': None,
u'params': [('MS:1000521', '', None),

('MS:1000574', '', None),
('MS:1000515', '', 'MS:1000131')
]

},
u'rt': {u'dataProcessingRef': None,

u'params': [('MS:1000523', '', None),
('MS:1000574', '', None),
('MS:1000595', '', 'UO:0000031')
]

}
}

arrayInfo

arrays

2.4. maspy.core module 25

maspy Documentation, Release

attrib

dataProcessingRef

id

static jsonHook(encoded)
Custom JSON decoder that allows construction of a new Ci instance from a decoded JSON object.

Parameters encoded – a JSON decoded object literal (a dict)

Returns “encoded” or one of the these objects: Ci, MzmlProduct, MzmlPrecursor

params

precursor

product

specfile

class maspy.core.Fi(identifier, specfile)
Bases: object

Feature item (Fi), representation of a peptide LC-MS feature.

Variables

• id – the unique identifier of a LC-MS feature, as generated by the software used for ex-
tracting features from MS1 spectra.

• specfile – An id representing an mzML file / ms-run filename.

• rt – a representative retention time value of the Fi (in seconds). For example the retention
time of the feature apex.

• mz – a representative mass to charge value of the Fi (in Dalton / charge). For example the
average m/z value of all data points.

• charge – the Fi charge state

• intensity – a meassure for the Fi abundance, used for relative quantification. Typically
the area of the feature intensity over time.

• isValid – bool or None if not specified this attribute can be used to flag if a Fi has
passed a given quality threshold. Can be used to filter valid elements in eg FiContainer.
getArrays().

• isMatched – bool or None if not specified True if any Si or Sii elements could be
matched. Should be set to False on import.

• isAnnotated – bool or None if not specified True if any Sii elements could be matched.
Should be set to False on import. Not sure yet how to handle annotation from other features.

• siIds – list of tuple(specfile, id) from matched Si

• siiIds – list of tuple(specfile, id) from matched Sii

• peptide – peptide sequence containing amino acid modifications. If multiple peptide
sequences are possible due to multiple Sii matches the most likely must be chosen. A
simple and accepted way to do this is by choosing the Sii identification with the best
score.

• sequence – the plain amino acid sequence of self.peptide

• bestScore – the score of the acceppted Sii for annotation

26 Chapter 2. maspy package

maspy Documentation, Release

static jsonHook(encoded)
Custom JSON decoder that allows construction of a new Fi instance from a decoded JSON object.

Parameters encoded – a JSON decoded object literal (a dict)

Returns “encoded” or Fi

class maspy.core.FiContainer
Bases: object

Conainer for Fi elements.

Variables

• container – contains the stored Fi elements.

{specfilename: {'Fi identifier': [Fi, ...], ...}

• info – a dictionary containing information about imported specfiles.

{specfilename: {'path': str},
...
}

path: folder location used by the FiContainer to save and load data to the hard disk.

addSpecfile(specfiles, path)
Prepares the container for loading fic files by adding specfile entries to self.info. Use
FiContainer.load() afterwards to actually import the files.

Parameters

• specfiles (str or [str, str, ..]) – the name of an ms-run file or a list of
names

• path – filedirectory used for loading and saving fic files

getArrays(attr=None, specfiles=None, sort=False, reverse=False, selector=None, default-
Value=None)

Return a condensed array of data selected from Fi instances from self.container for fast and con-
venient data processing.

Parameters

• attr – list of Fi item attributes that should be added to the returned array. The attributes
“id” and “specfile” are always included, in combination they serve as a unique id.

• defaultValue – if an item is missing an attribute, the “defaultValue” is added to the
array instead.

• specfiles (str or [str, str, ..]) – filenames of ms-run files - if specified
return only items from those files

• sort – if “sort” is specified the returned list of items is sorted according to the Fi attribute
specified by “sort”, if the attribute is not present the item is skipped.

• reverse – bool, set True to reverse sort order

• selector – a function which is called with each Fi item and has to return True (include
item) or False (discard item). Default function is: lambda si: True. By default
only items with Fi.isValid == True are returned.

Returns {‘attribute1’: numpy.array(), ‘attribute2’: numpy.array(), ... }

2.4. maspy.core module 27

maspy Documentation, Release

getItem(specfile, identifier)
Returns a Fi instance from self.container.

Parameters

• specfile – a ms-run file name

• identifier – item identifier Fi.id

Returns self.container[specfile][identifier]

getItems(specfiles=None, sort=False, reverse=False, selector=None)
Generator that yields filtered and/or sorted Fi instances from self.container.

Parameters

• specfiles (str or [str, str, ..]) – filenames of ms-run files - if specified
return only items from those files

• sort – if “sort” is specified the returned list of items is sorted according to the Fi attribute
specified by “sort”, if the attribute is not present the item is skipped.

• reverse – bool, True reverses the sort order

• selector – a function which is called with each Fi item and has to return True (include
item) or False (discard item). By default only items with Fi.isValid == True are
returned.

Returns items from container that passed the selector function

load(specfiles=None)
Imports the specified fic files from the hard disk.

Parameters specfiles (None, str, [str, str]) – the name of an ms-run file or a
list of names. If None all specfiles are selected.

removeAnnotation(specfiles=None)
Remove all annotation information from Fi elements.

Parameters specfiles (None, str, [str, str]) – the name of an ms-run file or a
list of names. If None all specfiles are selected.

removeSpecfile(specfiles)
Completely removes the specified specfiles from the FiContainer.

Parameters specfiles – the name of an ms-run file or a list of names.

save(specfiles=None, compress=True, path=None)
Writes the specified specfiles to fic files on the hard disk.

Note: If .save() is called and no fic files are present in the specified path new files are generated,
otherwise old files are replaced.

Parameters

• specfiles – the name of an ms-run file or a list of names. If None all specfiles are
selected.

• compress – bool, True to use zip file compression

• path – filedirectory to which the fic files are written. By default the parameter is set to
None and the filedirectory is read from self.info[specfile]['path']

28 Chapter 2. maspy package

maspy Documentation, Release

setPath(folderpath, specfiles=None)
Changes the folderpath of the specified specfiles. The folderpath is used for saving and loading of fic
files.

Parameters

• specfiles (None, str, [str, str]) – the name of an ms-run file or a list of
names. If None all specfiles are selected.

• folderpath – a filedirectory

class maspy.core.MsrunContainer
Bases: object

Container for mass spectrometry data (eg MS1 and MS2 spectra), provides full support for mzML files, see
mzML schema documentation.

Variables

• rmc – “run metadata container”, contains mzML metadata elements from the mzML file as
a lxml.etree.Element object. This comprises all mzML subelements, except for the
run‘ element subelements spectrumList and chromatogramList.

• cic – “chromatogram item container”, see Ci

• smic – “spectrum metadata item container”, see Smi

• saic – “spectrum array item container”, see Sai

• sic – “spectrum item container”, see Si

• info – contains information about the imported specfiles.

{specfilename: {'path': str,
'status': {u'ci': bool, u'rm': bool, u'sai': bool,

u'si': bool, u'smi': bool}
},

...
}

path contains information about the filelocation used for saving and loading msrun files in
the maspy dataformat. status describes which datatypes are currently imported.

code example:

{u'JD_06232014_sample1_A': {u'path': u'C:/filedirectory',
u'status': {u'ci': True, u'rm': True,

u'sai': True, u'si': True,
u'smi': True
}

}
}

Note: The structure of the containers rmc, cic, smic, saic and sic is always: {"specfilename":
{"itemId": item, ...}, ...}

addSpecfile(specfiles, path)
Prepares the container for loading mrc files by adding specfile entries to self.info. Use
MsrunContainer.load() afterwards to actually import the files

Parameters

2.4. maspy.core module 29

http://www.peptideatlas.org/tmp/mzML1.1.0.html

maspy Documentation, Release

• specfiles (str or [str, str, ..]) – the name of an ms-run file or a list of
names

• path – filedirectory used for loading and saving mrc files

getArrays(attr=None, specfiles=None, sort=False, reverse=False, selector=None, default-
Value=None)

Return a condensed array of data selected from Si instances from self.sic for fast and convenient data
processing.

Parameters

• attr – list of Si item attributes that should be added to the returned array. The attributes
“id” and “specfile” are always included, in combination they serve as a unique id.

• defaultValue – if an item is missing an attribute, the “defaultValue” is added to the
array instead.

• specfiles (str or [str, str, ..]) – filenames of ms-run files, if specified
return only items from those files

• sort – if “sort” is specified the returned list of items is sorted according to the Si attribute
specified by “sort”, if the attribute is not present the item is skipped.

• reverse – bool, set True to reverse sort order

• selector – a function which is called with each Si item and has to return True (include
item) or False (discard item). Default function is: lambda si: True

Returns {‘attribute1’: numpy.array(), ‘attribute2’: numpy.array(), ... }

getItem(specfile, identifier)
Returns a Si instance from self.sic.

Parameters

• specfile – a ms-run file name

• identifier – item identifier Si.id

Returns self.sic[specfile][identifier]

getItems(specfiles=None, sort=False, reverse=False, selector=None)
Generator that yields filtered and/or sorted Si instances from self.sic.

Parameters

• specfiles (str or [str, str, ..]) – filenames of ms-run files - if specified
return only items from those files

• sort – if “sort” is specified the returned list of items is sorted according to the Si attribute
specified by “sort”, if the attribute is not present the item is skipped.

• reverse – bool, True reverses the sort order

• selector – a function which is called with each Si item and returns True (include item)
or False (discard item). Default function is: lambda si: True

Returns items from container that passed the selector function

load(specfiles=None, rm=False, ci=False, smi=False, sai=False, si=False)
Import the specified datatypes from mrc files on the hard disk.

Parameters

• specfiles (None, str, [str, str]) – the name of an ms-run file or a list of
names. If None all specfiles are selected.

30 Chapter 2. maspy package

maspy Documentation, Release

• rm – bool, True to import mrc_rm (run metadata)

• ci – bool, True to import mrc_ci (chromatogram items)

• smi – bool, True to import mrc_smi (spectrum metadata items)

• sai – bool, True to import mrc_sai (spectrum array items)

• si – bool, True to import mrc_si (spectrum items)

removeData(specfiles=None, rm=False, ci=False, smi=False, sai=False, si=False)
Removes the specified datatypes of the specfiles from the msrunContainer. To completely remove a specfile
use MsrunContainer.removeSpecfile(), which also removes the complete entry from self.
info.

Parameters

• specfiles (None, str, [str, str]) – the name of an ms-run file or a list of
names. If None all specfiles are selected.

• rm – bool, True to select self.rmc

• ci – bool, True to select self.cic

• smi – bool, True to select self.smic

• sai – bool, True to select self.saic

• si – bool, True to select self.sic

removeSpecfile(specfiles)
Completely removes the specified specfiles from the msrunContainer.

Parameters specfiles (str, [str, str]) – the name of an ms-run file or a list of
names. If None all specfiles are selected.

save(specfiles=None, rm=False, ci=False, smi=False, sai=False, si=False, compress=True,
path=None)

Writes the specified datatypes to mrc files on the hard disk.

Note: If .save() is called and no mrc files are present in the specified path new files are generated,
otherwise old files are replaced.

Parameters

• specfiles (None, str, [str, str]) – the name of an ms-run file or a list of
names. If None all specfiles are selected.

• rm – bool, True to select self.rmc (run metadata)

• ci – bool, True to select self.cic (chromatogram items)

• smi – bool, True to select self.smic (spectrum metadata items)

• sai – bool, True to select self.saic (spectrum array items)

• si – bool, True to select self.sic (spectrum items)

• compress – bool, True to use zip file compression

• path – filedirectory to which the mrc files are written. By default the parameter is set to
None and the filedirectory is read from self.info[specfile]['path']

2.4. maspy.core module 31

maspy Documentation, Release

setPath(folderpath, specfiles=None)
Changes the folderpath of the specified specfiles. The folderpath is used for saving and loading of mrc
files.

Parameters

• specfiles (None, str, [str, str]) – the name of an ms-run file or a list of
names. If None all specfiles are selected.

• folderpath – a filedirectory

class maspy.core.MzmlPrecursor(spectrumRef=None, activation=None, isolationWindow=None, se-
lectedIonList=None, **kwargs)

Bases: object

MasPy representation of an mzML Scan element, see mzML schema documentation.

Variables

• spectrumRef – native id of the spectrum corresponding to the precursor spectrum

• activation – the mzML activation is represented as a tuple of param tuples. It is
describing the type and energy level used for activation and should not be changed.

• isolationWindow – the mzML isolationWindow is represented as a tuple of parm
tuples. It is describing the measurement and should not be changed.

• selectedIonList – a list of mzML selectedIon elements, which are represented
as a tuple of param tuples.

Note: The attributes “sourceFileRef” and “externalSpectrumID” are not supported by MasPy on purpose, since
they are only used to refere to scans which are external to the mzML file.

activation

isolationWindow

selectedIonList

spectrumRef

class maspy.core.MzmlProduct(isolationWindow=None, **kwargs)
Bases: object

MasPy representation of an mzML Product element, the mzML schema documentation does however not
provide a lot of information how this element is intended to be used and which information can be present.

Variables isolationWindow – the mzML isolationWindow is represented as a tuple of
parm tuples. It is describing the measurement and should not be changed.

isolationWindow

class maspy.core.MzmlScan(scanWindowList=None, params=None, **kwargs)
Bases: object

MasPy representation of an mzML Scan element, see mzML schema documentation.

Variables

• scanWindowList – a list of mzML scanWindow elements, which are represented as a
tuple of parm tuples. The mzML scanWindowList is describing the measurement and
should not be changed.

32 Chapter 2. maspy package

http://www.peptideatlas.org/tmp/mzML1.1.0.html#precursor
http://www.peptideatlas.org/tmp/mzML1.1.0.html#product
http://www.peptideatlas.org/tmp/mzML1.1.0.html#scan

maspy Documentation, Release

• params – a list of parameter tuple (cvParam tuple, userParam tuple or referencableParam-
Group tuple) of an mzML Scan element.

Note: The attributes “sourceFileRef” and “externalSpectrumID” are not supported by MasPy on purpose, since
they are only used to refere to scans which are external to the mzML file. The attribute “spectrumRef” could be
included but seems kind of useless.

The attribute “instrumentConfigurationRef” should be included though: #TODO.

params

scanWindowList

class maspy.core.Sai(identifier, specfile)
Bases: object

Spectrum array item (Sai), representation of the binary data arrays of an mzML spectrum.

Variables

• id – The unique id of this spectrum, typically the scan number. Is used together with
self.specfile as a key to access the spectrum in its container MsrunContainer.
saic. Should be derived from the spectrums nativeID format (MS:1000767).

• specfile – An id representing a group of spectra, typically of the same mzML file /
ms-run.

• arrays – a dictionary containing the binary data of the recorded ion spectrum as
numpy.array. Keys are derived from the specified mzML cvParam, see maspy.xml.
findBinaryDataType(). Must at least contain the keys mz (mass to charge ratio)
and i (intensity). Sai.arrays = {'mz': numpy.array(), 'i': numpy.
array(), ...}

• arrayInfo – dictionary describing each data type present in .arrays.

{dataType: {'dataProcessingRef': str,
'params': [paramTuple, paramTuple, ...]
}

}

code example:

{u'i': {u'dataProcessingRef': None,
u'params': [('MS:1000521', '', None),

('MS:1000574', '', None),
('MS:1000515', '', 'MS:1000131')]},

u'mz': {u'dataProcessingRef': None,
u'params': [('MS:1000523', '', None),

('MS:1000574', '', None),
('MS:1000514', '', 'MS:1000040')]}}

arrayInfo

arrays

id

static jsonHook(encoded)
Custom JSON decoder that allows construction of a new Sai instance from a decoded JSON object.

Parameters encoded – a JSON decoded object literal (a dict)

2.4. maspy.core module 33

maspy Documentation, Release

Returns “encoded” or Sai

specfile

class maspy.core.Si(identifier, specfile)
Bases: object

Spectrum item (Si) - this is the spectrum representation intended to be used in maspy. A simplified representation
of spectrum metadata. Contains only specifically imported attributes, which are necessary for data analysis.
Does not follow any PSI data structure or name space rules.

Additional attributes can be transferred from the corresponding Smi entry. This is done by default when im-
porting an mzML file by using the function maspy.reader.defaultFetchSiAttrFromSmi().

Variables

• id – The unique id of this spectrum, typically the scan number. Is used together with
self.specfile as a key to access the spectrum in its container MsrunContainer.
sic. Should be derived from the spectrums nativeID format (MS:1000767).

• specfile – An id representing a group of spectra, typically of the same mzML file /
ms-run.

• isValid – bool, can be used for filtering.

• msLevel – stage of ms level in a multi stage mass spectrometry experiment.

static jsonHook(encoded)
Custom JSON decoder that allows construction of a new Si instance from a decoded JSON object.

Parameters encoded – a JSON decoded object literal (a dict)

Returns “encoded” or Si

class maspy.core.Sii(identifier, specfile)
Bases: object

Spectrum identification item (Sii) - representation of an MSn fragment spectrum annotation, also referred to as
peptide spectrum match (PSM).

Variables

• id – The unique id of this spectrum, typically the scan number. Is used together with
self.specfile as a key to access the spectrum in its container SiiContainer or the
corresponding spectrum in a MsrunContainer.

• specfile – An id representing an mzML file / ms-run filename.

• rank – The rank of this Sii compared to others for the same MSn spectrum. The rank is
based on a score defined in the SiiContainer. If multiple Sii have the same top score,
they should all be assigned self.rank = 1.

• isValid – bool or None if not specified this attribute can be used to flag if a Sii has passed
a given quality threshold or has been validated as correct. Is used to filter valid elements in
eg SiiContainer.getArrays().

static jsonHook(encoded)
Custom JSON decoder that allows construction of a new Sii instance from a decoded JSON object.

Parameters encoded – a JSON decoded object literal (a dict)

Returns “encoded” or Sii

class maspy.core.SiiContainer
Bases: object

34 Chapter 2. maspy package

maspy Documentation, Release

Conainer for Sii elements.

Variables

• container – contains the stored Sii elements.

{specfilename: {'Sii identifier': [Sii, ...], ...}

• info – a dictionary containing information about imported specfiles.

{specfilename: {'path': str, 'qcAttr': str, 'qcLargerBetter': bool,
'qcCutoff': float, 'rankAttr': str,
'rankLargerBetter': bool
},

...
}

path: folder location used by the SiiContainer to save and load data to the hard disk.

qcAttr: name of the parameter to define a quality cutoff. Typically this is some sort of a
global false positive estimator (eg FDR)

qcLargerBetter: bool, True if a large value for the .qcAttr means a higher confidence.

qcCutoff: float, the quality threshold for the specifed .qcAttr

rankAttr: name of the parameter used for ranking Sii according to how well they match
to a fragment ion spectrum, in the case when their are multiple Sii present for the same
spectrum.

rankLargerBetter: bool, True if a large value for the .rankAttr means a better match
to the fragment ion spectrum

Note: In the future this container may be integrated in an evidence or an mzIdentML like container.

addSiInfo(msrunContainer, specfiles=None, attributes=[’obsMz’, ‘rt’, ‘charge’])
Transfer attributes to Sii elements from the corresponding :class‘Si‘ in MsrunContainer.sic. If an
attribute is not present in the Si the attribute value in the Sii``is set to ``None.

Attribute examples: ‘obsMz’, ‘rt’, ‘charge’, ‘tic’, ‘iit’, ‘ms1Id’

Parameters

• msrunContainer – an instance of MsrunContainer which has imported the corre-
sponding specfiles

• specfiles – the name of an ms-run file or a list of names. If None all specfiles are
selected.

• attributes – a list of Si attributes that should be transfered.

addSpecfile(specfiles, path)
Prepares the container for loading siic files by adding specfile entries to self.info. Use
SiiContainer.load() afterwards to actually import the files.

Parameters

• specfiles (str or [str, str, ..]) – the name of an ms-run file or a list of
names

• path – filedirectory used for loading and saving siic files

2.4. maspy.core module 35

maspy Documentation, Release

calcMz(specfiles=None, guessCharge=True, obsMzKey=’obsMz’)
Calculate the exact mass for Sii elements from the Sii.peptide sequence.

Parameters

• specfiles – the name of an ms-run file or a list of names. If None all specfiles are
selected.

• guessCharge – bool, True if the charge should be guessed if the attribute charge
is missing from Sii. Uses the calculated peptide mass and the observed m/z value to
calculate the charge.

• obsMzKey – attribute name of the observed m/z value in Sii.

getArrays(attr=None, specfiles=None, sort=False, reverse=False, selector=None, default-
Value=None)

Return a condensed array of data selected from Sii instances from self.container for fast and
convenient data processing.

Parameters

• attr – list of Sii item attributes that should be added to the returned array. The attributes
“id” and “specfile” are always included, in combination they serve as a unique id.

• defaultValue – if an item is missing an attribute, the “defaultValue” is added to the
array instead.

• specfiles (str or [str, str, ..]) – filenames of ms-run files - if specified
return only items from those files

• sort – if “sort” is specified the returned list of items is sorted according to the Sii
attribute specified by “sort”, if the attribute is not present the item is skipped.

• reverse – bool, set True to reverse sort order

• selector – a function which is called with each Sii item and has to return True (include
item) or False (discard item). Default function is: lambda si: True. By default
only items with Sii.isValid == True are returned.

Returns {‘attribute1’: numpy.array(), ‘attribute2’: numpy.array(), ... }

getItems(specfiles=None, sort=False, reverse=False, selector=None)
Generator that yields filtered and/or sorted Sii instances from self.container.

Parameters

• specfiles (str or [str, str, ..]) – filenames of ms-run files - if specified
return only items from those files

• sort – if “sort” is specified the returned list of items is sorted according to the Sii
attribute specified by “sort”, if the attribute is not present the item is skipped.

• reverse – bool, True reverses the sort order

• selector – a function which is called with each Sii item and has to return True
(include item) or False (discard item). By default only items with Sii.isValid ==
True are returned.

Returns items from container that passed the selector function

getValidItem(specfile, identifier)
Returns a Sii instance from self.container if it is valid, if all elements of self.
container[specfile][identifier] are ``Sii.isValid == False then None is re-
turned.

36 Chapter 2. maspy package

maspy Documentation, Release

Parameters

• specfile – a ms-run file name

• identifier – item identifier Sii.id

Returns Sii or None

load(specfiles=None)
Imports siic files from the hard disk.

Parameters specfiles (None, str, [str, str]) – the name of an ms-run file or a
list of names. If None all specfiles are selected.

removeSpecfile(specfiles)
Completely removes the specified specfiles from the SiiContainer.

Parameters specfiles – the name of an ms-run file or a list of names.

save(specfiles=None, compress=True, path=None)
Writes the specified specfiles to siic files on the hard disk.

Note: If .save() is called and no siic files are present in the specified path new files are generated,
otherwise old files are replaced.

Parameters

• specfiles – the name of an ms-run file or a list of names. If None all specfiles are
selected.

• compress – bool, True to use zip file compression

• path – filedirectory to which the siic files are written. By default the parameter is set
to None and the filedirectory is read from self.info[specfile]['path']

setPath(folderpath, specfiles=None)
Changes the folderpath of the specified specfiles. The folderpath is used for saving and loading of siic
files.

Parameters

• folderpath – a filedirectory

• specfiles (None, str, [str, str]) – the name of an ms-run file or a list of
names. If None all specfiles are selected.

class maspy.core.Smi(identifier, specfile)
Bases: object

Spectrum metadata item (Smi), representation of all the metadata data of an mzML spectrum, excluding the
actual binary data.

For details on the mzML spectrum element refer to the documentation,.

Variables

• id – The unique id of this spectrum, typically the scan number. Is used together with
self.specfile as a key to access the spectrum in its container MsrunContainer.
smic. Should be derived from the spectrums nativeID format (MS:1000767).

• specfile – An id representing a group of spectra, typically of the same mzML file /
ms-run.

2.4. maspy.core module 37

http://www.peptideatlas.org/tmp/mzML1.1.0.html#spectrum

maspy Documentation, Release

• attributes – dict, attributes of an mzML spectrum element

• params – a list of parameter tuple (cvParam tuple, userParam tuple or referencableParam-
Group tuple) of an mzML spectrum element.

• scanListParams – a list of parameter tuple (cvParam tuple, userParam tuple or referen-
cableParamGroup tuple) of an mzML scanList element.

• scanList – a list of MzmlScan elements, derived from elements of an an mzML
scanList element.

• precursorList – a list of MzmlPrecursor elements, derived from elements of an an
mzML precursorList element.

• productList – a list of MzmlProduct elements, derived from elements of an an mzML
productList element.

Warning: The Smi is used to generate spectrum xml elements by using the function maspy.writer.
xmlSpectrumFromSmi(). In order to generate a valid mzML element all attributes of Smi have to be
in the correct format. Therefore it is highly recommended to only use properly implemented and tested
methods for making changes to any Smi attribute.

attributes

id

static jsonHook(encoded)
Custom JSON decoder that allows construction of a new Smi instance from a decoded JSON object.

Parameters encoded – a JSON decoded object literal (a dict)

Returns “encoded” or one of the these objects: Smi, MzmlScan, MzmlProduct,
MzmlPrecursor

params

precursorList

productList

scanList

scanListParams

specfile

maspy.core.addMsrunContainers(mainContainer, subContainer)
Adds the complete content of all specfile entries from the subContainer to the mainContainer. However if a
specfile of subContainer.info is already present in mainContainer.info its contents are not added
to the mainContainer.

Parameters

• mainContainer – MsrunContainer

• subContainer – MsrunContainer

Warning: does not generate new items, all items added to the mainContainer are still present in the
subContainer and changes made to elements of one container also affects the elements of the other one
(ie elements share same memory location).

38 Chapter 2. maspy package

maspy Documentation, Release

maspy.errors module

#TODO: module description

exception maspy.errors.FileFormatError
Bases: RuntimeError

This exception is raised when a wrong file type is encountered.

maspy.featuremethods module

#TODO: module description

maspy.featuremethods.matchToFeatures(fiContainer, specContainer, specfiles=None,
fMassKey=’mz’, sMassKey=’obsMz’, isotopeEr-
rorList=0, precursorTolerance=5, toleranceU-
nit=’ppm’, rtExpansionUp=0.1, rtExpansion-
Down=0.05, matchCharge=True, scoreKey=’pep’,
largerBetter=False)

Annotate Fi (Feature items) by matching Si (Spectrum items) or Sii (Spectrum identification items).

Parameters

• fiContainer – maspy.core.FeatureContainer, contains Fi.

• specContainer – maspy.core.MsrunContainer or maspy.core.
SiiContainer, contains Si or Sii.

• specfiles (str, list or None) – filenames of ms-run files, if specified consider
only items from those files

• fMassKey – mass attribute key in Fi.__dict__

• sMassKey – mass attribute key in Si.__dict__ or Sii.__dict__ (eg ‘obsMz’, ‘ex-
cMz’)

• isotopeErrorList (list or tuple of int) – allowed isotope errors relative to
the spectrum mass, for example “0” or “1”. If no feature has been matched with isotope
error 0, the spectrum mass is increased by the mass difference of carbon isotopes 12 and
13 and matched again. The different isotope error values are tested in the specified order
therefore “0” should normally be the first value of the list.

• precursorTolerance – the largest allowed mass deviation of Si or Sii relative to Fi

• toleranceUnit – defines how the precursorTolerance is applied to the mass
value of Fi. "ppm": mass * (1 +/- tolerance*1E-6) or "da": mass
+/- value

• rtExpansionUp – relative upper expansion of Fi retention time area. limitHigh =
Fi.rtHigh + (Fi.rtHigh - Fi.rtLow) * rtExpansionUp

• rtExpansionDown – relative lower expansion of Fi retention time area. limitLow =
Fi.rtLow - (Fi.rtHigh - Fi.rtLow) * rtExpansionDown

• matchCharge – bool, True if Fi and Si or Sii must have the same charge state to be
matched.

• scoreKey – Sii attribute name used for scoring the identification reliability

• largerBetter – bool, True if higher score value means a better identification reliability

2.5. maspy.errors module 39

maspy Documentation, Release

#TODO: this function is nested pretty badly and should maybe be rewritten #TODO: replace tolerance unit
“ppm” by tolerance mode “relative” and change

repsective calculations

maspy.featuremethods.rtCalibration(fiContainer, allowedRtDev=60, allowedMzDev=2.5, ref-
erence=None, specfiles=None, showPlots=False, plot-
Dir=None, minIntensity=100000.0)

Performs a retention time calibration between FeatureItem of multiple specfiles.

Variables

• fiContainer – Perform alignment on FeatureItem in FeatureContainer.
specfiles

• allowedRtDev – maxium retention time difference of two features in two runs to be
matched

• allowedMzDev – maxium relative m/z difference (in ppm) of two features in two runs to
be matched

• showPlots – boolean, True if a plot should be generated which shows to results of the
calibration

• plotDir – if not None and showPlots is True, the plots are saved to this location.

• reference – Can be used to specifically specify a reference specfile

• specfiles – Limit alignment to those specfiles in the fiContainer

• minIntensity – consider only features with an intensity above this value

maspy.inference module

The module “inference” is still in development. The interface of high and low level functions is not yet stable!

This module allows a simple protein inference; reporting a minimal set of proteins that can explain a set of peptides;
defining shared und unique peptides; defining proteins that share equal evidence, protein subgroups and subsumable
proteins. In addition it should provide an interface that allows convenient selection of observed peptides that can be
used for quantification.

About protein groups In shotgun proteomics proteins are not directly analyzed, but via peptides gener-
ated by proteolytic digestion. Some of these peptides can’t be unambiguously mapped to one single
protein because of sequence homology between proteins.

As a consequence, it is often not possible to determine the exact set of proteins that have generated
the observed peptides. The general aim of protein grouping is to group proteins with shared evidence
together to reduce redundancy and simplify data analysis and interpretation. The result of protein
grouping not only contains protein groups, but also information about the relation of proteins and
the ambiguity of peptides. This also simplifies inspection of the observed evidence that indicate the
presence of a protein.

There is however no consensus in the proteomics community how a protein group is defined. One
approach is to group proteins together which observed peptide sets have a subset or sameset relation.
Another possibility is to generate protein groups in a way, that they reflect the minimal number of
proteins that can completely account for all observed peptides.

A mapping based protein grouping algorithm Protein groups, as generated by the function mapping-
BasedGrouping(), can be defined as a set of proteins, with sameset and subset relations. Each of
these protein sets is essential to explain the presence of at least one peptide. In addition, proteins

40 Chapter 2. maspy package

maspy Documentation, Release

that share information with multiple groups, but are not a subset of any protein present in one of the
groups, are assosicated with these groups as subsumable proteins.

Principle of the grouping algorithm:

• All samset proteins are merged and subset proteins are removed

• Each unique protein generates a new protein group. This group contains all sameset and
subset proteins of the group leading proteins. All peptides mapped to these proteins are
considered to be group peptides. (A unique protein is mapped to at least least one peptide
that is mapped to only one protein.)

• Remaining peptides that are not explained by any group yet are seeds for the generation
of new groups. All these peptides are still mapped to at least two proteins. The function
_findRedundantProteins() generates a set of proteins that is considered as redundant. Af-
ter removing these redundant proteins, all remaining peptides become unique. Proteins
mapped to these peptides generate groups as described before.

• Proteins that share peptides with multiple groups, but are not a subset of the group leading
proteins are associated as susumable proteins.

Protein grouping example data See unit test module ../tests/test_inference.py A grafical
representation of the example data and the expected results, generated by the func-
tion mappingBasedGrouping(), can be found here: https://docs.google.com/drawings/d/
1irbXDODwYsbrEw-Pa4rok5xguYrCbaqWl7F03qKGdC0/pub?w=3262&h=6566

Example import maspy.inference

proteinToPeptides = { ‘01_P1’: {‘01_p1’, ‘01_p2’}, ‘02_P1’: {‘02_p1’, ‘02_p2’}, ‘02_P2’:
{‘02_p2’}, ‘03_P1’: {‘03_p1’, ‘03_p2’}, ‘03_P2’: {‘03_p1’, ‘03_p2’}, ‘04_P1’: {‘04_p1’,
‘04_p2’}, ‘04_P2’: {‘04_p1’, ‘04_p2’}, ‘04_P3’: {‘04_p2’}, ‘05_P1’: {‘05_p1’, ‘05_p2’,
‘05_p3’}, ‘05_P2’: {‘05_p1’, ‘05_p4’}, ‘05_P3’: {‘05_p2’, ‘05_p3’, ‘05_p4’}, ‘06_P1’:
{‘06_p1’, ‘06_p2’, ‘06_p3’}, ‘06_P2’: {‘06_p2’, ‘06_p3’}, ‘06_P3’: {‘06_p2’, ‘06_p4’},
‘06_P4’: {‘06_p2’, ‘06_p3’, ‘06_p4’}, ‘06_P5’: {‘06_p2’, ‘06_p4’}, ‘07_P1’: {‘07_p1’,
‘07_p2’}, ‘07_P2’: {‘07_p1’, ‘07_p3’, ‘07_p4’}, ‘07_P3’: {‘07_p2’, ‘07_p3’}, ‘07_P4’:
{‘07_p3’, ‘07_p5’}, ‘08_P1’: {‘08_p1’, ‘08_p2’}, ‘08_P2’: {‘08_p3’, ‘08_p4’}, ‘08_P3’:
{‘08_p2’, ‘08_p3’}, ‘09_P1’: {‘09_p1’, ‘09_p3’, ‘09_p4’, ‘09_p5’, ‘09_p7’}, ‘09_P2’:
{‘09_p1’, ‘09_p2’}, ‘09_P3’: {‘09_p2’, ‘09_p3’}, ‘09_P4’: {‘09_p5’, ‘09_p6’}, ‘09_P5’:
{‘09_p6’, ‘09_p7’}, ‘10_P1’: {‘10_p1’, ‘10_p2’}, ‘10_P2’: {‘10_p3’, ‘10_p4’, ‘10_p5’},
‘10_P3’: {‘10_p2’, ‘10_p3’}, ‘10_P4’: {‘10_p2’, ‘10_p3’, ‘10_p4’}, }

inference = maspy.inference.mappingBasedGrouping(proteinToPeptides)

Todo

Hypothesis testing Add a private function that can be used to performs hypothesis tests. These
tests comprise the evaluation of some general assumptions about the grouping results. - Group
representatives should contain all group peptides (not included

are peptides from subsumable proteins).

• Peptides of a subsumable protein should not be fully covered by non- subsumable proteins
of one single group.

• Group peptides of all the groups of a subsumable protein should contain all peptides of the
respective subsumable protein.

function mappingBasedGrouping()

Refactoring

• Processing of individual clusters can be put into a function

2.7. maspy.inference module 41

https://docs.google.com/drawings/d/1irbXDODwYsbrEw-Pa4rok5xguYrCbaqWl7F03qKGdC0/pub?w=3262&h=6566
https://docs.google.com/drawings/d/1irbXDODwYsbrEw-Pa4rok5xguYrCbaqWl7F03qKGdC0/pub?w=3262&h=6566

maspy Documentation, Release

• Processing of groupInitiatingProteins, redundantProteins and subsetProteins can be put
into function

• The First part that defines various sets of proteins can be put into a function

• Finally remove asserts

• Maybe it is not necessary to work with merged proteins, after defining them...

Unittest

• Test if all clusters are properly stored: see inference.clusters and infer-
ence._proteinToClusterId

Note Whenever possible, we use the PSI-MS ontology terms to describe protein groups and protein
relationships. However, in order to be less ambiguous some of the terms are more strictly defined in
maspy or used in a slightly different context. The details of used terms are described below.

Protein cluster (proteinCluster) A protein cluster comprises all proteins that are somehow linked
by shared peptide evidence. (related to PSI-MS MS:1002407)

Protein group (proteinGroup) A group of proteins that are essential to explain at least one peptide.
A protein group consists of its leading, subset and subsumable proteins. However, subsumable
proteins are more loosely associated with the group. The common peptide evidence of a group
is the sum of all its leading and subset proteins. As a consequence, all leading and subset
proteins must be a sameset or a subset of the protein groups common peptide evidence.

Representative protein (representative) Each protein group must have exactle one representative
protein. This protein must be amongst the leading proteins of the group. (identical to PSI-MS
MS:1002403)

Leading protein (leading) Each protein group must have at least one leading protein, to indicate
proteins with the strongest evidence. (identical to PSI-MS MS:1002401) All proteins present
in a protein group that are not leading proteins can be considered to be non-leading proteins
(PSI-MS MS:1002402).

Same-set protein (sameset) A protein that shares exactly the same set of peptide evidence with one
or multiple other proteins. (identical to PSI-MS MS:1001594)

Sub-set protein (subset) A protein with a sub-set of the peptide evidence of another protein. It can
be a sub-set of multiple proteins, and those don’t have to be in the same protein group. (identical
to PSI-MS MS:1001596)

Subsumable protein (subsumable) A protein which peptide evidence is distributed across multi-
ple proteins in at least two different protein groups. This term is mutually exclusiv with the
term sub-set protein, and hierarchically below sub-set. That means that a protein can only be a
subsumable if it is not already a subset of another protein. Also the protein is not allowed to be
a “leading” protein in any protein group. (is related to the PSI-MS term MS:1002570 “multiply
subsumable protein”, but defined more strictly)

Relevant terms from the PSI-MS ontology

Group representative (MS:1002403) An arbitrary and optional flag applied to exactly one protein per group to in-
dicate it can serve as the representative of the group, amongst leading proteins, in effect serving as a tiebreaker
for approaches that require exactly one group representative.

Leading protein (MS:1002401) At least one protein within each group should be annotated as a leading protein to
indicate it has the strongest evidence, or approximately equal evidence as other group members.

Non-leading protein (MS:1002402) Zero to many proteins within each group should be annotated as non-leading to
indicate that other proteins have stronger evidence.

42 Chapter 2. maspy package

maspy Documentation, Release

Cluster identifier (MS:1002407) An identifier applied to protein groups to indicate that they are linked by shared
peptides.

Same-set protein (MS:1001594) A protein which is indistinguishable or equivalent to another protein, having
matches to an identical set of peptide sequences.

Sequence sub-set protein (MS:1001596) A protein with a sub-set of the peptide sequence matches for another pro-
tein, and no distinguishing peptide matches.

Sequence subsumable protein (MS:1001598) A sequence same-set or sequence sub-set protein where the matches
are distributed across two or more proteins.

Sequence multiply subsumable protein (MS:1002570) A protein for which the matched peptide sequences are the
same, or a subset of, the matched peptide sequences for two or more other proteins combined. These other
proteins need not all be in the same group.

Peptide unique to one protein (MS:1001363) A peptide matching only one.

Peptide shared in multiple proteins (MS:1001175) A peptide matching multiple proteins.

Additional terms used in maspy

Unique protein (uniqueProtein) A protein mapped to at least one unique peptide.

Super-set protein: A protein with a set of peptide matches, that is a strict superset of other proteins (strict means that
the peptide matches are not equal).

class maspy.inference.Protein(proteinId, peptides)
Bases: object

Protein represents one entry from a protein database. It describes the protein relations and how a set of observed
peptides are mapped to it.

Variables

• id – unique identifier of the protein, should allow mapping to a protein database

• peptides – a list of all peptides that are mapped onto a protein

• uniquePeptides – unique to one single protein (or one protein after merging sameset
proteins)

• groupUniquePeptides – shared only with proteins of the same group

• groupSubsumablePeptides – shared only with subsumable proteins, but not with
multiple other protein groups

• sharedPeptides – shared between proteins of multiple protein groups

• isSubset – set, protein is a subset of these proteins

• isSameset – set, protein set that shares identical evidence

• isLeading – bool, True if protein is a leading protein of its group.

• isSubsumable – bool, True if protein is associated with multiple protein groups as a
subsumable protein.

class maspy.inference.ProteinGroup(groupId, representative)
Bases: object

A protein ambiguity group.

Variables

2.7. maspy.inference module 43

maspy Documentation, Release

• id – unique identifier of the protein, should allow mapping to a protein database

• representative – a single protein that represents the group

• proteins – set, all leading proteins, subset proteins and the representative protein. Sub-
sumable proteins are not included here!

• leading – set, leading proteins (MS:1002401)

• subset – set, sub-set proteins

• subsumableProteins – set, group sub-sumable proteins

addLeadingProteins(proteinIds)
Add one or multiple proteinIds as leading proteins.

Parameters proteinIds – a proteinId or a list of proteinIds, a proteinId must be a string.

addSubsetProteins(proteinIds)
Add one or multiple proteinIds as subset proteins.

Parameters proteinIds – a proteinId or a list of proteinIds, a proteinId must be a string.

addSubsumableProteins(proteinIds)
Add one or multiple proteinIds as subsumable proteins.

Parameters proteinIds – a proteinId or a list of proteinIds, a proteinId must be a string.

class maspy.inference.ProteinInference(protToPeps)
Bases: object

Contains the result of a protein inference analysis.

Variables

• protToPeps – dict, for each protein (=key) contains a set of associated peptides (=value).
For Example {protein: {peptide, ...}, ...}

• pepToProts – dict, for each peptide (=key) contains a set of parent proteins (=value). For
Example {peptide: {protein, ...}, ...}

• proteins – dict, protein ids pointing to Protein objects

• groups – dict, protein group ids pointing to ProteinGroup objects

• clusters – dict, cluster ids pointing to a list of protein group ids that are part of the same
cluster. See “Cluster identifier (MS:1002407)”

• _proteinToGroupIds – dict, protein ids containing a set of protein group ids that they
are associated with. NOTE: Protein objects do not contain a reference to their protein groups

• _proteinToClusterId – dict, protein ids containing a set of cluster ids that they are
associated with. NOTE: Protein objects do not contain a reference to their clusters

• _uniquePeptides – set, all unique peptides of all protein groups. I.e. peptides that are
only mapped to one protein (after merging same-set proteins).

• _groupUniquePeptides – set, all group unique peptides of all protein groups. I.e.
peptides that are not unique but only explained by proteins of one single protein group and
not by any subsumable proteins.

• _groupSubsumablePeptides – set, all group subsumable peptides of all protein
groups. I.e. peptides that are only explained by proteins of one single protein group but
also of subsumable proteins.

44 Chapter 2. maspy package

maspy Documentation, Release

• _sharedPeptides – set, all shared peptides of all protein groups. I.e. peptides that are
explained by proteins of multiple protein groups, not considering subsumable proteins.

addLeadingToGroups(proteinIds, groupIds)
Add one or multiple leading proteins to one or multiple protein groups.

Parameters

• proteinIds – a proteinId or a list of proteinIds, a proteinId must be a string.

• groupIds – a groupId or a list of groupIds, a groupId must be a string.

addProteinGroup(groupRepresentative)
Adds a new protein group and returns the groupId.

The groupId is defined using an internal counter, which is incremented every time a protein group is added.
The groupRepresentative is added as a leading protein.

Parameters groupRepresentative – the protein group representing protein

Returns the protein groups groupId

addSubsetToGroups(proteinIds, groupIds)
Add one or multiple subset proteins to one or multiple protein groups.

Parameters

• proteinIds – a proteinId or a list of proteinIds, a proteinId must be a string.

• groupIds – a groupId or a list of groupIds, a groupId must be a string.

addSubsumableToGroups(proteinIds, groupIds)
Add one or multiple subsumable proteins to one or multiple protein groups.

Parameters

• proteinIds – a proteinId or a list of proteinIds, a proteinId must be a string.

• groupIds – a groupId or a list of groupIds, a groupId must be a string.

getGroups(proteinId)
Return a list of protein groups a protein is associated with.

maspy.inference.mappingBasedGrouping(protToPeps)
Performs protein grouping based only on protein to peptide mappings.

Parameters protToPeps – dict, for each protein (=key) contains a set of associated peptides
(=value). For Example {protein: {peptide, ...}, ...}

#TODO: REFACTORING!!!

returns a ProteinInference object

maspy.isobar module

maspy.mit_stats module

This module contains functions to calculate a running mean, median and mode.

maspy.mit_stats.runningMean(seq, N, M)

Purpose: Find the mean for the points in a sliding window (fixed size)

2.8. maspy.isobar module 45

maspy Documentation, Release

as it is moved from left to right by one point at a time.

Inputs:

seq – list containing items for which a mean (in a sliding window) is

to be calculated (N items)

N – length of sequence M – number of items in sliding window

Otputs: means – list of means with size N - M + 1

maspy.mit_stats.runningMedian(seq, M)

Purpose: Find the median for the points in a sliding window (odd number in size)

as it is moved from left to right by one point at a time.

Inputs:

seq – list containing items for which a running median (in a sliding window)

is to be calculated

M – number of items in window (window size) – must be an integer > 1

Otputs:

medians – list of medians with size N - M + 1

Note:

1. The median of a finite list of numbers is the “center” value when this list is sorted in ascending
order.

2. If M is an even number the two elements in the window that are close to the center are averaged
to give the median (this is not by definition)

maspy.peptidemethods module

provides functions to work with peptide sequences, mass to charge ratios and modifications and calvulation of
masses.

maspy.peptidemethods.calcMassFromMz(mz, charge)
Calculate the mass of a peptide from its mz and charge.

Parameters

• mz – float, mass to charge ratio (Dalton / charge)

• charge – int, charge state

Returns non protonated mass (charge = 0)

maspy.peptidemethods.calcMhFromMz(mz, charge)
Calculate the MH+ value from mz and charge.

Parameters

• mz – float, mass to charge ratio (Dalton / charge)

• charge – int, charge state

Returns mass to charge ratio of the mono protonated ion (charge = 1)

46 Chapter 2. maspy package

maspy Documentation, Release

maspy.peptidemethods.calcMzFromMass(mass, charge)
Calculate the mz value of a peptide from its mass and charge.

Parameters

• mass – float, exact non protonated mass

• charge – int, charge state

Returns mass to charge ratio of the specified charge state

maspy.peptidemethods.calcMzFromMh(mh, charge)
Calculate the mz value from MH+ and charge.

Parameters

• mh – float, mass to charge ratio (Dalton / charge) of the mono protonated ion

• charge – int, charge state

Returns mass to charge ratio of the specified charge state

maspy.peptidemethods.calcPeptideMass(peptide, **kwargs)
Calculate the mass of a peptide.

Parameters

• aaMass – A dictionary with the monoisotopic masses of amino acid residues, by default
maspy.constants.aaMass

• aaModMass – A dictionary with the monoisotopic mass changes of modications, by default
maspy.constants.aaModMass

• elementMass – A dictionary with the masses of chemical elements, by default
pyteomics.mass.nist_mass

• peptide – peptide sequence, modifications have to be written in the format “[modifica-
tionId]” and “modificationId” has to be present in maspy.constants.aaModMass

#TODO: change to a more efficient way of calculating the modified mass, by first extracting all present modifi-
cations and then looking up their masses.

maspy.peptidemethods.digestInSilico(proteinSequence, cleavageRule=’[KR]’, missed-
Cleavage=0, removeNtermM=True, minLength=5,
maxLength=55)

Returns a list of peptide sequences and cleavage information derived from an in silico digestion of a polypeptide.

Parameters

• proteinSequence – amino acid sequence of the poly peptide to be digested

• cleavageRule – cleavage rule expressed in a regular expression, see maspy.
constants.expasy_rules

• missedCleavage – number of allowed missed cleavage sites

• removeNtermM – booo, True to consider also peptides with the N-terminal methionine of
the protein removed

• minLength – int, only yield peptides with length >= minLength

• maxLength – int, only yield peptides with length <= maxLength

Returns

a list of resulting peptide enries. Protein positions start with 1 and end with
len(proteinSequence.

2.10. maspy.peptidemethods module 47

maspy Documentation, Release

[(peptide amino acid sequence,
{'startPos': int, 'endPos': int, 'missedCleavage': int}
), ...

]

Note: This is a regex example for specifying N-terminal cleavage at lysine sites \w(?=[K])

maspy.peptidemethods.removeModifications(peptide)
Removes all modifications from a peptide string and return the plain amino acid sequence.

Parameters

• peptide – peptide sequence, modifications have to be written in the format “[modifica-
tionName]”

• peptide – str

Returns amino acid sequence of peptide without any modifications

maspy.peptidemethods.returnModPositions(peptide, indexStart=1, removeMod-
String=’UNIMOD:’)

Determines the amino acid positions of all present modifications.

Parameters

• peptide – peptide sequence, modifications have to be written in the format “[modifica-
tionName]”

• indexStart – returned amino acids positions of the peptide start with this number (first
amino acid position = indexStart)

• removeModString – string to remove from the returned modification name

Returns {modificationName:[position1, position2, ...], ...}

#TODO: adapt removeModString to the new unimod ids in #maspy.constants.aaModComp (“UNIMOD:X” ->
“u:X”) -> also change unit tests.

maspy.proteindb module

The protein database module allows the import of protein sequences from fasta files, parsing of fasta entry headers and
performing in silico digestion by specified cleavage rules to generate peptides.

class maspy.proteindb.PeptideSequence(sequence, mc=None)
Bases: object

Describes a peptide as derived by digestion of one or multiple proteins, can’t contain any modified amino acids.

Parameters

• sequence – amino acid sequence of the peptide

• missedCleavage – number of missed cleavages, dependens on enzyme specificity

• proteins – protein ids that generate this peptide under certain digest condition

• proteinPositions – start position and end position of a peptide in a protein sequence.
One based index, ie the first protein position is “1”. {proteinId:(startPosition,
endPositions) ...}

48 Chapter 2. maspy package

maspy Documentation, Release

isUnique

static jsonHook(encoded)
Custom JSON decoder that allows construction of a new PeptideSequence instance from a decoded
JSON object.

Parameters encoded – a JSON decoded object literal (a dict)

Returns “encoded” or PeptideSequence

length()
Returns the number of amino acids of the polypeptide sequence.

mass()
Returns the mass of the polypeptide sequence in Dalton.

missedCleavage

proteinPositions

proteins

sequence

class maspy.proteindb.ProteinDatabase
Bases: object

Describes proteins and peptides generated by an in silico digestion of proteins.

Variables

• peptides – {sequence:PeptideSequence(), ...} contains elements of
PeptideSequence derived by an in silico digest of the proteins

• proteins – {proteinId:Protein(), proteinId:Protein()}, used to access
ProteinSequence elements by their id

• proteinNames – {proteinName:Protein(), proteinName:Protein()}, alternative way to ac-
cess ProteinSequence elements by their names. Must be populated manually

• info – a dictionary containing information about the protein database and parameters spec-
ified for the in silico digestion of the protein entries.

{'name': str, 'mc': str, 'cleavageRule': str, 'minLength': int
'maxLength': int, 'ignoreIsoleucine': bool, 'removeNtermM': bool
}

name: a descriptive name of the protein database, used as the file name when saving
the protein database to the hard disk

mc: number of allowed missed cleavage sites cleavageRule: cleavage rule expressed in
a regular expression minLength: minimal peptide length maxLength: maximal peptide
length ignoreIsoleucine: if True Isoleucine and Leucinge in peptide

sequences are treated as indistinguishable.

removeNtermM: if True also peptides with the N-terminal Methionine of the protein
removed are considered.

calculateCoverage()
Calcualte the sequence coverage masks for all protein entries.

For a detailed description see _calculateCoverageMasks()

2.11. maspy.proteindb module 49

maspy Documentation, Release

classmethod load(path, name)
Imports the specified proteindb file from the hard disk.

Parameters

• path – filedirectory of the proteindb file

• name – filename without the file extension ”.proteindb”

Note: this generates rather large files, which actually take longer to import than to newly generate. Maybe
saving / loading should be limited to the protein database whitout in silico digestion information.

save(path, compress=True)
Writes the .proteins and .peptides entries to the hard disk as a proteindb file.

Note: If .save() is called and no proteindb file is present in the specified path a new files is
generated, otherwise the old file is replaced.

Parameters

• path – filedirectory to which the proteindb file is written. The output file name is
specified by self.info['name']

• compress – bool, True to use zip file compression

class maspy.proteindb.ProteinSequence(identifier, sequence, name=’‘)
Bases: object

Describes a protein.

Variables

• id – identifier of the protein, for example a uniprot id.

• name – name of the protein

• sequence – amino acid sequence of the protein

• fastaHeader – str(), the proteins faster header line

• fastaInfo – dict(), the interpreted fasta header as generated when using a faster header
parsing function, see fastaParseSgd().

• isUnique – bool, True if at least one unique peptide can be assigned to the protein

• uniquePeptides – a set of peptides which can be unambiguously assigned to this pro-
tein

• sharedPeptides – a set of peptides which are shared between different proteins

• coverageUnique – the number of amino acids in the protein sequence that are coverd
by unique peptides

• coverageShared – the number of amino acids in the protein sequence that are coverd
by unique or shared peptides

static jsonHook(encoded)
Custom JSON decoder that allows construction of a new ProteinSequence instance from a decoded
JSON object.

Parameters encoded – a JSON decoded object literal (a dict)

50 Chapter 2. maspy package

maspy Documentation, Release

Returns “encoded” or ProteinSequence

length()
Returns the mass of the polypeptide sequence in dalton.

mass()
Returns the number of amino acids of the polypeptide sequence.

maspy.proteindb.fastaParseSgd(header)
Custom parser for fasta headers in the SGD format, see www.yeastgenome.org.

Parameters header – str, protein entry header from a fasta file

Returns dict, parsed header

maspy.proteindb.importProteinDatabase(filePath, proteindb=None, decoyTag=’[decoy]’,
contaminationTag=’[cont]’, headerParser=None,
forceId=False, cleavageRule=’[KR]’, min-
Length=5, maxLength=40, missedCleavage=2,
ignoreIsoleucine=False, removeNtermM=True)

Generates a ProteinDatabase by in silico digestion of proteins from a fasta file.

Parameters

• filePath – File path

• proteindb – optional an existing ProteinDatabase can be specified, otherwise a
new instance is generated and returned

• decoyTag – If a fasta file contains decoy protein entries, they should be specified with a
sequence tag

• contaminationTag – If a fasta file contains contamination protein entries, they should
be specified with a sequence tag

• headerParser – optional a headerParser can be specified #TODO: describe how a parser
looks like

• forceId – bool, if True and no id can be extracted from the fasta header the whole header
sequence is used as a protein id instead of raising an exception.

• cleavageRule – cleavage rule expressed in a regular expression, see maspy.
constants.expasy_rules

• missedCleavage – number of allowed missed cleavage sites

• removeNtermM – bool, True to consider also peptides with the N-terminal Methionine of
the protein removed

• minLength – int, only yield peptides with length >= minLength

• maxLength – int, only yield peptides with length <= maxLength

• ignoreIsoleucine – bool, if True treat Isoleucine and Leucine in peptide sequences as
indistinguishable

See also maspy.peptidemethods.digestInSilico()

maspy.reader module

This module provides functions to import various data types as maspy objects, which are associated with analysis
workflows of mass spectrometry data. This currently comprises the mzML format, results of the percolator soft-

2.12. maspy.reader module 51

maspy Documentation, Release

ware and to some extent mzIdentML files, and file formats representing peptide LC-MS feature ”.featureXML” and
”.features.tsv”.

maspy.reader.addSiiToContainer(siiContainer, specfile, siiList)
Adds the Sii elements contained in the siiList to the appropriate list in siiContainer.
container[specfile].

Parameters

• siiContainer – instance of maspy.core.SiiContainer

• specfile – unambiguous identifier of a ms-run file. Is also used as a reference to other
MasPy file containers.

• siiList – a list of Sii elements imported from any PSM search engine results

maspy.reader.applySiiQcValidation(siiContainer, specfile)
Iterates over all Sii entries of a specfile in siiContainer and validates if they surpass a user defined quality
threshold. The parameters for validation are defined in siiContainer.info[specfile]:

•qcAttr, qcCutoff and qcLargerBetter

In addition to passing this validation a Sii has also to be at the first list position in the siiContainer.
container. If both criteria are met the attribute Sii.isValid is set to True.

Parameters

• siiContainer – instance of maspy.core.SiiContainer

• specfile – unambiguous identifier of a ms-run file. Is also used as a reference to other
MasPy file containers.

maspy.reader.applySiiRanking(siiContainer, specfile)
Iterates over all Sii entries of a specfile in siiContainer and sorts Sii elements of the same spectrum according to
the score attribute specified in siiContainer.info[specfile]['rankAttr']. Sorted Sii elements
are then ranked according to their sorted position, if multiple Sii have the same score, all get the same rank and
the next entries rank is its list position.

Parameters

• siiContainer – instance of maspy.core.SiiContainer

• specfile – unambiguous identifier of a ms-run file. Is also used as a reference to other
MasPy file containers.

maspy.reader.ciFromXml(xmlelement, specfile)

maspy.reader.convertMzml(mzmlPath, outputDirectory=None)
Imports an mzml file and converts it to a MsrunContainer file

Parameters

• mzmlPath – path of the mzml file

• outputDirectory – directory where the MsrunContainer file should be written

if it is not specified, the output directory is set to the mzml files directory.

maspy.reader.defaultFetchSiAttrFromSmi(smi, si)
Default method to extract attributes from a spectrum metadata item (sai) and adding them to a spectrum item
(si).

maspy.reader.fetchParentIon(smi)

maspy.reader.fetchScanInfo(smi)

52 Chapter 2. maspy package

maspy Documentation, Release

maspy.reader.fetchSpectrumInfo(smi)

maspy.reader.importMsgfMzidResults(siiContainer, filelocation, specfile=None, qcAttr=’eValue’,
qcLargerBetter=False, qcCutoff=0.01, rankAttr=’score’,
rankLargerBetter=True)

Import peptide spectrum matches (PSMs) from a MS-GF+ mzIdentML file, generate Sii elements and store
them in the specified siiContainer. Imported Sii are ranked according to a specified attribute and vali-
dated if they surpass a specified quality threshold.

Parameters

• siiContainer – imported PSM results are added to this instance of siiContainer

• filelocation – file path of the percolator result file

• specfile – optional, unambiguous identifier of a ms-run file. Is also used as a reference
to other MasPy file containers. If specified the attribute .specfile of all Sii is set to
this value, else it is read from the mzIdentML file.

• qcAttr – name of the parameter to define a quality cut off. Typically this is some sort of a
global false positive estimator (eg FDR)

• qcLargerBetter – bool, True if a large value for the .qcAttr means a higher confi-
dence.

• qcCutOff – float, the quality threshold for the specifed .qcAttr

• rankAttr – name of the parameter used for ranking Sii according to how well they
match to a fragment ion spectrum, in the case when their are multiple Sii present for the
same spectrum.

• rankLargerBetter – bool, True if a large value for the .rankAttr means a better
match to the fragment ion spectrum

For details on Sii ranking see applySiiRanking()

For details on Sii quality validation see applySiiQcValidation()

maspy.reader.importMzml(filepath, msrunContainer=None, siAttrFromSmi=None, specfile-
name=None)

Performs a complete import of a mzml file into a maspy MsrunContainer.

ParamsiAttrFromSmi allow here to specify a custom function that extracts params a from spec-
trumMetadataItem

Parameters specfilename – by default the filename will be used as the specfilename in the
MsrunContainer and all mzML item instances, specify here an alternative specfilename to over-
ride the default one

maspy.reader.importPeptideFeatures(fiContainer, filelocation, specfile)
Import peptide features from a featureXml file, as generated for example by the OpenMS node featureFinder-
Centroided, or a features.tsv file by the Dinosaur command line tool.

Parameters

• fiContainer – imported features are added to this instance of FeatureContainer.

• filelocation – Actual file path

• specfile – Keyword (filename) to represent file in the FeatureContainer. Each
filename can only occure once, therefore importing the same filename again is prevented.

2.12. maspy.reader module 53

maspy Documentation, Release

maspy.reader.importPercolatorResults(siiContainer, filelocation, specfile, psmEngine,
qcAttr=’qValue’, qcLargerBetter=False, qcCut-
off=0.01, rankAttr=’score’, rankLargerBetter=True)

Import peptide spectrum matches (PSMs) from a percolator result file, generate Sii elements and store them
in the specified siiContainer. Imported Sii are ranked according to a specified attribute and validated if
they surpass a specified quality threshold.

Parameters

• siiContainer – imported PSM results are added to this instance of siiContainer

• filelocation – file path of the percolator result file

• specfile – unambiguous identifier of a ms-run file. Is also used as a reference to other
MasPy file containers.

• psmEngine – PSM search engine used for peptide spectrum matching before percolator.
For details see readPercolatorResults(). Possible values are ‘comet’, ‘xtandem’,
‘msgf’.

• qcAttr – name of the parameter to define a quality cut off. Typically this is some sort of a
global false positive estimator (eg FDR)

• qcLargerBetter – bool, True if a large value for the .qcAttr means a higher confi-
dence.

• qcCutOff – float, the quality threshold for the specifed .qcAttr

• rankAttr – name of the parameter used for ranking Sii according to how well they
match to a fragment ion spectrum, in the case when their are multiple Sii present for the
same spectrum.

• rankLargerBetter – bool, True if a large value for the .rankAttr means a better
match to the fragment ion spectrum

For details on Sii ranking see applySiiRanking()

For details on Sii quality validation see applySiiQcValidation()

maspy.reader.prepareSiiImport(siiContainer, specfile, path, qcAttr, qcLargerBetter, qcCutoff,
rankAttr, rankLargerBetter)

Prepares the siiContainer for the import of peptide spectrum matching results. Adds entries to
siiContainer.container and to siiContainer.info.

Parameters

• siiContainer – instance of maspy.core.SiiContainer

• specfile – unambiguous identifier of a ms-run file. Is also used as a reference to other
MasPy file containers.

• path – folder location used by the SiiContainer to save and load data to the hard disk.

• qcAttr – name of the parameter to define a Sii quality cut off. Typically this is some sort
of a global false positive estimator, for example a ‘false discovery rate’ (FDR).

• qcLargerBetter – bool, True if a large value for the .qcAttr means a higher confi-
dence.

• qcCutOff – float, the quality threshold for the specifed .qcAttr

• rankAttr – name of the parameter used for ranking Sii according to how well they
match to a fragment ion spectrum, in the case when their are multiple Sii present for the
same spectrum.

54 Chapter 2. maspy package

maspy Documentation, Release

• rankLargerBetter – bool, True if a large value for the .rankAttr means a better
match to the fragment ion spectrum.

For details on Sii ranking see applySiiRanking()

For details on Sii quality validation see applySiiQcValidation()

maspy.reader.readMsgfMzidResults(filelocation, specfile=None)
Reads MS-GF+ PSM results from a mzIdentML file and returns a list of Sii elements.

Parameters

• filelocation – file path of the percolator result file

• specfile – optional, unambiguous identifier of a ms-run file. Is also used as a reference
to other MasPy file containers. If specified all the .specfile attribute of all Sii are set
to this value, else it is read from the mzIdentML file.

Returns [sii, sii, sii, ...]

maspy.reader.readPercolatorResults(filelocation, specfile, psmEngine)
Reads percolator PSM results from a txt file and returns a list of Sii elements.

Parameters

• filelocation – file path of the percolator result file

• specfile – unambiguous identifier of a ms-run file. Is also used as a reference to other
MasPy file containers.

• psmEngine – PSM PSM search engine used for peptide spectrum matching before per-
colator. This is important to specify, since the scanNr information is written in a different
format by some engines. It might be necessary to adjust the settings for different versions
of percolator or the PSM search engines used.

Possible values are ‘comet’, ‘xtandem’, ‘msgf’.

Returns [sii, sii, sii, ...]

maspy.reader.smiFromXmlSpectrum(xmlelement, specfile)

maspy.writer module

Provides the possibility to write a new mzML file from an MsrunContainer instance, which is the maspy representation
of a specfile.

maspy.writer.writeMzml(specfile, msrunContainer, outputdir, spectrumIds=None, chro-
matogramIds=None, writeIndex=True)

#TODO: docstring

Parameters

• specfile – #TODO docstring

• msrunContainer – #TODO docstring

• outputdir – #TODO docstring

• spectrumIds – #TODO docstring

• chromatogramIds – #TODO docstring

2.13. maspy.writer module 55

maspy Documentation, Release

maspy.writer.xmlChromatogramFromCi(index, ci, compression=’zlib’)
#TODO: docstring :param index: #TODO: docstring :param ci: #TODO: docstring :param compression:
#TODO: docstring

Returns #TODO: docstring

maspy.writer.xmlGenBinaryDataArrayList(binaryDataInfo, binaryDataDict, compres-
sion=’zlib’, arrayTypes=None)

#TODO: docstring

Params binaryDataInfo #TODO: docstring

Params binaryDataDict #TODO: docstring

Params compression #TODO: docstring

Params arrayTypes #TODO: docstring

Returns #TODO: docstring

maspy.writer.xmlGenPrecursorList(precursorList)
#TODO: docstring

Params precursorList #TODO: docstring

Returns #TODO: docstring

maspy.writer.xmlGenProductList(productList)
#TODO: docstring

Params productList #TODO: docstring

Returns #TODO: docstring

maspy.writer.xmlGenScanList(scanList, scanListParams)
#TODO: docstring

Params scanList #TODO: docstring

Params scanListParams #TODO: docstring

Returns #TODO: docstring

maspy.writer.xmlSpectrumFromSmi(index, smi, sai=None, compression=’zlib’)
#TODO: docstring

Parameters

• index – The zero-based, consecutive index of the spectrum in the SpectrumList. (mzML
specification)

• smi – a SpectrumMetadataItem instance

• sai – a SpectrumArrayItem instance, if none is specified no binaryDataArrayList is written

• compression – #TODO: docstring

Returns #TODO: docstring

maspy.sil module

The class LabelDescriptor allows the specification of a labeling strategy with stable isotopic labels. It can then be used
to determine the labeling state of a given peptide and calculate the expected mass of alternative labeling states.

56 Chapter 2. maspy package

maspy Documentation, Release

class maspy.sil.LabelDescriptor
Bases: object

Describes a MS1 stable isotope label setup for quantification.

Variables

• labels – Contains a dictionary with all possible label states, keys are increasing integers
starting from 0, which correspond to the different label states.

• excludingModifictions – bool, True if any label has specified excludingModifica-
tions

addLabel(aminoAcidLabels, excludingModifications=None)
Adds a new labelstate.

Parameters

• aminoAcidsLabels – Describes which amino acids can bear which labels. Possible
keys are the amino acids in one letter code and ‘nTerm’, ‘cTerm’. Possible values are the
modifications ids from maspy.constants.aaModMass as strings or a list of strings.
An example for one expected label at the n-terminus and two expected

labels at each Lysine: {'nTerm': 'u:188', 'K': ['u:188',
'u:188']}

• excludingModifications – optional, A Dectionary that describes which modifica-
tions can prevent the addition of labels. Keys and values have to be the modifications ids
from maspy.constants.aaModMass. The key specifies the modification that pre-
vents the label modification specified by the value. For example for each modification
‘u:1’ that is present at an amino acid or terminus of a peptide the number of expected
labels at this position is reduced by one: {'u:1':'u:188'}

maspy.sil.expectedLabelPosition(peptide, labelStateInfo, sequence=None, modPositions=None)
Returns a modification description of a certain label state of a peptide.

Parameters

• peptide – Peptide sequence used to calculat the expected label state modifications

• labelStateInfo – An entry of LabelDescriptor.labels that describes a label
state

• sequence – unmodified amino acid sequence of :var:‘peptide‘, if None it is generated by
maspy.peptidemethods.removeModifications()

• modPositions – dictionary describing the modification state of “peptide”, if None it is
generated by maspy.peptidemethods.returnModPositions()

Returns

{sequence position: sorted list of expected label modifications on that position, ...

}

maspy.sil.modAminoacidsFromLabelInfo(labelDescriptor)
Returns a set of all amino acids and termini which can bear a label, as described in “labelDescriptor”.

Parameters labelDescriptor – LabelDescriptor describes the label setup of an experi-
ment

Returns #TODO: docstring

maspy.sil.modSymbolsFromLabelInfo(labelDescriptor)
Returns a set of all modiciation symbols which were used in the labelDescriptor

2.14. maspy.sil module 57

maspy Documentation, Release

Parameters labelDescriptor – LabelDescriptor describes the label setup of an experi-
ment

Returns #TODO: docstring

maspy.sil.returnLabelState(peptide, labelDescriptor, labelSymbols=None, la-
belAminoacids=None)

Calculates the label state of a given peptide for the label setup described in labelDescriptor

Parameters

• peptide – peptide which label state should be calcualted

• labelDescriptor – LabelDescriptor, describes the label setup of an experiment.

• labelSymbols – modifications that show a label, as returned by
modSymbolsFromLabelInfo().

• labelAminoacids – amino acids that can bear a label, as returned by
modAminoacidsFromLabelInfo().

Returns

integer that shows the label state: >=0: predicted label state of the peptide

-1: peptide sequence can’t bear any labelState modifications -2: peptide modifications
don’t fit to any predicted labelState -3: peptide modifications fit to a predicted label-
State, but not all

predicted labelStates are distinguishable

maspy.sil.returnLabelStateMassDifferences(peptide, labelDescriptor, labelState=None, se-
quence=None)

Calculates the mass difference for alternative possible label states of a given peptide. See also
LabelDescriptor, returnLabelState()

Parameters

• peptide – Peptide to calculate alternative label states

• labelDescriptor – LabelDescriptor describes the label setup of an experiment

• labelState – label state of the peptide, if None it is calculated by
returnLabelState()

• sequence – unmodified amino acid sequence of the “peptide”, if None it is generated by
maspy.peptidemethods.removeModifications()

Returns {alternativeLabelSate: massDifference, ...} or {} if the peptide label state is -1.

Note: The massDifference plus the peptide mass is the expected mass of an alternatively labeled peptide

maspy.xml module

#TODO: module description

class maspy.xml.MzmlReader(mzmlPath)
Bases: object

#TODO: docstring

Variables

58 Chapter 2. maspy package

maspy Documentation, Release

• mzmlPath – #TODO: docstring

• metadataNode – #TODO: docstring

• chromatogramList – #TODO: docstring

loadMetadata()
#TODO: docstring

next()
#TODO: docstring

Returns #TODO: docstring

parseSpectra()
#TODO: docstring

Returns #TODO: docstring

maspy.xml.binaryDataArrayTypes = {‘MS:1000595’: ‘rt’, ‘MS:1000786’: ‘non-standard’, ‘MS:1000821’: ‘pressure’, ‘MS:1000516’: ‘z’, ‘MS:1000820’: ‘flow’, ‘MS:1000514’: ‘mz’, ‘MS:1000517’: ‘sn’, ‘MS:1000617’: ‘lambda’, ‘MS:1000515’: ‘i’, ‘MS:1000822’: ‘temperature’}
#TODO: docstring

maspy.xml.clearParsedElements(element)
Deletes an element and all linked parent elements.

This function is used to save memory while iteratively parsing an xml file by removing already processed
elements.

Parameters element – #TODO docstring

maspy.xml.clearTag(tag)
#TODO: docstring eg “{http://psi.hupo.org/ms/mzml}mzML” returns “mzML”

Parameters tag – #TODO docstring

Returns

maspy.xml.cvParamFromDict(attributes)
Python representation of a mzML cvParam = tuple(accession, value, unitAccession).

Parameters attributes – #TODO: docstring

Returns #TODO: docstring

maspy.xml.decodeBinaryData(binaryData, arrayLength, bitEncoding, compression)
Function to decode a mzML byte array into a numpy array. This is the inverse function of
encodeBinaryData(). Concept inherited from pymzml.spec.Spectrum._decode() of the python
library pymzML.

Parameters

• binaryData – #TODO: docstring

• arrayLength – #TODO: docstring

• binEncoding – #TODO: docstring

• compression – #TODO: docstring

Returns #TODO: docstring

maspy.xml.encodeBinaryData(dataArray, bitEncoding, compression)
Function to encode a numpy.array into a mzML byte array. This is the inverse function of
decodeBinaryData().

Parameters

2.15. maspy.xml module 59

http://psi.hupo.org/ms/mzml
https://pymzml.github.io/

maspy Documentation, Release

• dataArray – #TODO: docstring

• bitEncoding – #TODO: docstring

• compression – #TODO: docstring

Returns #TODO: docstring

maspy.xml.extractBinaries(binaryDataArrayList, arrayLength)
#TODO: docstring

Parameters

• binaryDataArrayList – #TODO: docstring

• arrayLength – #TODO: docstring

Returns #TODO: docstring

maspy.xml.extractParams(xmlelement)
#TODO docstring

Parameters xmlelement – #TODO docstring

Returns #TODO docstring

maspy.xml.findBinaryDataType(params)
#TODO: docstring from: http://www.peptideatlas.org/tmp/mzML1.1.0.html#binaryDataArray a binaryDataAr-
ray “MUST supply a child term of MS:1000518 (binary data type) only once”

Parameters params – #TODO: docstring

Returns #TODO: docstring

maspy.xml.findParam(params, targetValue)
Returns a param entry (cvParam or userParam) in a list of params if its ‘accession’ (cvParam) or ‘name’ (user-
Param) matches the targetValue. return: cvParam, userParam or None if no matching param was found

Parameters

• params – #TODO: docstring

• targetValue – #TODO: docstring

Returns #TODO: docstring

maspy.xml.getParam(xmlelement)
Converts an mzML xml element to a param tuple.

Parameters xmlelement – #TODO docstring

Returns a param tuple or False if the xmlelement is not a parameter (‘userParam’, ‘cvParam’ or
‘referenceableParamGroupRef’)

maspy.xml.interpretBitEncoding(bitEncoding)
Returns a floattype string and a numpy array type.

Parameters bitEncoding – Must be either ‘64’ or ‘32’

Returns (floattype, numpyType)

maspy.xml.recClearTag(element)
Applies maspy.xml.clearTag() to the tag attribute of the “element” and recursively to all child elements.

Parameters element – an :instance:‘xml.etree.Element‘

maspy.xml.recCopyElement(oldelement)
Generates a copy of an xml element and recursively of all child elements.

60 Chapter 2. maspy package

http://www.peptideatlas.org/tmp/mzML1.1.0.html#binaryDataArray

maspy Documentation, Release

Parameters oldelement – an instance of lxml.etree._Element

Returns a copy of the “oldelement”

Warning: doesn’t copy .text or .tail of xml elements

maspy.xml.recRemoveTreeFormating(element)
Removes whitespace characters, which are leftovers from previous xml formatting.

Parameters element – an instance of lxml.etree._Element

str.strip() is applied to the “text” and the “tail” attribute of the element and recursively to all child elements.

maspy.xml.refParamGroupFromDict(attributes)
Python representation of a mzML referencableParamGroup = (‘ref’, ref)

Parameters attributes – #TODO: docstring

Returns #TODO: docstring

Note: altough the mzML element referencableParamGroups is imported, its utilization is currently not imple-
mented in MasPy.

maspy.xml.sublistReader(xmlelement)
#TODO: docstring

maspy.xml.userParamFromDict(attributes)
Python representation of a mzML userParam = tuple(name, value, unitAccession, type)

Parameters attributes – #TODO: docstring

Returns #TODO: docstring

maspy.xml.xmlAddParams(parentelement, params)
Generates new mzML parameter xml elements and adds them to the ‘parentelement’ as xml children elements.

Parameters

• parentelement – xml.etree.Element, an mzML element

• params – a list of mzML parameter tuples (‘cvParam’, ‘userParam’ or ‘referencableParam-
Group’)

Module contents

2.16. Module contents 61

maspy Documentation, Release

62 Chapter 2. maspy package

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

63

maspy Documentation, Release

64 Chapter 3. Indices and tables

Python Module Index

m
maspy, 61
maspy.auxiliary, 19
maspy.constants, 24
maspy.core, 25
maspy.errors, 39
maspy.featuremethods, 39
maspy.inference, 40
maspy.mit_stats, 45
maspy.peptidemethods, 46
maspy.proteindb, 48
maspy.reader, 51
maspy.sil, 56
maspy.writer, 55
maspy.xml, 58

65

maspy Documentation, Release

66 Python Module Index

Index

A
aaComp (in module maspy.constants), 24
aaMass (in module maspy.constants), 24
aaModComp (in module maspy.constants), 24
aaModMass (in module maspy.constants), 24
activation (maspy.core.MzmlPrecursor attribute), 32
addLabel() (maspy.sil.LabelDescriptor method), 57
addLeadingProteins() (maspy.inference.ProteinGroup

method), 44
addLeadingToGroups() (maspy.inference.ProteinInference

method), 45
addMsrunContainers() (in module maspy.core), 38
addProteinGroup() (maspy.inference.ProteinInference

method), 45
addSiInfo() (maspy.core.SiiContainer method), 35
addSiiToContainer() (in module maspy.reader), 52
addSpecfile() (maspy.core.FiContainer method), 27
addSpecfile() (maspy.core.MsrunContainer method), 29
addSpecfile() (maspy.core.SiiContainer method), 35
addSubsetProteins() (maspy.inference.ProteinGroup

method), 44
addSubsetToGroups() (maspy.inference.ProteinInference

method), 45
addSubsumableProteins()

(maspy.inference.ProteinGroup method),
44

addSubsumableToGroups()
(maspy.inference.ProteinInference method), 45

applyArrayFilters() (in module maspy.auxiliary), 20
applySiiQcValidation() (in module maspy.reader), 52
applySiiRanking() (in module maspy.reader), 52
arrayInfo (maspy.core.Ci attribute), 25
arrayInfo (maspy.core.Sai attribute), 33
arrays (maspy.core.Ci attribute), 25
arrays (maspy.core.Sai attribute), 33
attrib (maspy.core.Ci attribute), 26
attributes (maspy.core.Smi attribute), 38
averagingData() (in module maspy.auxiliary), 21

B
binaryDataArrayTypes (in module maspy.xml), 59

C
calcDeviationLimits() (in module maspy.auxiliary), 21
calcMassFromMz() (in module maspy.peptidemethods),

46
calcMhFromMz() (in module maspy.peptidemethods), 46
calcMz() (maspy.core.SiiContainer method), 35
calcMzFromMass() (in module maspy.peptidemethods),

46
calcMzFromMh() (in module maspy.peptidemethods), 47
calcPeptideMass() (in module maspy.peptidemethods), 47
calculateCoverage() (maspy.proteindb.ProteinDatabase

method), 49
Ci (class in maspy.core), 25
ciFromXml() (in module maspy.reader), 52
clearParsedElements() (in module maspy.xml), 59
clearTag() (in module maspy.xml), 59
COMPOSITION (in module maspy.constants), 24
convertMzml() (in module maspy.reader), 52
corrArray() (maspy.auxiliary.DataFit method), 19
cvParamFromDict() (in module maspy.xml), 59

D
DataFit (class in maspy.auxiliary), 19
dataProcessingRef (maspy.core.Ci attribute), 26
decodeBinaryData() (in module maspy.xml), 59
default() (maspy.auxiliary.MaspyJsonEncoder method),

20
defaultFetchSiAttrFromSmi() (in module maspy.reader),

52
digestInSilico() (in module maspy.peptidemethods), 47

E
encodeBinaryData() (in module maspy.xml), 59
expasy_rules (in module maspy.constants), 24
expectedLabelPosition() (in module maspy.sil), 57
extractBinaries() (in module maspy.xml), 60

67

maspy Documentation, Release

extractParams() (in module maspy.xml), 60

F
factorial (in module maspy.auxiliary), 21
fastaParseSgd() (in module maspy.proteindb), 51
fetchParentIon() (in module maspy.reader), 52
fetchScanInfo() (in module maspy.reader), 52
fetchSpectrumInfo() (in module maspy.reader), 52
Fi (class in maspy.core), 26
FiContainer (class in maspy.core), 27
FileFormatError, 39
findAllSubstrings() (in module maspy.auxiliary), 21
findBinaryDataType() (in module maspy.xml), 60
findParam() (in module maspy.xml), 60

G
generateSplines() (maspy.auxiliary.DataFit method), 19
getArrays() (maspy.core.FiContainer method), 27
getArrays() (maspy.core.MsrunContainer method), 30
getArrays() (maspy.core.SiiContainer method), 36
getGroups() (maspy.inference.ProteinInference method),

45
getItem() (maspy.core.FiContainer method), 27
getItem() (maspy.core.MsrunContainer method), 30
getItems() (maspy.core.FiContainer method), 28
getItems() (maspy.core.MsrunContainer method), 30
getItems() (maspy.core.SiiContainer method), 36
getParam() (in module maspy.xml), 60
getValidItem() (maspy.core.SiiContainer method), 36

I
id (maspy.core.Ci attribute), 26
id (maspy.core.Sai attribute), 33
id (maspy.core.Smi attribute), 38
importMsgfMzidResults() (in module maspy.reader), 53
importMzml() (in module maspy.reader), 53
importPeptideFeatures() (in module maspy.reader), 53
importPercolatorResults() (in module maspy.reader), 53
importProteinDatabase() (in module maspy.proteindb), 51
interpretBitEncoding() (in module maspy.xml), 60
isolationWindow (maspy.core.MzmlPrecursor attribute),

32
isolationWindow (maspy.core.MzmlProduct attribute), 32
isUnique (maspy.proteindb.PeptideSequence attribute),

48

J
joinpath() (in module maspy.auxiliary), 21
jsonHook() (maspy.core.Ci static method), 26
jsonHook() (maspy.core.Fi static method), 26
jsonHook() (maspy.core.Sai static method), 33
jsonHook() (maspy.core.Si static method), 34
jsonHook() (maspy.core.Sii static method), 34

jsonHook() (maspy.core.Smi static method), 38
jsonHook() (maspy.proteindb.PeptideSequence static

method), 49
jsonHook() (maspy.proteindb.ProteinSequence static

method), 50

L
LabelDescriptor (class in maspy.sil), 56
length() (maspy.proteindb.PeptideSequence method), 49
length() (maspy.proteindb.ProteinSequence method), 51
listFiletypes() (in module maspy.auxiliary), 21
load() (maspy.core.FiContainer method), 28
load() (maspy.core.MsrunContainer method), 30
load() (maspy.core.SiiContainer method), 37
load() (maspy.proteindb.ProteinDatabase class method),

49
loadBinaryItemContainer() (in module maspy.auxiliary),

21
loadMetadata() (maspy.xml.MzmlReader method), 59
log10factorial (in module maspy.auxiliary), 22

M
mappingBasedGrouping() (in module maspy.inference),

45
maspy (module), 61
maspy.auxiliary (module), 19
maspy.constants (module), 24
maspy.core (module), 25
maspy.errors (module), 39
maspy.featuremethods (module), 39
maspy.inference (module), 40
maspy.mit_stats (module), 45
maspy.peptidemethods (module), 46
maspy.proteindb (module), 48
maspy.reader (module), 51
maspy.sil (module), 56
maspy.writer (module), 55
maspy.xml (module), 58
MaspyJsonEncoder (class in maspy.auxiliary), 20
mass() (maspy.proteindb.PeptideSequence method), 49
mass() (maspy.proteindb.ProteinSequence method), 51
matchingFilePaths() (in module maspy.auxiliary), 22
matchToFeatures() (in module maspy.featuremethods), 39
Memoize (class in maspy.auxiliary), 20
missedCleavage (maspy.proteindb.PeptideSequence at-

tribute), 49
modAminoacidsFromLabelInfo() (in module maspy.sil),

57
modSymbolsFromLabelInfo() (in module maspy.sil), 57
MsrunContainer (class in maspy.core), 29
MzmlPrecursor (class in maspy.core), 32
MzmlProduct (class in maspy.core), 32
MzmlReader (class in maspy.xml), 58
MzmlScan (class in maspy.core), 32

68 Index

maspy Documentation, Release

N
next() (maspy.xml.MzmlReader method), 59

O
open() (maspy.auxiliary.PartiallySafeReplace method),

20
openSafeReplace() (in module maspy.auxiliary), 22

P
params (maspy.core.Ci attribute), 26
params (maspy.core.MzmlScan attribute), 33
params (maspy.core.Smi attribute), 38
parseSpectra() (maspy.xml.MzmlReader method), 59
PartiallySafeReplace (class in maspy.auxiliary), 20
PeptideSequence (class in maspy.proteindb), 48
precursor (maspy.core.Ci attribute), 26
precursorList (maspy.core.Smi attribute), 38
prepareSiiImport() (in module maspy.reader), 54
processInput() (maspy.auxiliary.DataFit method), 20
product (maspy.core.Ci attribute), 26
productList (maspy.core.Smi attribute), 38
Protein (class in maspy.inference), 43
ProteinDatabase (class in maspy.proteindb), 49
ProteinGroup (class in maspy.inference), 43
ProteinInference (class in maspy.inference), 44
proteinPositions (maspy.proteindb.PeptideSequence at-

tribute), 49
proteins (maspy.proteindb.PeptideSequence attribute), 49
ProteinSequence (class in maspy.proteindb), 50

R
readMsgfMzidResults() (in module maspy.reader), 55
readPercolatorResults() (in module maspy.reader), 55
recClearTag() (in module maspy.xml), 60
recCopyElement() (in module maspy.xml), 60
recRemoveTreeFormating() (in module maspy.xml), 61
refParamGroupFromDict() (in module maspy.xml), 61
removeAnnotation() (maspy.core.FiContainer method),

28
removeData() (maspy.core.MsrunContainer method), 31
removeModifications() (in module

maspy.peptidemethods), 48
removeSpecfile() (maspy.core.FiContainer method), 28
removeSpecfile() (maspy.core.MsrunContainer method),

31
removeSpecfile() (maspy.core.SiiContainer method), 37
returnArrayFilters() (in module maspy.auxiliary), 22
returnLabelState() (in module maspy.sil), 58
returnLabelStateMassDifferences() (in module

maspy.sil), 58
returnModPositions() (in module

maspy.peptidemethods), 48
returnSplineList() (in module maspy.auxiliary), 22

rtCalibration() (in module maspy.featuremethods), 40
runningMean() (in module maspy.mit_stats), 45
runningMedian() (in module maspy.mit_stats), 46

S
Sai (class in maspy.core), 33
save() (maspy.core.FiContainer method), 28
save() (maspy.core.MsrunContainer method), 31
save() (maspy.core.SiiContainer method), 37
save() (maspy.proteindb.ProteinDatabase method), 50
scanList (maspy.core.Smi attribute), 38
scanListParams (maspy.core.Smi attribute), 38
scanWindowList (maspy.core.MzmlScan attribute), 33
searchFileLocation() (in module maspy.auxiliary), 23
selectedIonList (maspy.core.MzmlPrecursor attribute), 32
sequence (maspy.proteindb.PeptideSequence attribute),

49
setPath() (maspy.core.FiContainer method), 28
setPath() (maspy.core.MsrunContainer method), 31
setPath() (maspy.core.SiiContainer method), 37
Si (class in maspy.core), 34
Sii (class in maspy.core), 34
SiiContainer (class in maspy.core), 34
Smi (class in maspy.core), 37
smiFromXmlSpectrum() (in module maspy.reader), 55
specfile (maspy.core.Ci attribute), 26
specfile (maspy.core.Sai attribute), 34
specfile (maspy.core.Smi attribute), 38
spectrumRef (maspy.core.MzmlPrecursor attribute), 32
sublistReader() (in module maspy.xml), 61

T
tolerantArrayMatching() (in module maspy.auxiliary), 23
toList() (in module maspy.auxiliary), 23

U
userParamFromDict() (in module maspy.xml), 61

W
writeBinaryItemContainer() (in module maspy.auxiliary),

23
writeJsonZipfile() (in module maspy.auxiliary), 24
writeMzml() (in module maspy.writer), 55

X
xmlAddParams() (in module maspy.xml), 61
xmlChromatogramFromCi() (in module maspy.writer),

55
xmlGenBinaryDataArrayList() (in module maspy.writer),

56
xmlGenPrecursorList() (in module maspy.writer), 56
xmlGenProductList() (in module maspy.writer), 56
xmlGenScanList() (in module maspy.writer), 56
xmlSpectrumFromSmi() (in module maspy.writer), 56

Index 69

	Introduction to basic concepts of MasPy
	MS spectra in MasPy
	The mzML file format
	MsrunContainer
	Run metadata (Rm)
	Spectrum array item (Sai), spectrum metadata item (Smi)
	Chromatogram item (Ci)
	Spectrum item (Si)
	MsrunContainer.info
	MasPy file formats
	Basic code examples
	Importing an mzML file
	Saving an MsrunContainer to the hard disk
	Loading an MsrunContainer from the hard disk
	Deleting data from an MsrunContainer
	Exporting specfiles from MsrunContainer to mzML files
	Accessing data from an MsrunContainer

	Spectrum identifications in MasPy
	The mzIdentML file format
	Representation of spectrum identifications in MasPy
	The spectrum identification item container (SiiContainer)
	Basic code examples
	Depricated - work in progress

	Peptide LC-MS features in MasPy
	Representation of LC-MS features in MasPy
	Supported feature detection algorithms
	Basic code examples

	Fasta files in MasPy
	The FASTA file format
	Protein database in MasPy
	Basic code examples
	Depricated

	maspy package
	Submodules
	maspy.auxiliary module
	maspy.constants module
	maspy.core module
	maspy.errors module
	maspy.featuremethods module
	maspy.inference module
	Relevant terms from the PSI-MS ontology
	Additional terms used in maspy

	maspy.isobar module
	maspy.mit_stats module
	maspy.peptidemethods module
	maspy.proteindb module
	maspy.reader module
	maspy.writer module
	maspy.sil module
	maspy.xml module
	Module contents

	Indices and tables
	Python Module Index

