

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changes log

0.0.4

	Docs.yaml file update for metrics api

	Some adjustments in toolbox and template makefiles #104

	Removing some commands by install mode (dev and prod) #104

	Moving autocomplete and notebook extension from toolbox setup to engine template setup. Close #107

	Separating tests dependencies and creating a new make command. close #100

	Metrics as json and Keras serializser to Closes #86 and Closes #98

	Saving and loading metrics artifacts as json files to Fix #98

	Adding a symlink to the data path on engine generate. close #93

	Marvin is now installable with pip. fix #84

	ASCII encode error fix for accented words in predict message

	Add Jupyter Lab command. Fix #85

	Cli parameter conflit fix

	New param to force reload #80

	Improving test coverage

	New python binary parameter to be used in the creation of virtual env

	Fix tornado 4.5.3 and pip 9.0.1

0.0.3

- Python 3 support general compatibility refactoring (#68)
- Add marvin_ prefix in artefacts getters and setters to avoid user code conflicts
- Fixing #66 bug related to override the params default values
- Refact artifacts setter and getter in engine templates
- Making marvin.ini from toolbox be found by default
- Making "params" as an execute method parameter to be possible to overriden default values in runtime
- Enabling to inform extra parameters for executor's jvm customization. Fix #65
- Improve spark conf parameter usage in cli's commands to use SPARK_CONF_DIR and SPARK_HOME envs.
- Not use json dumps if response type is string. Fixed #67
- Adding gitter tag to README file.
- Remove deploy to pipy from build
- Install twine in distribution task
- Add --process-dependency-links in pip install command
- General bug fixes

0.0.2

- change executor vm parameter from modelProtocol to protocol
- Generic Dockerfile template and make commands to be used to build, run and push containers
- fix spark conf dir parameter bug
- create distribute task to simplify the pypi package distribution.

0.0.1

	initial version

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at marvin-ai@googlegroups.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Contributing

When contributing to this repository, please discuss the change you wish to make via issue or
Gitter with the members/administrators of this repository before.

Get started

Clone the repository, install [https://github.com/marvin-ai/marvin-python-toolbox/blob/master/README.md] and run “marvin test” to confirm the installation.

Choose the issues that are labeled as “Good First Issue”.

Unit test

The unit test is very important and of course it’s required for this project, you can use “marvin test” command to run your tests.

New issue and pull request

The community discusses and tracks known bugs and potential features in the Github Issue Tracker [https://github.com/marvin-ai/marvin-python-toolbox/issues]. If you have a new idea or have identified a bug then you should raise it there to start public discussion

This repository contains Issue Templates and Pull Request Templates, just follow the instructions described in templates.

Where to ask for help

	Github Issue Tracker [https://github.com/marvin-ai/marvin-python-toolbox/issues]: for discussions about new features or established bugs

	Gitter chat [https://gitter.im/marvin-ai]: for real-time discussion

Separate Code Repositories

Marvin-AI [https://github.com/marvin-ai] maintains all your code and documentation in multiple repositories on the Github. This includes the primary repository and several others repositories for different components.

Code of Conduct

Our Code of Conduct is available at Here [https://github.com/marvin-ai/marvin-python-toolbox/blob/master/CODE_OF_CONDUCT.md]

 Fixes # .

Changes proposed in this pull request:

	

	

	

	

How to test new changes:

	

	

	

	

@marvin-ai/marvin-core-team

 [image: Build Status] [https://travis-ci.org/marvin-ai/marvin-python-toolbox] [image: codecov] [https://codecov.io/gh/marvin-ai/marvin-python-toolbox]

[image: Join the chat at https://gitter.im/gitterHQ/gitter] [https://gitter.im/marvin-ai]

Marvin Toolbox v0.0.4

[image:]

Migration to Apache

This project was incubated at Apache Software Foundation! Please, use the following repo to reference, use and contribute!

Apache Marvin AI [https://github.com/apache/incubator-marvin]

Quick Start

Review

Marvin is an open-source Artificial Intelligence platform that focuses on helping data scientists deliver meaningful solutions to complex problems. Supported by a standardized large-scale, language-agnostic architecture, Marvin simplifies the process of exploration and modeling.

Getting Started

	Installing Marvin (Ubuntu) [https://www.marvin-ai.org/book/overview-1/ubuntu]

	Installing Marvin (MacOS) [https://www.marvin-ai.org/book/overview-1/mac]

	Installing Marvin (Other OS) Vagrant [https://www.marvin-ai.org/book/overview-1/vagrant]

	Creating a new engine

	Working in an existing engine

	Command line interface

	Running an example engine

Creating a new engine

	To create a new engine

workon python-toolbox-env
marvin engine-generate

Respond to the prompt and wait for the engine environment preparation to complete. Don’t forget to start dev box before if you are using vagrant.

	Test the new engine

workon <new_engine_name>-env
marvin test

	For more information

marvin --help

Working in an existing engine

	Set VirtualEnv and get to the engine’s path

workon <engine_name>-env

	Test your engine

marvin test

	Bring up the notebook and access it from your browser

marvin notebook

Command line interface

Usage: marvin [OPTIONS] COMMAND [ARGS]

Options:

 --debug #Enable debug mode.
 --version #Show the version and exit.
 --help #Show this command line interface and exit.

Commands:

 engine-generate #Generate a new marvin engine project.
 engine-generateenv #Generate a new marvin engine environment.
 engine-grpcserver #Marvin gRPC engine action server starts.
 engine-httpserver #Marvin http api server starts.
 hive-dataimport #Import data samples from a hive databse to the hive running in this toolbox.
 hive-generateconf #Generate default configuration file.
 hive-resetremote #Drop all remote tables from informed engine on host.
 notebook #Start the Jupyter notebook server.
 pkg-bumpversion #Bump the package version.
 pkg-createtag #Create git tag using the package version.
 pkg-showchanges #Show the package changelog.
 pkg-showinfo #Show information about the package.
 pkg-showversion #Show the package version.
 pkg-updatedeps #Update requirements.txt.
 test #Run tests.
 test-checkpep8 #Check python code style.
 test-tdd #Watch for changes to run tests automatically.
 test-tox #Run tests using a new virtualenv.

Running a example engine

	Clone the example engine from the repository

git clone https://github.com/marvin-ai/engines.git

	Generate a new Marvin engine environment for the Iris species engine

workon python-toolbox-env
marvin engine-generateenv ../engines/iris-species-engine/

	Run the Iris species engine

workon iris-species-engine-env
marvin engine-dryrun

Marvin is a project started at B2W Digital offices and released open source on September 2017.

name: Bug report
about: Create a report to help us improve

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:

	Go to ‘…’

	Click on ‘….’

	Scroll down to ‘….’

	See error

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

Desktop (please complete the following information):

	OS: [e.g. iOS]

	Browser [e.g. chrome, safari]

	Version [e.g. 22]

	Log [Warning, Error]

Additional context
Add any other context about the problem here.

name: Custom issue template
about: Describe this issue template’s purpose here.

name: Feature request
about: Suggest an idea for this project

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.

Changes log

0.0.1

	initial version

{{project.name}} v0.0.1

Overview

{{project.description}}

Requirements

REPLACE: Add here the list of requirements. For example:

	Python 2.7

	Numpy 1.11.0 or higher

Installation

Use the Marvin toolbox to provision, deploy and start the remote HTTP server.

First, edit the marvin.ini file, setting the options within the
ssh_deployment section:

	host: the host IP address or name where the engine should be deployed. You
can enable multi-host deployment using , to separate hosts

	port: the SSH connection port

	user: the SSH connection username. Currently, only a single user is
supported. This user should be capable of passwordless sudo, although it can
use password for the SSH connection

Next, ensure that the remotes servers are provisioned (all required software
are installed):

marvin engine-deploy --provision

Next, package your engine:

marvin engine-deploy --package

This will create a compressed archive containing your engine code under the
.packages directory.

Next, deploy your engine to remotes servers:

marvin engine-deploy

By default, a dependency clean will be executed at each deploy. You can skip it
using:

marvin engine-deploy --skip-clean

Next, you can start the HTTP server in the remotes servers:

marvin engine-httpserver-remote start

You can check if the HTTP server is running:

marvin engine-httpserver-remote status

And stop it:

marvin engine-httpserver-remote stop

After starting, you can test it by making a HTTP request to any endpoint, like:

curl -v http://example.com/predictor/health

Under the hood, this engine uses Fabric to define provisioning and deployment
process. Check the fabfile.py for more information. You can add new tasks or
edit existing ones to match your provisioning and deployment pipeline.

Development

Getting started

First, create a new virtualenv

mkvirtualenv {{project.package}}_env

Now install the development dependencies

make marvin

You are now ready to code.

Adding new dependencies

It`s very important. All development dependencies should be added to setup.py.

Running tests

This project uses py.test [http://pytest.org/] as test runner and Tox [https://tox.readthedocs.io] to manage virtualenvs.

To run all tests use the following command

marvin test

To run specific test

marvin test tests/test_file.py::TestClass::test_method

Writting documentation

The project documentation is written using Jupyter [http://jupyter.readthedocs.io/] notebooks.
You can start the notebook server from the command line by running the following command

marvin notebook

Use notebooks to demonstrate how to use the lib features. It can also be useful to show some use cases.

Bumping version

marvin pkg-bumpversion [patch|minor|major]
git add . && git commit -m "Bump version"

Tagging version

marvin pkg-createtag
git push origin master --follow-tags

Logging

The default log level is set to WARNING. You can change the log level at runtime setting another value to one of the following environment variable: {{project.package|upper}}_LOG_LEVEL or LOG_LEVEL. The available values are CRITICAL, ERROR, WARNING, INFO and DEBUG.

Be careful using LOG_LEVEL, it may affect another lib.

 _images/marvin.png
{2 MARVIN

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

