
marrydoc Documentation
Release 0.1.0

Daniel Mark Gass

May 24, 2018





Contents

1 Quick Start 3
1.1 @inherit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 @copied_from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 @based_on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

i



ii



marrydoc Documentation, Release 0.1.0

The marrydoc Python module makes maintaining consistency of related Python docstrings easy. marrydoc pro-
vides decorators to “wed” a docstring to another and provides a command line tool to automatically update a module’s
docstrings when their basis docstrings have changed.

The decorators offered annotate class, function, and method docstrings to identify if their docstring is to be inherited
from, maintained as a copy of, or maintained as a modified copy of a docstring of another program construct.

Contents 1



marrydoc Documentation, Release 0.1.0

2 Contents



CHAPTER 1

Quick Start

1.1 @inherit

Use the inherit() decorator to dynamically copy a docstring from one program construct to another when a module
is imported. For example:

import marrydoc
from foo import bar

@marrydoc.inherit(bar)
def my_bar():

pass

assert bar.__doc__ == my_bar.__doc__

1.2 @copied_from

Use the copied_from() decorator in combination with the command line tool to evaluate if one program construct
docstring is up to date with another and automatically update the script if they are unequal. For example:

import marrydoc
from foo import bar

@marrydoc.copied_from(bar)
def my_bar():

"""Perform foo bar."""
pass

Then use the command line tool to evaluate if the source docstring has changed and automatically update if so:

$ python -m marrydoc --merge my_foo.py
my_foo.py ... OK

3



marrydoc Documentation, Release 0.1.0

1.3 @based_on

Use the based_on() decorator instead of copied_from() when the docstring is a copy but has been modi-
fied. Pass an unmodified copy of the source docstring as the second argument to based_on() (to facilitate source
docstring change detection and provide a basis of a three way merge). For example:

import marrydoc
from foo import bar

@marrydoc.based_on(
bar,
"""Perform foo bar.""")

def my_bar():
"""Perform my special foo bar."""
pass

Then use the command line tool to evaluate if the source docstring has changed and automatically perform a three way
merge if so:

$ python -m marrydoc --merge my_foo.py
my_foo.py ... UPDATED

1.3.1 [baseline] About

Contributors

• Dan Gass (dan.gass@gmail.com)

– Primary author

Development

Repository https://gitlab.com/dangass/marrydoc

License

MIT License

Copyright (c) 2018 Daniel Mark Gass (dan.gass@gmail.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

(continues on next page)

4 Chapter 1. Quick Start

mailto:dan.gass@gmail.com
https://gitlab.com/dangass/marrydoc


marrydoc Documentation, Release 0.1.0

(continued from previous page)

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

1.3.2 [MarryDoc] API Reference

• Decorators

• Command Line Tool

Decorators

Command Line Tool

$ python -m marrydoc --help
usage: marrydoc [-h] [-m] [-v] [-w] path [path ...]

Ensure related docstrings are consistent.

positional arguments:
path module or directory path

optional arguments:
-h, --help show this help message and exit
-m, --merge update module docstrings
-w, --walk recursively walk directories

Note: After installation, a marrydoc “shim” executable exists in the Scripts subdirectory of your Python instal-
lation. If your operating system has been configured to include the Scripts subdirectory in the path, the tool may
be invoked directly:

$ marrydoc --help

1.3.3 [MarryDoc] Installation

Prerequisites

• Python

– version 2.7

– version 3.4 or higher

• Requirements for Installing Packages (located in the Installing Packages tutorial within the Python Packaging
User Guide).

1.3. @based_on 5

https://www.python.org/
https://packaging.python.org/tutorials/installing-packages/#requirements-for-installing-packages
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/
https://packaging.python.org/


marrydoc Documentation, Release 0.1.0

Install Steps

At a shell prompt, use pip to automatically download and install marrydoc:

python -m pip install --upgrade marrydoc

1.3.4 [MarryDoc] Release Notes

Versions are incremented according to semver.

0.2

• 0.2.0 (2018-05-23)

– Support specifying module name on command line.

0.1

• 0.1.0 (2018-05-02)

– Initial “beta” release.

1.3.5 [MarryDoc] Usage

• Inherit DocString

• Maintain DocString Copies

• Maintain DocString With Modifications

• Configure Your Favorite Merge Tool

• Test DocStrings In A Module Collection

• Tips and Tricks

Inherit DocString

The inherit() decorator copies a docstring from a specified object and attaches it to the function or method it
decorates. In the following example, standard library b2a_hex() function serves as the docstring source:

inherit_example.py.

import binascii
import marrydoc

@marrydoc.inherit(binascii.b2a_hex)
def b2a_hex(data, sep=''):

mashed = binascii.b2a_hex(data)
return sep.join(mashed[i:i+2] for i in range(0, len(mashed), 2))

hexlify = b2a_hex

6 Chapter 1. Quick Start

https://pypi.python.org/pypi/pip
http://semver.org/


marrydoc Documentation, Release 0.1.0

The inherit() decorator guarentees that the docstrings are always synchronized and does not require maintenance
of the module when the original docstring changes:

>>> import binascii
>>> import inherit_example
>>>
>>> print binascii.hexlify.__doc__
b2a_hex(data) -> s; Hexadecimal representation of binary data.

This function is also available as "hexlify()".
>>>
>>> print inherit_example.hexlify.__doc__
b2a_hex(data) -> s; Hexadecimal representation of binary data.

This function is also available as "hexlify()".
>>>
>>> binascii.hexlify.__doc__ == inherit_example.hexlify.__doc__
True

Maintain DocString Copies

The shortcoming of the inherit() decorator is that the copied docstring does not appear in the module and makes
module maintenance more difficult. The copied_from() decorator defines a one to one relationship between the
source of the docstring and the docstring of the function it decorates:

copied_from_example.py.

import binascii
import marrydoc

@marrydoc.copied_from(binascii.b2a_hex)
def b2a_hex(data, sep=''):

"""b2a_hex(data) -> s; Hexadecimal representation of binary data.

This function is also available as "hexlify()"."""
mashed = binascii.b2a_hex(data)
return sep.join(mashed[i:i+2] for i in range(0, len(mashed), 2))

hexlify = b2a_hex

The defined relationship allows the Command Line Tool to check the module’s docstring:

$ python -m marrydoc copied_from_example.py
copied_from_example.py ... OK

If the docstring source changed, the command line tool updates the docstring in the module when specifying the
--merge option:

$ python -m marrydoc --merge copied_from_example.py
copied_from_example.py ... UPDATED

Note: During normal import of a module, the copied_from() decorator acts as a passthrough and introduces very
little overhead.

1.3. @based_on 7



marrydoc Documentation, Release 0.1.0

Maintain DocString With Modifications

The based_on() decorator defines a relationship between the docstring of the function it decorates and the basis
from which it was derived. The same as copied_from() and inherit(), the first argument to based_on() is
the program construct containing the docstring that is to be tracked. based_on() requires a second argument that
is a copy of the source docstring (the source docstring is compared against the copy and if they are unequal, the two
values in combination with the actual docstring facilitate a three way merge). For example:

based_on_example.py.

import binascii
import marrydoc

@marrydoc.based_on(
binascii.b2a_hex,
"""b2a_hex(data) -> s; Hexadecimal representation of binary data.

This function is also available as "hexlify()".""")
def b2a_hex(data, sep=''):

"""b2a_hex(data) -> s; Hexadecimal representation of binary data.
b2a_hex(data, sep) -> s; Separated hexadecimal representation of binary

→˓data.

This function is also available as "hexlify()"."""
mashed = binascii.hexlify(data)
return sep.join(mashed[i:i+2] for i in range(0, len(mashed), 2))

hexlify = b2a_hex

The defined relationship to the source in combination with the docstring copy provided as the second argument allow
the Command Line Tool to check if the source docstring has changed:

$ python -m marrydoc based_on_example.py
based_on_example.py ... OK

If the source docstring has changed, the Command Line Tool updates the module’s docstrings by performing a three
way merge when specifying the --merge option:

$ python -m marrydoc --merge based_on_example.py
based_on_example.py ... UPDATED

Note: The three way merge requires a merge tool of your choosing. Without configuring, the three way merge
attempts usage of kdiff3. See the next section for more information on configuring your favorite merge tool to be
used.

During normal import of a module, the based_on() decorator acts as a passthrough and introduces very little
overhead.

Configure Your Favorite Merge Tool

For three way merges, the marrydoc command line tool uses kdiff3 when it is installed and in your system path.
Otherwise marrydoc generates “base”, “left”, and “right” files on your file system for you to merge manually.

8 Chapter 1. Quick Start



marrydoc Documentation, Release 0.1.0

To automatically invoke your favorite three way merge tool instead, set the MARRYDOC_MERGE environment variable
and specify the command line invocation using Python’s string format substitution syntax.

For example, on Linux:

export MARRYDOC_MERGE="kdiff3 --merge --auto {base} {left} {right} --output
→˓{orig}"

Or on Microsoft Windows:

set MARRYDOC_MERGE="kdiff3 --merge --auto {base} {left} {right} --output
→˓{orig}"

Warning: The executable name/path must not contain spaces. The current implementation of marrydoc splits
the string on whitespace and passes the result to a subprocess command.

Test DocStrings In A Module Collection

The main() function exposes the command line interface and offers a convenient method to check if the docstrings
in a module are up to date. Add a test case within the module’s regression test to call the command line interface and
to check the returned exit code for success indication (0).

The --walk option is useful for checking an entire package hierarchy, for example:

import os
import unittest
import marrydoc
import mypackage

class TestDocStrings(unittest.TestCase):

def test_package(self):
package_path = os.path.dirname(mypackage.__file__)
exitcode = marrydoc.main(['--walk', package_path])
self.assertEqual(exitcode, 0)

Tips and Tricks

• based_on(), copied_from() may also be used to decorate a class to wed its docstring to another.
(inherit() cannot be used to decorate a class because the class docstring is not settable by the time the
docorator executes.)

• The based_on(), copied_from(), and inherit() decorators may also be used in combination with the
@classmethod() or staticmethod() decorators. The marrydoc decorator implementations accomo-
date decorating in either order. For better readability, place the @classmethod() and staticmethod()
decorators first (on the outside).

• When decorating a method using based_on(), copied_from(), or inherit(), a class may be passed
as the first argument to specify the source of the docstring. The docstring of the method by the same name in
the specified class then acts as the docstring basis.

• Ensure your operating system path includes the Scripts subdirectory that is part of the normal Python instal-
lation. After installation, a marrydoc “shim” executable exists that subdirectory to invoke the command line
tool directly:

1.3. @based_on 9



marrydoc Documentation, Release 0.1.0

$ marrydoc --help

• The marrydoc command line also accepts importable module and package names. Use this form when the
module is in the Python system path. This form may be used in combination with the --walk option to check
an entire package, for example:

$ marrydoc baseline --walk
/usr/local/lib/python3.5/dist-packages/baseline/__about__.py ... OK
/usr/local/lib/python3.5/dist-packages/baseline/__init__.py ... OK
/usr/local/lib/python3.5/dist-packages/baseline/__main__.py ... OK
/usr/local/lib/python3.5/dist-packages/baseline/_baseline.py ... OK
/usr/local/lib/python3.5/dist-packages/baseline/_script.py ... OK

10 Chapter 1. Quick Start


	Quick Start
	@inherit
	@copied_from
	@based_on


