

Welcome to markov’s documentation!

Contents:

	markov
	How to use

	Features

	Sample results

	Credits

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

Indices and tables

	Index

	Module Index

	Search Page

markov

[image: _images/markov.svg]
 [https://pypi.python.org/pypi/markov][image: _images/markov1.svg]
 [https://travis-ci.org/xinbian/markov][image: Documentation Status]
 [https://markov.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/xinbian/markov/][image: _images/badge.png]
 [https://coveralls.io/github/xinbian/markov?branch=master]Markov Chain Monte Carlo Project

	Free software: MIT license

	Documentation: https://markov.readthedocs.io.

How to use

	run the code /markov/markov.py

	the input parameters are steps (istep), weights related parameters T and r (T, r), total nodes number (m), the nodes location in the 2-D grid (init.coor([_,_,…], [_,_,…]))

	the code generates a m*m 2D grid, origin is 0, dx=dy=1. For example, if m=3, meaning we have 3 nodes and a 3*3 grid. We can initialize the nodes by init.coor([2,1,1],[1,0,1]). The first, second, and third nodes are located at (2,1), (1,0), (1,1), respectively.

Features

	This is a Markov Chain Monte Carlo code to estimate the graphs that arise in a distribution network. The Markov Chain is a sequence of graphs. We do not know the transition probability matrix, but we can compute the relative probability of two graphs. See more description in problem_description.

	The code employs Metropolis-Hastings Algorithm

	The proposal probability is based on randomly cutting/adding an edge. There are three cases, ‘no cut’ case, ‘no add’ case and normal case.

	‘no cut’ case. If the graph is disconnected by further cutting any edges, it is the so called ‘no cut’ case. Thus, the probability of adding an edge is 1.

	P(j|i)=1/(total possible edges - edges already exist).

	We need to cut an edge to go back to previous graph. After adding an edge, if it becomes ‘no add’ case, P(i|j)=1/(existing edges - edges cannot be cut). After adding an edge, if it is a normal case, P(i|j)=0.5/(existing edges - edges cannot be cut)

	‘no add’ case. If the graph cannot add any more edges, it is ‘no add’ case. The probability of removing an edge is 1.

	P(j|i)=1/(existing edges - edges cannot be removed)

	We need to add an edge to go back to previous graph. After cutting, if it becomes cannot cut case, P(i|j)=1/(total possible edges - edges already exist). If it’s normal case, P(i|j)=1/(total possible edges - existing edges).

	Normal case. The probability of adding or removing is 0.5.

If add an edge, P(j|i)=1/(total possible edges - existing edges).
If cut an edge, P(j|i)=1/(existing edges - edges cannot be removed)
The calculation of P(i|j) is similar to previous cases.

Sample results

	parameters

	5 nodes; m=5

	r=2, T=10

	total steps; istep=30000

	initial nodes position (0,0) (1,2) (1,3) (3,2) (4,4); init.coord([0,1,1,3,4],[0,2,3,2,4])

	results

	2 most possible graphs: graph1 [https://pbs.twimg.com/media/CvvhkPfXgAAm24R.jpg] and graph2 [https://pbs.twimg.com/media/Cvvhlu3XEAAJCiF.jpg]

	expected number of edges connected to vertex 0 is 1.97

	expected number of edges is 4.96

	expected maximum distance is 6.64

	this [https://pbs.twimg.com/media/CvvbalWWEAAA3rm.jpg] shows time series of averaged quantities

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install markov, run this command in your terminal:

$ pip install markov

This is the preferred method to install markov, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for markov can be downloaded from the Github repo [https://github.com/xinbian/markov].

You can either clone the public repository:

$ git clone git://github.com/xinbian/markov

Or download the tarball [https://github.com/xinbian/markov/tarball/master]:

$ curl -OL https://github.com/xinbian/markov/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use markov in a project:

import markov

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/xinbian/markov/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

markov could always use more documentation, whether as part of the
official markov docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/xinbian/markov/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up markov for local development.

	Fork the markov repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/markov.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv markov
$ cd markov/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 markov tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/xinbian/markov/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_markov

Index

Credits

Development Lead

	Xin Bian <bianxin2006@gmail.com>

Contributors

	Xinyang Li. I discussed with Xinyang. He shared his idea of finding most probable graph with me.

History

0.1.0 (2016-10-19)

	First release on PyPI.

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/badge.png
‘coverage 100%

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to markov’s documentation!

 		
 markov

 		
 How to use

 		
 Features

 		
 Sample results

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

