
Neo4j.rb Documentation
Release 4.1

Chris Grigg, Brian Underwood

March 29, 2015

Contents

1 Basic Setup 3

2 ActiveNode 5
2.1 Properties . 5
2.2 Callbacks . 6
2.3 created_at, updated_at . 7
2.4 Validation . 7
2.5 id property (primary key) . 7
2.6 Associations . 7

3 ActiveRel 9
3.1 When to Use? . 9
3.2 Setup . 9
3.3 Relationship Creation . 10
3.4 From a has_many or has_one association . 10
3.5 Query and Loading existing relationships . 10
3.6 Accessing related nodes . 11
3.7 Advanced Usage . 11
3.8 Additional methods . 12
3.9 Regarding: from and to . 12

4 Additional features include 15

5 Requirements 17

6 Indices and tables 19

i

ii

Neo4j.rb Documentation, Release 4.1

Contents:

Contents 1

Neo4j.rb Documentation, Release 4.1

2 Contents

CHAPTER 1

Basic Setup

3

Neo4j.rb Documentation, Release 4.1

4 Chapter 1. Basic Setup

CHAPTER 2

ActiveNode

ActiveNode is the ActiveRecord replacement module for Rails. Its syntax should be familiar for ActiveRecord users
but has some unique qualities.

To use ActiveNode, include Neo4j::ActiveNode in a class.

class Post
include Neo4j::ActiveNode

end

2.1 Properties

All properties for Neo4j::ActiveNode objects must be declared (unlike neo4j-core nodes). Properties are declared
using the property method which is the same as attribute from the active_attr gem.

Example:

class Post
include Neo4j::ActiveNode
property :title, index: :exact
property :text, default: ’bla bla bla’
property :score, type: Integer, default: 0

validates :title, :presence => true
validates :score, numericality: { only_integer: true }

before_save do
self.score = score * 100

end

has_n :friends
end

Properties can be indexed using the index argument on the property method, see example above.

2.1.1 Indexes

To declare a index on a property

class Person
include Neo4j::ActiveNode

5

Neo4j.rb Documentation, Release 4.1

property :name, index: :exact
end

Only exact index is currently possible.

Indexes can also be declared like this:

class Person
include Neo4j::ActiveNode
property :name
index :name

end

2.1.2 Constraints

You can declare that a property should have a unique value.

class Person
property :id_number, constraint: :unique # will raise an exception if id_number is not unique

end

Notice an unique validation is not enough to be 100% sure that a property is unique (because of concurrency issues,
just like ActiveRecord). Constraints can also be declared just like indexes separately, see above.

2.1.3 Serialization

Pass a property name as a symbol to the serialize method if you want to save a hash or an array with mixed object
types* to the database.

class Student
include Neo4j::ActiveNode

property :links

serialize :links
end

s = Student.create(links: { neo4j: ’http://www.neo4j.org’, neotech: ’http://www.neotechnology.com’ })
s.links
=> {"neo4j"=>"http://www.neo4j.org", "neotech"=>"http://www.neotechnology.com"}
s.links.class
=> Hash

Neo4j.rb serializes as JSON by default but pass it the constant Hash as a second parameter to serialize as YAML.
Those coming from ActiveRecord will recognize this behavior, though Rails serializes as YAML by default.

Neo4j allows you to save Ruby arrays to undefined or String types but their contents need to all be of the same type.
You can do user.stuff = [1, 2, 3] or user.stuff = [”beer, “pizza”, “doritos”] but not user.stuff = [1, “beer”, “pizza”].
If you wanted to do that, you could call serialize on your property in the model.

2.2 Callbacks

Implements like Active Records the following callback hooks:

• initialize

6 Chapter 2. ActiveNode

Neo4j.rb Documentation, Release 4.1

• validation

• find

• save

• create

• update

• destroy

2.3 created_at, updated_at

See http://neo4j.rubyforge.org/classes/Neo4j/Rails/Timestamps.html

class Blog
include Neo4j::ActiveNode
property :updated_at # will automatically be set when model changes

end

2.4 Validation

Support the Active Model validation, such as:

validates :age, presence: true validates_uniqueness_of :name, :scope => :adult

2.5 id property (primary key)

Unique IDs are automatically created for all nodes using SecureRandom::uuid. See Unique IDs for details.

2.6 Associations

What follows is an overview of adding associations to models. For more detailed information, see Declared Relation-
ships.

has_many and has_one associations can also be defined on ActiveNode models to make querying and creating rela-
tionships easier.

class Post
include Neo4j::ActiveNode
has_many :in, :comments, origin: :post
has_one :out, :author, type: :author, model_class: Person

end

class Comment
include Neo4j::ActiveNode
has_one :out, :post, type: :post
has_one :out, :author, type: :author, model_class: Person

end

class Person

2.3. created_at, updated_at 7

http://neo4j.rubyforge.org/classes/Neo4j/Rails/Timestamps.html

Neo4j.rb Documentation, Release 4.1

include Neo4j::ActiveNode
has_many :in, :posts, origin: :author
has_many :in, :comments, origin: :author

end

You can query associations:

post.comments.to_a # Array of comments
comment.post # Post object
comment.post.comments # Original comment and all of it’s siblings. Makes just one query
post.comments.authors.posts # All posts of people who have commented on the post. Still makes just one query
You can create associations

post.comments = [comment1, comment2] # Removes all existing relationships
post.comments << comment3 # Creates new relationship

comment.post = post1 # Removes all existing relationships

8 Chapter 2. ActiveNode

CHAPTER 3

ActiveRel

Note: See https://github.com/neo4jrb/neo4j/wiki/Neo4j.rb-v4-Introduction if you are using the master branch from
this repo. It contains information about changes to the API.

ActiveRel is Neo4j.rb 3.0’s the relationship wrapper. ActiveRel objects share most of their behavior with ActiveNode
objects. It is purely optional and offers advanced functionality for complex relationships.

3.1 When to Use?

It is not always necessary to use ActiveRel models but if you have the need for validation, callback, or working with
properties on unpersisted relationships, it is the solution.

Separation of relationship logic instead of shoehorning it into Node models Validations, callbacks, custom methods,
etc. Centralize relationship type, no longer need to use :type or :origin options in models

3.2 Setup

ActiveRel model definitions have four requirements:

include Neo4j::ActiveRel call from_class with a valid model constant or :any call to_class with a valid model constant
or :any call type with a string to define the relationship type Name the file as you would any other model. See the note
on from/to at the end of this page for additional information.

app/models/enrolled_in.rb
class EnrolledIn

include Neo4j::ActiveRel
before_save :do_this

from_class Student
to_class Lesson
type ’enrolled_in’

property :since, type: Integer
property :grade, type: Integer
property :notes

validates_presence_of :since

def do_this

9

https://github.com/neo4jrb/neo4j/wiki/Neo4j.rb-v4-Introduction

Neo4j.rb Documentation, Release 4.1

#a callback
end

end

3.3 Relationship Creation

From an ActiveRel Model

Once setup, ActiveRel models follow the same rules as ActiveNode in regard to properties. Declare them to create
setter/getter methods, set them to created_at or updated_at for automatic timestamps.

ActiveRel instances require related nodes before they can be saved. Set these using the from_node and to_node
methods.

rel = EnrolledIn.new
rel.from_node = student
rel.to_node = lesson

You can pass these as parameters when calling new or create if you so choose.

rel = EnrolledIn.new(from_node: student, to_node: lesson)
#or
rel = EnrolledIn.create(from_node: student, to_node: lesson)

3.4 From a has_many or has_one association

Pass the :rel_type option in a declared association with the constant of an ActiveRel model. When that relationship is
created, it will add a hidden _classname property with that model’s name. The association will use the type declared
in the ActiveRel model and it will raise an error if it is included in more than one place.

To take advantage of callbacks and validations, declare your relationship using your ActiveRel model as described
above.

class Student
include Neo4j::ActiveNode
has_many :out, :lessons, rel_class: EnrolledIn

end

3.5 Query and Loading existing relationships

Like nodes, you can load relationships a few different ways.

3.5.1 :each_rel, :each_with_rel, or :pluck methods

Any of these methods can return relationship objects.

Student.first.lessons.each_rel{|r| }
Student.first.lessons.each_with_rel{|node, rel| }
Student.first.query_as(:s).match(’s-[rel1:‘enrolled_in‘]->n2’).pluck(:rel1)
These are available as both class or instance methods. Because both each_rel and each_with_rel return enumerables when a block is skipped, you can take advantage of the full suite of enumerable methods:

10 Chapter 3. ActiveRel

Neo4j.rb Documentation, Release 4.1

Lesson.first.students.each_with_rel.select{|n, r| r.grade > 85}

Be aware that select would be performed in Ruby after a Cypher query is performed. The example above perform a
Cypher query that matches all students with relationships of type enrolled_in to Lesson.first, then it would call select
on that.

3.5.2 The :where method

Because you cannot search for a relationship the way you search for a node, ActiveRel’s where method searches for
the relationship relative to the labels found in the from_class and to_class models. Therefore:

EnrolledIn.where(since: 2002)
"MATCH (node1:‘Student‘)-[rel1:‘enrolled_in‘]->(node2:‘Lesson‘) WHERE rel1.since = 2002 RETURN rel1"

If your from_class is :any, the same query looks like this:

"MATCH (node1)-[rel1:‘enrolled_in‘]->(node2:‘Lesson‘) WHERE rel1.since = 2002 RETURN rel1"

And if to_class is also :any, you end up with:

"MATCH (node1)-[rel1:‘enrolled_in‘]->(node2) WHERE rel1.since = 2002 RETURN rel1"

As a result, this combined with the inability to index relationship properties can result in extremely inefficient queries.

3.6 Accessing related nodes

Once a relationship has been wrapped, you can access the related nodes using from_node and to_node instance meth-
ods. Note that these cannot be changed once a relationship has been created.

student = Student.first
lesson = Lesson.first
rel = EnrolledIn.create(from_node: student, to_node: lesson, since: 2014)
rel.from_node
=> #<Neo4j::ActiveRel::RelatedNode:0x00000104589d78 @node=#<Student property: ’value’>>
rel.to_node
=> #<Neo4j::ActiveRel::RelatedNode:0x00000104589d50 @node=#<Lesson property: ’value’>>
As you can see, this returns objects of type RelatedNode which delegate to the nodes. This allows for lazy loading when a relationship is returned in the future: the nodes are not loaded until you interact with them, which is beneficial with something like each_with_rel where you already have access to the nodes and do not want superfluous calls to the server.

3.7 Advanced Usage

3.7.1 Separation of Relationship Logic

ActiveRel really shines when you have multiple associations that share a relationship type. You can use a rel model to
separate the relationship logic and just let the node models be concerned with the labels of related objects.

class User
include Neo4j::ActiveNode
property :managed_stats, type: Integer #store the number of managed objects to improve performance

has_many :out, :managed_lessons, model_class: Lesson, rel_class: ManagedRel
has_many :out, :managed_teachers, model_class: Teacher, rel_class: ManagedRel
has_many :out, :managed_events, model_class: Event, rel_class: ManagedRel
has_many :out, :managed_objects, model_class: false, rel_class: ManagedRel

3.6. Accessing related nodes 11

Neo4j.rb Documentation, Release 4.1

def update_stats
managed_stats += 1
save

end
end

class ManagedRel
include Neo4j::ActiveRel
after_create :update_user_stats
validate :manageable_object
from_class User
to_class :any
type ’manages’

def update_user_stats
from_node.update_stats

end

def manageable_object
errors.add(:to_node) unless to_node.respond_to?(:managed_by)

end
end

elsewhere
rel = ManagedRel.new(from_node: user, to_node: any_node)
if rel.save

validation passed, to_node is a manageable object
else

something is wrong
end

3.8 Additional methods

:type instance method, _:type class method: return the relationship type of the model

:_from_class and :_to_class class methods: return the expected classes declared in the model

3.9 Regarding: from and to

:from_node, :to_node, :from_class, and :to_class all have aliases using start and end: :start_class, :end_class,
:start_node, :end_node, :start_node=, :end_node=. This maintains consistency with elements of the Neo4j::Core
API while offering what may be more natural options for Rails users.

Neo4j.rb (the neo4j and neo4j-core gems) is a Ruby Object-Graph-Mapper (OGM) for the Neo4j graph database. It
tries to follow API conventions established by ActiveRecord and familiar to most Ruby developers but with a Neo4j
flavor.

Ruby (software) A dynamic, open source programming language with a focus on simplicity and productivity. It has
an elegant syntax that is natural to read and easy to write.

Graph Database (computer science) A graph database stores data in a graph, the most generic of data structures,
capable of elegantly representing any kind of data in a highly accessible way.

Neo4j (databases) The world’s leading graph database

12 Chapter 3. ActiveRel

https://github.com/neo4jrb/neo4j
https://github.com/neo4jrb/neo4j-core
https://www.ruby-lang.org/en/
http://neo4j.com/
http://guides.rubyonrails.org/active_record_basics.html

Neo4j.rb Documentation, Release 4.1

If you’re already familiar with ActiveRecord, DataMapper, or Mongoid, you’ll find the Object Model features you’ve
come to expect from an O*M:

• Properties

• Indexes / Constraints

• Callbacks

• Validation

• Assocations

Because relationships are first-class citizens in Neo4j, models can be created for both nodes and relationships.

3.9. Regarding: from and to 13

Neo4j.rb Documentation, Release 4.1

14 Chapter 3. ActiveRel

CHAPTER 4

Additional features include

• A chainable arel-inspired query builder

• Transactions

• Migration framework

15

https://github.com/rails/arel

Neo4j.rb Documentation, Release 4.1

16 Chapter 4. Additional features include

CHAPTER 5

Requirements

• Ruby 1.9.3+ (tested in MRI and JRuby)

• Neo4j 2.1.0 + (version 4.0+ of the gem is required to use neo4j 2.2+)

17

Neo4j.rb Documentation, Release 4.1

18 Chapter 5. Requirements

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

	Basic Setup
	ActiveNode
	Properties
	Callbacks
	created_at, updated_at
	Validation
	id property (primary key)
	Associations

	ActiveRel
	When to Use?
	Setup
	Relationship Creation
	From a has_many or has_one association
	Query and Loading existing relationships
	Accessing related nodes
	Advanced Usage
	Additional methods
	Regarding: from and to

	Additional features include
	Requirements
	Indices and tables

