

pex

This project is the home of the .pex file, and the pex tool which can create them.
pex also provides a general purpose Python environment-virtualization solution similar to virtualenv [http://virtualenv.org].
pex is short for “Python Executable”

in brief
===
To quickly get started building .pex files, go straight to Building .pex files.
New to python packaging? Check out packaging.python.org [https://packaging.python.org].

intro & history
===
pex contains the Python packaging and distribution libraries originally available through the
twitter commons [https://github.com/twitter/commons] but since split out into a separate project.
The most notable components of pex are the .pex (Python EXecutable) format and the
associated pex tool which provide a general purpose Python environment virtualization
solution similar in spirit to virtualenv [http://virtualenv.org]. PEX files have been used by Twitter to deploy Python applications to production since 2011.

To learn more about what the .pex format is and why it could be useful for
you, see What are .pex files? For the impatient, there is also a (slightly outdated) lightning
talk published by Twitter University: WTF is PEX? [http://www.youtube.com/watch?v=NmpnGhRwsu0].
To go straight to building pex files, see Building .pex files.

Guide:

	What are .pex files?
	tl;dr

	Why .pex files?

	How do .pex files work?

	Building .pex files

	Invoking the pex utility
	Specifying requirements

	Specifying entry points

	Saving .pex files

	Tailoring requirement resolution

	Tailoring PEX execution at build time

	Tailoring PEX execution at runtime

	Using bdist_pex
	bdist_pex

	bdist_pex --bdist-all

	Other ways to build PEX files

	PEX API Reference
	Module contents

	pex.crawler module

	pex.environment module

	pex.fetcher module

	pex.finders module

	pex.http module

	pex.installer module

	pex.interpreter module

	pex.iterator module

	pex.link module

	pex.package module

	pex.pep425tags module

	pex.pex module

	pex.pex_builder module

	pex.pex_info module

	pex.resolver module

	pex.testing module

	pex.tracer module

	pex.translator module

	pex.util module

	pex.variables module

What are .pex files?

tl;dr

PEX files are self-contained executable Python virtual environments. More
specifically, they are carefully constructed zip files with a
#!/usr/bin/env python and special __main__.py that allows you to interact
with the PEX runtime. For more information about zip applications,
see PEP 441 [https://www.python.org/dev/peps/pep-0441/].

To get started building your first pex files, go straight to Building .pex files.

Why .pex files?

Files with the .pex extension – “PEX files” or “.pex files” – are
self-contained executable Python virtual environments. PEX files make it
easy to deploy Python applications: the deployment process becomes simply
scp.

Single PEX files can support multiple platforms and python interpreters,
making them an attractive option to distribute applications such as command
line tools. For example, this feature allows the convenient use of the same
PEX file on both OS X laptops and production Linux AMIs.

How do .pex files work?

PEX files rely on a feature in the Python importer that considers the presence
of a __main__.py within the module as a signal to treat that module as
an executable. For example, python -m my_module or python my_module
will execute my_module/__main__.py if it exists.

Because of the flexibility of the Python import subsystem, python -m
my_module works regardless if my_module is on disk or within a zip
file. Adding #!/usr/bin/env python to the top of a .zip file containing
a __main__.py and marking it executable will turn it into an
executable Python program. pex takes advantage of this feature in order to
build executable .pex files. This is described more thoroughly in
PEP 441 [https://www.python.org/dev/peps/pep-0441/].

Building .pex files

The easiest way to build .pex files is with the pex utility, which is
made available when you pip install pex. Do this within a virtualenv, then you can use
pex to bootstrap itself:

$ pex pex requests -c pex -o ~/bin/pex

This command creates a pex file containing pex and requests, using the
console script named “pex”, saving it in ~/bin/pex. At this point, assuming
~/bin is on your $PATH, then you can use pex in or outside of any
virtualenv.

The second easiest way to build .pex files is using the bdist_pex setuptools command
which is available if you pip install pex. For example, to clone and build pip from source:

$ git clone https://github.com/pypa/pip && cd pip
$ python setup.py bdist_pex
running bdist_pex
Writing pip to dist/pip-7.2.0.dev0.pex

Both are described in more detail below.

Invoking the pex utility

The pex utility has no required arguments and by default will construct an empty environment
and invoke it. When no entry point is specified, “invocation” means starting an interpreter:

$ pex
Python 3.6.2 (default, Jul 20 2017, 03:52:27)
[GCC 7.1.1 20170630] on linux
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>>

This creates an ephemeral environment that only exists for the duration of the pex command invocation
and is garbage collected immediately on exit.

You can tailor which interpreter is used by specifying --python=PATH. PATH can be either the
absolute path of a Python binary or the name of a Python interpreter within the environment, e.g.:

$ pex
Python 3.6.2 (default, Jul 20 2017, 03:52:27)
[GCC 7.1.1 20170630] on linux
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> print "This won't work!"
 File "<console>", line 1
 print "This won't work!"
 ^
SyntaxError: Missing parentheses in call to 'print'
>>>
$ pex --python=python2.7
Python 2.7.13 (default, Jul 21 2017, 03:24:34)
[GCC 7.1.1 20170630] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> print "This works."
This works.

Specifying requirements

Requirements are specified using the same form as expected by pip and setuptools, e.g.
flask, setuptools==2.1.2, Django>=1.4,<1.6. These are specified as arguments to pex
and any number (including 0) may be specified. For example, to start an environment with flask
and psutil>1:

$ pex flask 'psutil>1'
Python 3.6.2 (default, Jul 20 2017, 03:52:27)
[GCC 7.1.1 20170630] on linux
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>>

You can then import and manipulate modules like you would otherwise:

>>> import flask
>>> import psutil
>>> ...

Requirements can also be specified using the requirements.txt format, using pex -r. This can be a handy
way to freeze a virtualenv into a PEX file:

$ pex -r <(pip freeze) -o my_application.pex

Specifying entry points

Entry points define how the environment is executed and may be specified in one of three ways.

pex <options> – script.py

As mentioned above, if no entry points are specified, the default behavior is to emulate an
interpreter. First we create a simple flask application:

$ cat <<EOF > flask_hello_world.py
> from flask import Flask
> app = Flask(__name__)
>
> @app.route('/')
> def hello_world():
> return 'hello world!'
>
> app.run()
> EOF

Then, like an interpreter, if a source file is specified as a parameter to pex, it is invoked:

$ pex flask -- ./flask_hello_world.py
* Running on http://127.0.0.1:5000/

pex -m

Your code may be within the PEX file or it may be some predetermined entry point
within the standard library. pex -m behaves very similarly to python -m. Consider
python -m pydoc:

$ python -m pydoc
pydoc - the Python documentation tool

pydoc.py <name> ...
 Show text documentation on something. <name> may be the name of a
 Python keyword, topic, function, module, or package, or a dotted
 reference to a class or function within a module or module in a
 ...

This can be emulated using the pex tool using -m pydoc:

$ pex -m pydoc
pydoc - the Python documentation tool

tmpInGItD <name> ...
 Show text documentation on something. <name> may be the name of a
 Python keyword, topic, function, module, or package, or a dotted
 reference to a class or function within a module or module in a
 ...

Arguments will be passed unescaped following -- on the command line. So in order to
get pydoc help on the flask.app package in Flask:

$ pex flask -m pydoc -- flask.app

Help on module flask.app in flask:

NAME
 flask.app

FILE
 /private/var/folders/rd/_tjz8zts3g14md1kmf38z6w80000gn/T/tmp3PCy5a/.deps/Flask-0.10.1-py2-none-any.whl/flask/app.py

DESCRIPTION
 flask.app
    ~~~~~~~~~





and so forth.

Entry points can also take the form package:target, such as sphinx:main or fabric.main:main for Sphinx
and Fabric respectively.  This is roughly equivalent to running a script that does from package import target; target().

This can be a powerful way to invoke Python applications without ever having to pip install
anything, for example a one-off invocation of Sphinx with the readthedocs theme available:

$ pex sphinx sphinx_rtd_theme -e sphinx:main -- --help
Sphinx v1.2.2
Usage: /var/folders/4d/9tz0cd5n2n7947xs21gspsxc0000gp/T/tmpLr8ibZ [options] sourcedir outdir [filenames...]

General options
^^^^^^^^^^^^^^^
-b <builder>  builder to use; default is html
-a            write all files; default is to only write new and changed files
-E            don't use a saved environment, always read all files
...








pex -c

If you don’t know the package:target for the console scripts of
your favorite python packages, pex allows you to use -c to specify a console script as defined
by the distribution.  For example, Fabric provides the fab tool when pip installed:

$ pex Fabric -c fab -- --help
Fatal error: Couldn't find any fabfiles!

Remember that -f can be used to specify fabfile path, and use -h for help.

Aborting.





Even scripts defined by the “scripts” section of a distribution can be used, e.g. with boto:

$ pex boto -c mturk
usage: mturk [-h] [-P] [--nicknames PATH]
             {bal,hit,hits,new,extend,expire,rm,as,approve,reject,unreject,bonus,notify,give-qual,revoke-qual}
             ...
mturk: error: too few arguments










Saving .pex files

Each of the commands above have been manipulating ephemeral PEX environments – environments that only
exist for the duration of the pex command lifetime and immediately garbage collected.

If the -o PATH option is specified, a PEX file of the environment is saved to disk at PATH.  For example
we can package a standalone Sphinx as above:

$ pex sphinx sphinx_rtd_theme -c sphinx -o sphinx.pex





Instead of executing the environment, it is saved to disk:

$ ls -l sphinx.pex
-rwxr-xr-x  1 wickman  wheel  4988494 Mar 11 17:48 sphinx.pex





This is an executable environment and can be executed as before:

$ ./sphinx.pex --help
Sphinx v1.2.2
Usage: ./sphinx.pex [options] sourcedir outdir [filenames...]

General options
^^^^^^^^^^^^^^^
-b <builder>  builder to use; default is html
-a            write all files; default is to only write new and changed files
-E            don't use a saved environment, always read all files
...





As before, entry points are not required, and if not specified the PEX will default to just dropping into
an interpreter.  If an alternate interpreter is specified with --python, e.g. pypy, it will be the
default hashbang in the PEX file:

$ pex --python=pypy flask -o flask-pypy.pex





The hashbang of the PEX file specifies PyPy:

$ head -1 flask-pypy.pex
#!/usr/bin/env pypy





and when invoked uses the environment PyPy:

$ ./flask-pypy.pex
Python 2.7.3 (87aa9de10f9c, Nov 24 2013, 20:57:21)
[PyPy 2.2.1 with GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> import flask





To specify an explicit Python shebang line (e.g. from a non-standard location or not on $PATH),
you can use the --python-shebang option:

$ dist/pex --python-shebang='/Users/wickman/Python/CPython-3.4.2/bin/python3.4' -o my.pex
$ head -1 my.pex
#!/Users/wickman/Python/CPython-3.4.2/bin/python3.4





Furthermore, this can be manipulated at runtime using the PEX_PYTHON environment variable.




Tailoring requirement resolution

In general, pex honors the same options as pip when it comes to resolving packages.  Like pip,
by default pex fetches artifacts from PyPI.  This can be disabled with --no-index.

If PyPI fetching is disabled, you will need to specify a search repository via -f/--find-links.
This may be a directory on disk or a remote simple http server.

For example, you can delegate artifact fetching and resolution to pip wheel for whatever
reason – perhaps you’re running a firewalled mirror – but continue to package with pex:

$ pip wheel -w /tmp/wheelhouse sphinx sphinx_rtd_theme
$ pex -f /tmp/wheelhouse --no-index -e sphinx:main -o sphinx.pex sphinx sphinx_rtd_theme








Tailoring PEX execution at build time

There are a few options that can tailor how PEX environments are invoked.  These can be found
by running pex --help.  Every flag mentioned here has a corresponding environment variable
that can be used to override the runtime behavior which can be set directly in your environment,
or sourced from a .pexrc file (checking for ~/.pexrc first, then for a relative .pexrc).


--zip-safe/--not-zip-safe

Whether or not to treat the environment as zip-safe.  By default PEX files are listed as zip safe.
If --not-zip-safe is specified, the source of the PEX will be written to disk prior to
invocation rather than imported via the zipimporter.  NOTE: Distribution zip-safe bits will still
be honored even if the PEX is marked as zip-safe.  For example, included .eggs may be marked as
zip-safe and invoked without the need to write to disk.  Wheels are always marked as not-zip-safe
and written to disk prior to PEX invocation.  --not-zip-safe forces --always-write-cache.




--always-write-cache

Always write all packaged dependencies within the PEX to disk prior to invocation.  This forces the zip-safe
bit of any dependency to be ignored.




--inherit-path

By default, PEX environments are completely scrubbed empty of any packages installed on the global site path.
Setting --inherit-path allows packages within site-packages to be considered as candidate distributions
to be included for the execution of this environment.  This is strongly discouraged as it circumvents one of
the biggest benefits of using .pex files, however there are some cases where it can be advantageous (for example
if a package does not package correctly an an egg or wheel.)




--ignore-errors

If not all of the PEX environment’s dependencies resolve correctly (e.g. you are overriding the current
Python interpreter with PEX_PYTHON) this forces the PEX file to execute despite this.  Can be useful
in certain situations when particular extensions may not be necessary to run a particular command.




--platform

The platform to build the pex for. Right now it defaults to the current system, but you can specify
something like linux-x86_64 or macosx-10.6-x86_64. This will look for bdists for the particular platform.

To build manylinux wheels for specific tags, you can add them to the platform with hyphens like
PLATFORM-PYVER-IMPL-ABI, where PLATFORM is either manylinux1-x86_64 or manylinux1-i686, PYVER
is a two-digit string representing the python version (e.g., 36), IMPL is the python implementation
abbreviation (e.g., cp, pp, jp), and ABI is the ABI tag (e.g., cp36m, cp27mu, abi3,
none). A complete example: manylinux1_x86_64-36-cp-cp36m.






Tailoring PEX execution at runtime

Tailoring of PEX execution can be done at runtime by setting various environment variables.
The source of truth for these environment variables can be found in the
pex.variables API.






Using bdist_pex

pex provides a convenience command for use in setuptools.  python setup.py
bdist_pex is a simple way to build executables for Python projects that
adhere to standard naming conventions.


bdist_pex

The default behavior of bdist_pex is to build an executable using the
console script of the same name as the package.  For example, pip has three
entry points: pip, pip2 and pip2.7 if you’re using Python 2.7.  Since
there exists an entry point named pip in the console_scripts section
of the entry points, that entry point is chosen and an executable pex is produced.  The pex file
will have the version number appended, e.g. pip-7.2.0.pex.

If no console scripts are provided, or the only console scripts available do
not bear the same name as the package, then an environment pex will be
produced.  An environment pex is a pex file that drops you into an
interpreter with all necessary dependencies but stops short of invoking a
specific module or function.




bdist_pex --bdist-all

If you would like to build all the console scripts defined in the package instead of
just the namesake script, --bdist-all will write all defined entry_points but omit
version numbers and the .pex suffix.  This can be useful if you would like to
virtually install a Python package somewhere on your $PATH without doing something
scary like sudo pip install:

$ git clone https://github.com/sphinx-doc/sphinx && cd sphinx
$ python setup.py bist_pex --bdist-all --bdist-dir=$HOME/bin
running bdist_pex
Writing sphinx-apidoc to /Users/wickman/bin/sphinx-apidoc
Writing sphinx-build to /Users/wickman/bin/sphinx-build
Writing sphinx-quickstart to /Users/wickman/bin/sphinx-quickstart
Writing sphinx-autogen to /Users/wickman/bin/sphinx-autogen
$ sphinx-apidoc --help | head -1
Usage: sphinx-apidoc [options] -o <output_path> <module_path> [exclude_path, ...]










Other ways to build PEX files


	There are other supported ways to build pex files:

	
	Using pants.  See Pants Python documentation [http://pantsbuild.github.io/python-readme.html].


	Programmatically via the pex API.












          

      

      

    

  

    
      
          
            
  
PEX API Reference


Module contents




pex.crawler module

Support for webpage parsing and crawling.


	
class pex.crawler.Crawler(context=None, threads=1)

	Bases: object

A multi-threaded crawler that supports local (disk) and remote (web) crawling.


	
classmethod reset_cache()

	Reset the internal crawl cache. This is intended primarily for tests.










	
class pex.crawler.PageParser

	Bases: object

A helper class to extract and differentiate ordinary and download links from webpages.


	
classmethod links(page)

	return all links on a page, including potentially rel= links.






	
classmethod rel_links(page)

	return rel= links that should be scraped, skipping obviously data links.










	
pex.crawler.unescape(s)

	Unescapes html. Taken from https://wiki.python.org/moin/EscapingHtml








pex.environment module




pex.fetcher module


	
class pex.fetcher.FetcherBase

	Bases: abc.AbstractClass

A fetcher takes a Requirement and tells us where to crawl to find it.






	
pex.fetcher.normalize_name(name)

	Normalize package name according to PEP-503








pex.finders module

The finders we wish we had in setuptools.

As of setuptools 3.3, the only finder for zip-based distributions is for eggs.  The path-based
finder only searches paths ending in .egg and not in .whl (zipped or unzipped.)

pex.finders augments pkg_resources with additional finders to achieve functional
parity between wheels and eggs in terms of findability with find_distributions.


	To use:

	>>> from pex.finders import register_finders
>>> register_finders()










	
class pex.finders.ChainedFinder(finders)

	Bases: object

A utility to chain together multiple pkg_resources finders.






	
class pex.finders.FixedEggMetadata(importer)

	Bases: pkg_resources.EggMetadata

An EggMetadata provider that has functional parity with the disk-based provider.






	
class pex.finders.WheelMetadata(importer)

	Bases: pkg_resources.EggMetadata

Metadata provider for zipped wheels.






	
pex.finders.get_script_from_egg(name, dist)

	Returns location, content of script in distribution or (None, None) if not there.






	
pex.finders.register_finders()

	Register finders necessary for PEX to function properly.






	
pex.finders.unregister_finders()

	Unregister finders necessary for PEX to function properly.








pex.http module


	
class pex.http.CachedRequestsContext(cache=None, **kw)

	Bases: pex.http.RequestsContext

A requests-based Context with CacheControl support.






	
class pex.http.Context

	Bases: abc.AbstractClass

Encapsulate the networking necessary to do requirement resolution.

At a minimum, the Context must implement open(link) by returning a
file-like object.  Reference implementations of read(link) and
fetch(link) are provided based upon open(link) but may be further
specialized by individual implementations.


	
exception Error

	Bases: exceptions.Exception

Error base class for Contexts to wrap application-specific exceptions.






	
content(link)

	Return the encoded content associated with the link.


	Parameters

	link – The Link to read.










	
fetch(link, into=None)

	Fetch the binary content associated with the link and write to a file.


	Parameters

	
	link – The Link to fetch.


	into – If specified, write into the directory into.  If None, creates a new
temporary directory that persists for the duration of the interpreter.













	
open(link)

	Return an open file-like object to the link.


	Parameters

	link – The Link to open.










	
read(link)

	Return the binary content associated with the link.


	Parameters

	link – The Link to read.










	
classmethod register(context_impl)

	Register a concrete implementation of a Context to be recognized.






	
resolve(link)

	Resolves final link throught all the redirections.


	Parameters

	link – The Link to open.














	
class pex.http.RequestsContext(session=None, verify=True, env=<pex.variables.Variables object>)

	Bases: pex.http.Context

A requests-based Context.






	
class pex.http.StreamFilelike(request, link, chunk_size=16384)

	Bases: object

A file-like object wrapper around requests streams that performs hash validation.


	
classmethod detect_algorithm(link)

	Detect the hashing algorithm from the fragment in the link, if any.










	
class pex.http.UrllibContext(*args, **kw)

	Bases: pex.http.Context

Default Python standard library Context.








pex.installer module


	
class pex.installer.Installer(source_dir, strict=True, interpreter=None)

	Bases: pex.installer.InstallerBase

Install an unpacked distribution with a setup.py.






	
class pex.installer.Packager(source_dir, strict=True, interpreter=None, install_dir=None)

	Bases: pex.installer.DistributionPackager

Create a source distribution from an unpacked setup.py-based project.








pex.interpreter module

pex support for interacting with interpreters.




pex.iterator module

The glue between fetchers, crawlers and requirements.


	
class pex.iterator.Iterator(fetchers=None, crawler=None, follow_links=False, allow_prereleases=None)

	Bases: pex.iterator.IteratorInterface

A requirement iterator, the glue between fetchers, crawlers and requirements.








pex.link module


	
class pex.link.Link(url)

	Bases: object

Wrapper around a URL.


	
filename

	The basename of this url.






	
fragment

	The url fragment following ‘#’ if any.






	
classmethod from_filename(filename)

	Return a Link wrapping the local filename.






	
join(href)

	Given a href relative to this link, return the Link of the absolute url.


	Parameters

	href – A string-like path relative to this link.










	
local

	Is the url a local file?






	
local_path

	Returns the local filesystem path (only works for file:// urls).






	
path

	The full path of this url with any hostname and scheme components removed.






	
remote

	Is the url a remote file?






	
scheme

	The URI scheme used by this Link.






	
url

	The url string to which this link points.






	
classmethod wrap(url)

	Given a url that is either a string or Link, return a Link.


	Parameters

	url – A string-like or Link object to wrap.



	Returns

	A Link object wrapping the url.










	
classmethod wrap_iterable(url_or_urls)

	Given a string or Link or iterable, return an iterable of Link objects.


	Parameters

	url_or_urls – A string or Link object, or iterable of string or Link
objects.



	Returns

	A list of Link objects.
















pex.package module


	
pex.package.EGG_NAME()

	match(string[, pos[, endpos]]) –> match object or None.
Matches zero or more characters at the beginning of the string






	
class pex.package.EggPackage(url, **kw)

	Bases: pex.package.Package

A Package representing a built egg.






	
class pex.package.Package(url)

	Bases: pex.link.Link

Base class for named Python binary packages (e.g. source, egg, wheel).


	
compatible(supported_tags)

	Is this link compatible with the given tag set?


	Parameters

	supported_tags (list of 3-tuples) – A list of tags that is supported by the target
interpeter, as generated by
pex.pep425tags.get_supported().










	
classmethod from_href(href, **kw)

	Convert from a url to Package.


	Parameters

	href (string) – The url to parse



	Returns

	A Package object if a valid concrete implementation exists, otherwise None.










	
classmethod register(package_type)

	Register a concrete implementation of a Package to be recognized by pex.






	
satisfies(requirement, allow_prereleases=None)

	Determine whether this package matches the requirement.


	Parameters

	
	requirement (string or pkg_resources.Requirement) – The requirement to compare this Package against


	allow_prereleases (Optional[bool]) – Whether to allow prereleases to satisfy
the requirement.






	Returns

	True if the package matches the requirement, otherwise False














	
class pex.package.SourcePackage(url, **kw)

	Bases: pex.package.Package

A Package representing an uncompiled/unbuilt source distribution.


	
classmethod split_fragment(fragment)

	A heuristic used to split a string into version name/fragment:

>>> SourcePackage.split_fragment('pysolr-2.1.0-beta')
('pysolr', '2.1.0-beta')
>>> SourcePackage.split_fragment('cElementTree-1.0.5-20051216')
('cElementTree', '1.0.5-20051216')
>>> SourcePackage.split_fragment('pil-1.1.7b1-20090412')
('pil', '1.1.7b1-20090412')
>>> SourcePackage.split_fragment('django-plugin-2-2.3')
('django-plugin-2', '2.3')














	
class pex.package.WheelPackage(url, **kw)

	Bases: pex.package.Package

A Package representing a built wheel.






	
pex.package.distribution_compatible(dist, supported_tags=None)

	Is this distribution compatible with the given interpreter/platform combination?


	Parameters

	supported_tags – A list of tag tuples specifying which tags are supported
by the platform in question.



	Returns

	True if the distribution is compatible, False if it is unrecognized or incompatible.












pex.pep425tags module

Generate and work with PEP 425 Compatibility Tags.


	
pex.pep425tags.get_abbr_impl()

	Return abbreviated implementation name.






	
pex.pep425tags.get_abi_tag()

	Return the ABI tag based on SOABI (if available) or emulate SOABI
(CPython 2, PyPy).






	
pex.pep425tags.get_darwin_arches(major, minor, machine)

	Return a list of supported arches (including group arches) for
the given major, minor and machine architecture of an macOS machine.






	
pex.pep425tags.get_flag(var, fallback, expected=True, warn=True)

	Use a fallback method for determining SOABI flags if the needed config
var is unset or unavailable.






	
pex.pep425tags.get_impl_tag()

	Returns the Tag for this specific implementation.






	
pex.pep425tags.get_impl_ver()

	Return implementation version.






	
pex.pep425tags.get_impl_version_info()

	Return sys.version_info-like tuple for use in decrementing the minor
version.






	
pex.pep425tags.get_platform()

	Return our platform name ‘win32’, ‘linux_x86_64’






	
pex.pep425tags.get_supported(version=None, noarch=False, platform=None, impl=None, abi=None)

	Return a list of supported tags for each version specified in
versions.


	Parameters

	
	version – string version (e.g., “33”, “32”) or None.
If None, use local system Python version.


	platform – specify the exact platform you want valid
tags for, or None. If None, use the local system platform.


	impl – specify the exact implementation you want valid
tags for, or None. If None, use the local interpreter impl.


	abi – specify the exact abi you want valid
tags for, or None. If None, use the local interpreter abi.















pex.pex module


	
class pex.pex.PEX(pex='/home/docs/checkouts/readthedocs.org/user_builds/manypex/envs/latest/bin/sphinx-build', interpreter=None, env=<pex.variables.Variables object>)

	Bases: object

PEX, n. A self-contained python environment.


	
cmdline(args=())

	The commandline to run this environment.


	Parameters

	args – Additional arguments to be passed to the application being invoked by the
environment.










	
execute()

	Execute the PEX.

This function makes assumptions that it is the last function called by
the interpreter.






	
classmethod minimum_sys(inherit_path)

	Return the minimum sys necessary to run this interpreter, a la python -S.


	Returns

	(sys.path, sys.path_importer_cache, sys.modules) tuple of a
bare python installation.










	
classmethod minimum_sys_modules(site_libs, modules=None)

	Given a set of site-packages paths, return a “clean” sys.modules.

When importing site, modules within sys.modules have their __path__’s populated with
additional paths as defined by *-nspkg.pth in site-packages, or alternately by distribution
metadata such as *.dist-info/namespace_packages.txt.  This can possibly cause namespace
packages to leak into imports despite being scrubbed from sys.path.

NOTE: This method mutates modules’ __path__ attributes in sys.module, so this is currently an
irreversible operation.






	
classmethod patch_pkg_resources(*args, **kwds)

	Patch pkg_resources given a new working set.






	
patch_sys(*args, **kwds)

	Patch sys with all site scrubbed.






	
path()

	Return the path this PEX was built at.






	
run(args=(), with_chroot=False, blocking=True, setsid=False, **kwargs)

	Run the PythonEnvironment in an interpreter in a subprocess.


	Parameters

	
	args – Additional arguments to be passed to the application being invoked by the
environment.


	with_chroot – Run with cwd set to the environment’s working directory.


	blocking – If true, return the return code of the subprocess.
If false, return the Popen object of the invoked subprocess.


	setsid – If true, run the PEX in a separate operating system session.








Remaining keyword arguments are passed directly to subprocess.Popen.












pex.pex_builder module


	
class pex.pex_builder.PEXBuilder(path=None, interpreter=None, chroot=None, pex_info=None, preamble=None, copy=False)

	Bases: object

Helper for building PEX environments.


	
add_dist_location(dist, name=None)

	Add a distribution by its location on disk.


	Parameters

	
	dist – The path to the distribution to add.


	name – (optional) The name of the distribution, should the dist directory alone be
ambiguous.  Packages contained within site-packages directories may require specifying
name.






	Raises

	PEXBuilder.InvalidDistribution – When the path does not contain a matching distribution.





PEX supports packed and unpacked .whl and .egg distributions, as well as any distribution
supported by setuptools/pkg_resources.






	
add_distribution(dist, dist_name=None)

	Add a pkg_resources.Distribution from its handle.


	Parameters

	
	dist (pkg_resources.Distribution) – The distribution to add to this environment.


	dist_name – (optional) The name of the distribution e.g. ‘Flask-0.10.0’.  By default
this will be inferred from the distribution itself should it be formatted in a standard way.













	
add_egg(egg)

	Alias for add_dist_location.






	
add_interpreter_constraint(ic)

	Add an interpreter constraint to the PEX environment.


	Parameters

	ic – A version constraint on the interpreter used to build and run this PEX environment.










	
add_requirement(req)

	Add a requirement to the PEX environment.


	Parameters

	req – A requirement that should be resolved in this environment.






Changed in version 0.8: Removed dynamic and repo keyword arguments as they were unused.








	
add_resource(filename, env_filename)

	Add a resource to the PEX environment.


	Parameters

	
	filename – The source filename to add to the PEX.


	env_filename – The destination filename in the PEX.  This path
must be a relative path.













	
add_source(filename, env_filename)

	Add a source to the PEX environment.


	Parameters

	
	filename – The source filename to add to the PEX.


	env_filename – The destination filename in the PEX.  This path
must be a relative path.













	
build(filename, bytecode_compile=True)

	Package the PEX into a zipfile.


	Parameters

	
	filename – The filename where the PEX should be stored.


	bytecode_compile – If True, precompile .py files into .pyc files.








If the PEXBuilder is not yet frozen, it will be frozen by build.  This renders the
PEXBuilder immutable.






	
clone(into=None)

	Clone this PEX environment into a new PEXBuilder.


	Parameters

	into – (optional) An optional destination directory to clone this PEXBuilder into.  If
not specified, a temporary directory will be created.





Clones PEXBuilder into a new location.  This is useful if the PEXBuilder has been frozen and
rendered immutable.


Changed in version 0.8: The temporary directory created when into is not specified is now garbage collected on
interpreter exit.








	
freeze(bytecode_compile=True)

	Freeze the PEX.


	Parameters

	bytecode_compile – If True, precompile .py files into .pyc files when freezing code.





Freezing the PEX writes all the necessary metadata and environment bootstrapping code.  It may
only be called once and renders the PEXBuilder immutable.






	
set_entry_point(entry_point)

	Set the entry point of this PEX environment.


	Parameters

	entry_point (string or None) – The entry point of the PEX in the form of module or module:symbol,
or None.





By default the entry point is None.  The behavior of a None entry point is dropping into
an interpreter.  If module, it will be executed via runpy.run_module.  If
module:symbol, it is equivalent to from module import symbol; symbol().

The entry point may also be specified via PEXBuilder.set_executable.






	
set_executable(filename, env_filename=None)

	Set the executable for this environment.


	Parameters

	
	filename – The file that should be executed within the PEX environment when the PEX is
invoked.


	env_filename – (optional) The name that the executable file should be stored as within
the PEX.  By default this will be the base name of the given filename.








The entry point of the PEX may also be specified via PEXBuilder.set_entry_point.






	
set_script(script)

	Set the entry point of this PEX environment based upon a distribution script.


	Parameters

	script – The script name as defined either by a console script or ordinary
script within the setup.py of one of the distributions added to the PEX.



	Raises

	PEXBuilder.InvalidExecutableSpecification if the script is not found
in any distribution added to the PEX.










	
set_shebang(shebang)

	Set the exact shebang line for the PEX file.

For example, pex_builder.set_shebang(‘/home/wickman/Local/bin/python3.4’).  This is
used to override the default behavior which is to have a #!/usr/bin/env line referencing an
interpreter compatible with the one used to build the PEX.


	Parameters

	shebang (str) – The shebang line. If it does not include the leading ‘#!’ it will be added.
















pex.pex_info module


	
class pex.pex_info.PexInfo(info=None)

	Bases: object

PEX metadata.

# Build metadata:
build_properties: BuildProperties  # (key-value information about the build system)
code_hash: str                     # sha1 hash of all names/code in the archive
distributions: {dist_name: str}    # map from distribution name (i.e. path in


# the internal cache) to its cache key (sha1)




requirements: list                 # list of requirements for this environment

# Environment options
pex_root: string                    # root of all pex-related files eg: ~/.pex
entry_point: string                 # entry point into this pex
script: string                      # script to execute in this pex environment


# at most one of script/entry_point can be specified




zip_safe: True, default False       # is this pex zip safe?
inherit_path: false/fallback/prefer # should this pex inherit site-packages + PYTHONPATH?
ignore_errors: True, default False  # should we ignore inability to resolve dependencies?
always_write_cache: False           # should we always write the internal cache to disk first?


# this is useful if you have very large dependencies that
# do not fit in RAM constrained environments





Changed in version 0.8: Removed the repositories and indices information, as they were never
implemented.




	
build_properties

	Information about the system on which this PEX was generated.


	Returns

	A dictionary containing metadata about the environment used to build this PEX.










	
inherit_path

	Whether or not this PEX should be allowed to inherit system dependencies.

By default, PEX environments are scrubbed of all system distributions prior to execution.
This means that PEX files cannot rely upon preexisting system libraries.

By default inherit_path is false.  This may be overridden at runtime by the $PEX_INHERIT_PATH
environment variable.






	
interpreter_constraints

	A list of constraints that determine the interpreter compatibility for this
pex, using the Requirement-style format, e.g. 'CPython>=3', or just '>=2.7,<3'
for requirements agnostic to interpreter class.

This property will be used at exec time when bootstrapping a pex to search PEX_PYTHON_PATH
for a list of compatible interpreters.






	
merge_pex_path(pex_path)

	Merges a new PEX_PATH definition into the existing one (if any).
:param string pex_path: The PEX_PATH to merge.






	
pex_path

	A colon separated list of other pex files to merge into the runtime environment.

This pex info property is used to persist the PEX_PATH environment variable into the pex info
metadata for reuse within a built pex.






	
zip_safe

	Whether or not this PEX should be treated as zip-safe.

If set to false and the PEX is zipped, the contents of the PEX will be unpacked into a
directory within the PEX_ROOT prior to execution.  This allows code and frameworks depending
upon __file__ existing on disk to operate normally.

By default zip_safe is True.  May be overridden at runtime by the $PEX_FORCE_LOCAL environment
variable.










	
class pex.pex_info.PexPlatform(interpreter, version, strict)

	Bases: tuple


	
interpreter

	Alias for field number 0






	
strict

	Alias for field number 2






	
version

	Alias for field number 1












pex.resolver module


	
class pex.resolver.CachingResolver(cache, cache_ttl, *args, **kw)

	Bases: pex.resolver.Resolver

A package resolver implementing a package cache.






	
class pex.resolver.Resolver(allow_prereleases=None, interpreter=None, platform=None, pkg_blacklist=None)

	Bases: object

Interface for resolving resolvable entities into python packages.






	
class pex.resolver.StaticIterator(packages, allow_prereleases=None)

	Bases: pex.iterator.IteratorInterface

An iterator that iterates over a static list of packages.






	
pex.resolver.patched_packing_env(*args, **kwds)

	Monkey patch packaging.markers.default_environment






	
pex.resolver.platform_to_tags(platform, interpreter)

	Splits a “platform” like linux_x86_64-36-cp-cp36m into its components.

If a simple platform without hyphens is specified, we will fall back to using
the current interpreter’s tags.






	
pex.resolver.resolve(requirements, fetchers=None, interpreter=None, platform=None, context=None, precedence=None, cache=None, cache_ttl=None, allow_prereleases=None, pkg_blacklist=None)

	Produce all distributions needed to (recursively) meet requirements


	Parameters

	
	requirements – An iterator of Requirement-like things, either
pkg_resources.Requirement objects or requirement strings.


	fetchers – (optional) A list of Fetcher objects for locating packages.  If
unspecified, the default is to look for packages on PyPI.


	interpreter – (optional) A PythonInterpreter object to use for building
distributions and for testing distribution compatibility.


	versions – (optional) a list of string versions, of the form [“33”, “32”],
or None. The first version will be assumed to support our ABI.


	platform – (optional) specify the exact platform you want valid
tags for, or None. If None, use the local system platform.


	impl – (optional) specify the exact implementation you want valid
tags for, or None. If None, use the local interpreter impl.


	abi – (optional) specify the exact abi you want valid
tags for, or None. If None, use the local interpreter abi.


	context – (optional) A Context object to use for network access.  If
unspecified, the resolver will attempt to use the best available network context.


	precedence – (optional) An ordered list of allowable Package classes
to be used for producing distributions.  For example, if precedence is supplied as
(WheelPackage, SourcePackage), wheels will be preferred over building from source, and
eggs will not be used at all.  If (WheelPackage, EggPackage) is suppplied, both wheels and
eggs will be used, but the resolver will not resort to building anything from source.


	cache – (optional) A directory to use to cache distributions locally.


	cache_ttl – (optional integer in seconds) If specified, consider non-exact matches when
resolving requirements.  For example, if setuptools==2.2 is specified and setuptools 2.2 is
available in the cache, it will always be used.  However, if a non-exact requirement such as
setuptools>=2,<3 is specified and there exists a setuptools distribution newer than
cache_ttl seconds that satisfies the requirement, then it will be used.  If the distribution
is older than cache_ttl seconds, it will be ignored.  If cache_ttl is not specified,
resolving inexact requirements will always result in making network calls through the
context.


	allow_prereleases – (optional) Include pre-release and development versions.  If
unspecified only stable versions will be resolved, unless explicitly included.


	pkg_blacklist – (optional) A blacklist dict (str->str) that maps package name to
an interpreter constraint. If a package name is in the blacklist and its interpreter
constraint matches the target interpreter, skip the requirement. This is needed to ensure
that universal requirement resolves for a target interpreter version do not error out on
interpreter specific requirements such as backport libs like functools32.
For example, a valid blacklist is {‘functools32’: ‘CPython>3’}.
NOTE: this keyword is a temporary fix and will be reverted in favor of a long term solution
tracked by: https://github.com/pantsbuild/pex/issues/456






	Returns

	List of pkg_resources.Distribution instances meeting requirements.



	Raises

	
	Unsatisfiable – If requirements is not transitively satisfiable.


	Untranslateable – If no compatible distributions could be acquired for
a particular requirement.








This method improves upon the setuptools dependency resolution algorithm by maintaining sets of
all compatible distributions encountered for each requirement rather than the single best
distribution encountered for each requirement.  This prevents situations where tornado and
tornado==2.0 could be treated as incompatible with each other because the “best
distribution” when encountering tornado was tornado 3.0.  Instead, resolve maintains the
set of compatible distributions for each requirement as it is encountered, and iteratively filters
the set.  If the set of distributions ever becomes empty, then Unsatisfiable is raised.


Changed in version 0.8: A number of keywords were added to make requirement resolution slightly easier to configure.
The optional obtainer keyword was replaced by fetchers, translator, context,
threads, precedence, cache and cache_ttl, also all optional keywords.




Changed in version 1.0: The translator and threads keywords have been removed.  The choice of threading
policy is now implicit.  The choice of translation policy is dictated by precedence
directly.




Changed in version 1.0: resolver is now just a wrapper around the Resolver and CachingResolver
classes.








	
pex.resolver.resolve_multi(requirements, fetchers=None, interpreters=None, platforms=None, context=None, precedence=None, cache=None, cache_ttl=None, allow_prereleases=None, pkg_blacklist=None)

	A generator function that produces all distributions needed to meet requirements
for multiple interpreters and/or platforms.


	Parameters

	
	requirements – An iterator of Requirement-like things, either
pkg_resources.Requirement objects or requirement strings.


	fetchers – (optional) A list of Fetcher objects for locating packages.  If
unspecified, the default is to look for packages on PyPI.


	interpreters – (optional) An iterable of PythonInterpreter objects to use
for building distributions and for testing distribution compatibility.


	platforms – (optional) An iterable of PEP425-compatible platform strings to use for
filtering compatible distributions.  If unspecified, the current platform is used, as
determined by Platform.current().


	context – (optional) A Context object to use for network access.  If
unspecified, the resolver will attempt to use the best available network context.


	precedence – (optional) An ordered list of allowable Package classes
to be used for producing distributions.  For example, if precedence is supplied as
(WheelPackage, SourcePackage), wheels will be preferred over building from source, and
eggs will not be used at all.  If (WheelPackage, EggPackage) is suppplied, both wheels and
eggs will be used, but the resolver will not resort to building anything from source.


	cache – (optional) A directory to use to cache distributions locally.


	cache_ttl – (optional integer in seconds) If specified, consider non-exact matches when
resolving requirements.  For example, if setuptools==2.2 is specified and setuptools 2.2 is
available in the cache, it will always be used.  However, if a non-exact requirement such as
setuptools>=2,<3 is specified and there exists a setuptools distribution newer than
cache_ttl seconds that satisfies the requirement, then it will be used.  If the distribution
is older than cache_ttl seconds, it will be ignored.  If cache_ttl is not specified,
resolving inexact requirements will always result in making network calls through the
context.


	allow_prereleases – (optional) Include pre-release and development versions.  If
unspecified only stable versions will be resolved, unless explicitly included.


	pkg_blacklist – (optional) A blacklist dict (str->str) that maps package name to
an interpreter constraint. If a package name is in the blacklist and its interpreter
constraint matches the target interpreter, skip the requirement. This is needed to ensure
that universal requirement resolves for a target interpreter version do not error out on
interpreter specific requirements such as backport libs like functools32.
For example, a valid blacklist is {‘functools32’: ‘CPython>3’}.
NOTE: this keyword is a temporary fix and will be reverted in favor of a long term solution
tracked by: https://github.com/pantsbuild/pex/issues/456






	Yields

	All pkg_resources.Distribution instances meeting requirements.



	Raises

	
	Unsatisfiable – If requirements is not transitively satisfiable.


	Untranslateable – If no compatible distributions could be acquired for
a particular requirement.















pex.testing module


	
class pex.testing.IntegResults

	Bases: pex.testing.results

Convenience object to return integration run results.






	
pex.testing.get_dep_dist_names_from_pex(pex_path, match_prefix='')

	Given an on-disk pex, extract all of the unique first-level paths under .deps.






	
pex.testing.run_pex_command(args, env=None)

	Simulate running pex command for integration testing.

This is different from run_simple_pex in that it calls the pex command rather
than running a generated pex.  This is useful for testing end to end runs
with specific command line arguments or env options.






	
pex.testing.temporary_content(*args, **kwds)

	Write content to disk where content is map from string => (int, string).

If target is int, write int random bytes.  Otherwise write contents of string.






	
pex.testing.temporary_filename(*args, **kwds)

	Creates a temporary filename.

This is useful when you need to pass a filename to an API. Windows requires all
handles to a file be closed before deleting/renaming it, so this makes it a bit
simpler.






	
pex.testing.write_simple_pex(td, exe_contents, dists=None, sources=None, coverage=False)

	Write a pex file that contains an executable entry point


	Parameters

	
	td – temporary directory path


	exe_contents (string) – entry point python file


	dists – distributions to include, typically sdists or bdists


	sources – sources to include, as a list of pairs (env_filename, contents)


	coverage – include coverage header















pex.tracer module


	
class pex.tracer.TraceLogger(predicate=None, output=<open file '<stderr>', mode 'w'>, clock=<module 'time' (built-in)>, prefix='')

	Bases: object

A multi-threaded tracer.








pex.translator module


	
class pex.translator.ChainedTranslator(*translators)

	Bases: pex.translator.TranslatorBase

Glue a sequence of Translators together in priority order.  The first Translator to resolve a
requirement wins.






	
class pex.translator.TranslatorBase

	Bases: abc.AbstractClass

Translate a link into a distribution.








pex.util module


	
class pex.util.Memoizer

	Bases: object

A thread safe class for memoizing the results of a computation.






	
pex.util.iter_pth_paths(filename)

	Given a .pth file, extract and yield all inner paths without honoring imports. This shadows
python’s site.py behavior, which is invoked at interpreter startup.






	
pex.util.merge_split(*paths)

	Merge paths into a single path delimited by colons and split on colons to return
a list of paths.


	Parameters

	paths – a variable length list of path strings



	Returns

	a list of paths from the merged path list split by colons










	
pex.util.named_temporary_file(*args, **kwds)

	Due to a bug in python (https://bugs.python.org/issue14243), we need
this to be able to use the temporary file without deleting it.








pex.variables module


	
class pex.variables.Variables(environ=None, rc=None, use_defaults=True)

	Bases: object

Environment variables supported by the PEX runtime.


	
PEX_ALWAYS_CACHE

	Boolean

Always write PEX dependencies to disk prior to invoking regardless whether or not the
dependencies are zip-safe.  For certain dependencies that are very large such as numpy, this
can reduce the RAM necessary to launch the PEX.  The data will be written into $PEX_ROOT,
which by default is $HOME/.pex.  Default: false.






	
PEX_COVERAGE

	Boolean

Enable coverage reporting for this PEX file.  This requires that the “coverage” module is
available in the PEX environment.  Default: false.






	
PEX_COVERAGE_FILENAME

	Filename

Write the coverage data to the specified filename.  If PEX_COVERAGE_FILENAME is not specified
but PEX_COVERAGE is, coverage information will be printed to stdout and not saved.






	
PEX_FORCE_LOCAL

	Boolean

Force this PEX to be not-zip-safe. This forces all code and dependencies to be written into
$PEX_ROOT prior to invocation.  This is an option for applications with static assets that
refer to paths relative to __file__ instead of using pkgutil/pkg_resources.  Default: false.






	
PEX_HTTP_RETRIES

	Integer

The number of HTTP retries when performing dependency resolution when building a PEX file.
Default: 5.






	
PEX_IGNORE_ERRORS

	Boolean

Ignore any errors resolving dependencies when invoking the PEX file. This can be useful if you
know that a particular failing dependency is not necessary to run the application.  Default:
false.






	
PEX_IGNORE_RCFILES

	Boolean

Explicitly disable the reading/parsing of pexrc files (~/.pexrc). Default: false.






	
PEX_INHERIT_PATH

	Boolean

Allow inheriting packages from site-packages.  By default, PEX scrubs any packages and
namespace packages from sys.path prior to invoking the application.  This is generally not
advised, but can be used in situations when certain dependencies do not conform to standard
packaging practices and thus cannot be bundled into PEX files.  Default: false.






	
PEX_INTERPRETER

	Boolean

Drop into a REPL instead of invoking the predefined entry point of this PEX. This can be
useful for inspecting the PEX environment interactively.  It can also be used to treat the PEX
file as an interpreter in order to execute other scripts in the context of the PEX file, e.g.
“PEX_INTERPRETER=1 ./app.pex my_script.py”.  Equivalent to setting PEX_MODULE to empty.
Default: false.






	
PEX_MODULE

	String

Override the entry point into the PEX file.  Can either be a module, e.g.  ‘SimpleHTTPServer’,
or a specific entry point in module:symbol form, e.g.  “myapp.bin:main”.






	
PEX_PATH

	A set of one or more PEX files

Merge the packages from other PEX files into the current environment.  This allows you to
do things such as create a PEX file containing the “coverage” module or create PEX files
containing plugin entry points to be consumed by a main application.  Paths should be
specified in the same manner as $PATH, e.g. PEX_PATH=/path/to/pex1.pex:/path/to/pex2.pex
and so forth.






	
PEX_PROFILE

	Boolean

Enable application profiling.  If specified and PEX_PROFILE_FILENAME is not specified, PEX will
print profiling information to stdout.






	
PEX_PROFILE_FILENAME

	Filename

Profile the application and dump a profile into the specified filename in the standard
“profile” module format.






	
PEX_PROFILE_SORT

	String

Toggle the profile sorting algorithm used to print out profile columns.  Default:
‘cumulative’.






	
PEX_PYTHON

	String

Override the Python interpreter used to invoke this PEX.  Can be either an absolute path to an
interpreter or a base name e.g.  “python3.3”.  If a base name is provided, the $PATH will be
searched for an appropriate match.






	
PEX_PYTHON_PATH

	String

A colon-separated string containing paths of blessed Python interpreters
for overriding the Python interpreter used to invoke this PEX. Must be absolute paths to the
interpreter.

Ex: “/path/to/python27:/path/to/python36”






	
PEX_ROOT

	Directory

The directory location for PEX to cache any dependencies and code.  PEX must write
not-zip-safe eggs and all wheels to disk in order to activate them.  Default: ~/.pex






	
PEX_SCRIPT

	String

The script name within the PEX environment to execute.  This must either be an entry point as
defined in a distribution’s console_scripts, or a script as defined in a distribution’s
scripts section.  While Python supports any script including shell scripts, PEX only supports
invocation of Python scripts in this fashion.






	
PEX_TEARDOWN_VERBOSE

	Boolean

Enable verbosity for when the interpreter shuts down.  This is mostly only useful for
debugging PEX itself.  Default: false.






	
PEX_VERBOSE

	Integer

Set the verbosity level of PEX debug logging.  The higher the number, the more logging, with 0
being disabled.  This environment variable can be extremely useful in debugging PEX
environment issues.  Default: 0






	
classmethod from_rc(rc=None)

	Read pex runtime configuration variables from a pexrc file.


	Parameters

	rc – an absolute path to a pexrc file.



	Returns

	A dict of key value pairs found in processed pexrc files.



	Return type

	dict










	
patch(*args, **kwds)

	Update the environment for the duration of a context.






	
strip_defaults()

	Returns a copy of these variables but with defaults stripped.

Any variables not explicitly set in the environment will have a value of None.















          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pex	
       

     
       	
       	   
       pex.crawler	
       

     
       	
       	   
       pex.environment	
       

     
       	
       	   
       pex.fetcher	
       

     
       	
       	   
       pex.finders	
       

     
       	
       	   
       pex.http	
       

     
       	
       	   
       pex.installer	
       

     
       	
       	   
       pex.interpreter	
       

     
       	
       	   
       pex.iterator	
       

     
       	
       	   
       pex.link	
       

     
       	
       	   
       pex.package	
       

     
       	
       	   
       pex.pep425tags	
       

     
       	
       	   
       pex.pex	
       

     
       	
       	   
       pex.pex_builder	
       

     
       	
       	   
       pex.pex_info	
       

     
       	
       	   
       pex.resolver	
       

     
       	
       	   
       pex.testing	
       

     
       	
       	   
       pex.tracer	
       

     
       	
       	   
       pex.translator	
       

     
       	
       	   
       pex.util	
       

     
       	
       	   
       pex.variables	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z
 


A


  	
      	add_dist_location() (pex.pex_builder.PEXBuilder method)


      	add_distribution() (pex.pex_builder.PEXBuilder method)


      	add_egg() (pex.pex_builder.PEXBuilder method)


  

  	
      	add_interpreter_constraint() (pex.pex_builder.PEXBuilder method)


      	add_requirement() (pex.pex_builder.PEXBuilder method)


      	add_resource() (pex.pex_builder.PEXBuilder method)


      	add_source() (pex.pex_builder.PEXBuilder method)


  





B


  	
      	build() (pex.pex_builder.PEXBuilder method)


  

  	
      	build_properties (pex.pex_info.PexInfo attribute)


  





C


  	
      	CachedRequestsContext (class in pex.http)


      	CachingResolver (class in pex.resolver)


      	ChainedFinder (class in pex.finders)


      	ChainedTranslator (class in pex.translator)


      	clone() (pex.pex_builder.PEXBuilder method)


  

  	
      	cmdline() (pex.pex.PEX method)


      	compatible() (pex.package.Package method)


      	content() (pex.http.Context method)


      	Context (class in pex.http)


      	Context.Error


      	Crawler (class in pex.crawler)


  





D


  	
      	detect_algorithm() (pex.http.StreamFilelike class method)


  

  	
      	distribution_compatible() (in module pex.package)


  





E


  	
      	EGG_NAME() (in module pex.package)


  

  	
      	EggPackage (class in pex.package)


      	execute() (pex.pex.PEX method)


  





F


  	
      	fetch() (pex.http.Context method)


      	FetcherBase (class in pex.fetcher)


      	filename (pex.link.Link attribute)


      	FixedEggMetadata (class in pex.finders)


  

  	
      	fragment (pex.link.Link attribute)


      	freeze() (pex.pex_builder.PEXBuilder method)


      	from_filename() (pex.link.Link class method)


      	from_href() (pex.package.Package class method)


      	from_rc() (pex.variables.Variables class method)


  





G


  	
      	get_abbr_impl() (in module pex.pep425tags)


      	get_abi_tag() (in module pex.pep425tags)


      	get_darwin_arches() (in module pex.pep425tags)


      	get_dep_dist_names_from_pex() (in module pex.testing)


      	get_flag() (in module pex.pep425tags)


  

  	
      	get_impl_tag() (in module pex.pep425tags)


      	get_impl_ver() (in module pex.pep425tags)


      	get_impl_version_info() (in module pex.pep425tags)


      	get_platform() (in module pex.pep425tags)


      	get_script_from_egg() (in module pex.finders)


      	get_supported() (in module pex.pep425tags)


  





I


  	
      	inherit_path (pex.pex_info.PexInfo attribute)


      	Installer (class in pex.installer)


      	IntegResults (class in pex.testing)


  

  	
      	interpreter (pex.pex_info.PexPlatform attribute)


      	interpreter_constraints (pex.pex_info.PexInfo attribute)


      	iter_pth_paths() (in module pex.util)


      	Iterator (class in pex.iterator)


  





J


  	
      	join() (pex.link.Link method)


  





L


  	
      	Link (class in pex.link)


      	links() (pex.crawler.PageParser class method)


  

  	
      	local (pex.link.Link attribute)


      	local_path (pex.link.Link attribute)


  





M


  	
      	Memoizer (class in pex.util)


      	merge_pex_path() (pex.pex_info.PexInfo method)


  

  	
      	merge_split() (in module pex.util)


      	minimum_sys() (pex.pex.PEX class method)


      	minimum_sys_modules() (pex.pex.PEX class method)


  





N


  	
      	named_temporary_file() (in module pex.util)


  

  	
      	normalize_name() (in module pex.fetcher)


  





O


  	
      	open() (pex.http.Context method)


  





P


  	
      	Package (class in pex.package)


      	Packager (class in pex.installer)


      	PageParser (class in pex.crawler)


      	patch() (pex.variables.Variables method)


      	patch_pkg_resources() (pex.pex.PEX class method)


      	patch_sys() (pex.pex.PEX method)


      	patched_packing_env() (in module pex.resolver)


      	path (pex.link.Link attribute)


      	path() (pex.pex.PEX method)


      	PEX (class in pex.pex)


      	pex (module)


      	pex.crawler (module)


      	pex.environment (module)


      	pex.fetcher (module)


      	pex.finders (module)


      	pex.http (module)


      	pex.installer (module)


      	pex.interpreter (module)


      	pex.iterator (module)


      	pex.link (module)


      	pex.package (module)


      	pex.pep425tags (module)


      	pex.pex (module)


      	pex.pex_builder (module)


      	pex.pex_info (module)


      	pex.resolver (module)


      	pex.testing (module)


      	pex.tracer (module)


  

  	
      	pex.translator (module)


      	pex.util (module)


      	pex.variables (module)


      	PEX_ALWAYS_CACHE (pex.variables.Variables attribute)


      	PEX_COVERAGE (pex.variables.Variables attribute)


      	PEX_COVERAGE_FILENAME (pex.variables.Variables attribute)


      	PEX_FORCE_LOCAL (pex.variables.Variables attribute)


      	PEX_HTTP_RETRIES (pex.variables.Variables attribute)


      	PEX_IGNORE_ERRORS (pex.variables.Variables attribute)


      	PEX_IGNORE_RCFILES (pex.variables.Variables attribute)


      	PEX_INHERIT_PATH (pex.variables.Variables attribute)


      	PEX_INTERPRETER (pex.variables.Variables attribute)


      	PEX_MODULE (pex.variables.Variables attribute)


      	pex_path (pex.pex_info.PexInfo attribute)


      	PEX_PATH (pex.variables.Variables attribute)


      	PEX_PROFILE (pex.variables.Variables attribute)


      	PEX_PROFILE_FILENAME (pex.variables.Variables attribute)


      	PEX_PROFILE_SORT (pex.variables.Variables attribute)


      	PEX_PYTHON (pex.variables.Variables attribute)


      	PEX_PYTHON_PATH (pex.variables.Variables attribute)


      	PEX_ROOT (pex.variables.Variables attribute)


      	PEX_SCRIPT (pex.variables.Variables attribute)


      	PEX_TEARDOWN_VERBOSE (pex.variables.Variables attribute)


      	PEX_VERBOSE (pex.variables.Variables attribute)


      	PEXBuilder (class in pex.pex_builder)


      	PexInfo (class in pex.pex_info)


      	PexPlatform (class in pex.pex_info)


      	platform_to_tags() (in module pex.resolver)


  





R


  	
      	read() (pex.http.Context method)


      	register() (pex.http.Context class method)

      
        	(pex.package.Package class method)


      


      	register_finders() (in module pex.finders)


      	rel_links() (pex.crawler.PageParser class method)


      	remote (pex.link.Link attribute)


      	RequestsContext (class in pex.http)


  

  	
      	reset_cache() (pex.crawler.Crawler class method)


      	resolve() (in module pex.resolver)

      
        	(pex.http.Context method)


      


      	resolve_multi() (in module pex.resolver)


      	Resolver (class in pex.resolver)


      	run() (pex.pex.PEX method)


      	run_pex_command() (in module pex.testing)


  





S


  	
      	satisfies() (pex.package.Package method)


      	scheme (pex.link.Link attribute)


      	set_entry_point() (pex.pex_builder.PEXBuilder method)


      	set_executable() (pex.pex_builder.PEXBuilder method)


      	set_script() (pex.pex_builder.PEXBuilder method)


      	set_shebang() (pex.pex_builder.PEXBuilder method)


  

  	
      	SourcePackage (class in pex.package)


      	split_fragment() (pex.package.SourcePackage class method)


      	StaticIterator (class in pex.resolver)


      	StreamFilelike (class in pex.http)


      	strict (pex.pex_info.PexPlatform attribute)


      	strip_defaults() (pex.variables.Variables method)


  





T


  	
      	temporary_content() (in module pex.testing)


      	temporary_filename() (in module pex.testing)


  

  	
      	TraceLogger (class in pex.tracer)


      	TranslatorBase (class in pex.translator)


  





U


  	
      	unescape() (in module pex.crawler)


      	unregister_finders() (in module pex.finders)


  

  	
      	url (pex.link.Link attribute)


      	UrllibContext (class in pex.http)


  





V


  	
      	Variables (class in pex.variables)


  

  	
      	version (pex.pex_info.PexPlatform attribute)


  





W


  	
      	WheelMetadata (class in pex.finders)


      	WheelPackage (class in pex.package)


  

  	
      	wrap() (pex.link.Link class method)


      	wrap_iterable() (pex.link.Link class method)


      	write_simple_pex() (in module pex.testing)


  





Z


  	
      	zip_safe (pex.pex_info.PexInfo attribute)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          pex
        


        		
          What are .pex files?
          
            		
              tl;dr
            


            		
              Why .pex files?
            


            		
              How do .pex files work?
            


          


        


        		
          Building .pex files
        


        		
          Invoking the pex utility
          
            		
              Specifying requirements
            


            		
              Specifying entry points
              
                		
                  pex <options> – script.py
                


                		
                  pex -m
                


                		
                  pex -c
                


              


            


            		
              Saving .pex files
            


            		
              Tailoring requirement resolution
            


            		
              Tailoring PEX execution at build time
              
                		
                  –zip-safe/–not-zip-safe
                


                		
                  –always-write-cache
                


                		
                  –inherit-path
                


                		
                  –ignore-errors
                


                		
                  –platform
                


              


            


            		
              Tailoring PEX execution at runtime
            


          


        


        		
          Using bdist_pex
          
            		
              bdist_pex
            


            		
              bdist_pex –bdist-all
            


          


        


        		
          Other ways to build PEX files
        


        		
          PEX API Reference
          
            		
              Module contents
            


            		
              pex.crawler module
            


            		
              pex.environment module
            


            		
              pex.fetcher module
            


            		
              pex.finders module
            


            		
              pex.http module
            


            		
              pex.installer module
            


            		
              pex.interpreter module
            


            		
              pex.iterator module
            


            		
              pex.link module
            


            		
              pex.package module
            


            		
              pex.pep425tags module
            


            		
              pex.pex module
            


            		
              pex.pex_builder module
            


            		
              pex.pex_info module
            


            		
              pex.resolver module
            


            		
              pex.testing module
            


            		
              pex.tracer module
            


            		
              pex.translator module
            


            		
              pex.util module
            


            		
              pex.variables module
            


          


        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





