8051 HAT Documentation

Release 0.0.1

Luis Figueiredo

Dec 13, 2018

Contents

1	Raspberry Pi				
2 Especificações					
3	Instalação	7			
	3.1 Configuração do Raspberry Pi	7			
	3.1.1 SPI	7			
	3.1.2 I2C	9			
	3.2 Instalação de software	10			
	3.2.1 Sdcc	10			
	3.2.2 MCU 8051 IDE	11			
	3.2.3 AVRDUDE	11			
4	O 8051 HAT	13			
	4.1 Interligação RPi <-> microcontrolador	13			

O 8051 HAT é uma placa para ensino sobre o microcontrolador 8051, desenvolvida especialmente para ser utilizada em conjunto com um microcomputador Raspberry Pi 3. Pode também ser utilizada em modo isolado, sendo para tal necessário recorrer a um programador ISP, como por exemplo o USB ASP.

O microcontrolador que equipa este HAT é o AT89S8253 da Microchip, uma dos derivados do 8051 original e totalmente compatível com a família MCS-51, possui 12Kb de memória flash de programa e 2Kb de memória EEPROM.

Esta placa é vocacionada para o ensino de microcontroladores 8051, e tem por base um conjunto de ferramentas de desenvolvimento totalmente abertas e gratuitas em Linux.

Raspberry Pi

O Raspberry Pi é um computador de baixo custo e que tem o tamanho de um cartão de crédito desenvolvido no Reino Unido pela Fundação Raspberry Pi. Para usá-lo, basta ligar um teclado e um rato USB e de seguida ligar tudo a um Monitor ou Televisão.

A função básica do Raspberry Pi é oferecer uma alternativa barata, prática e acessível para que pessoas de várias idades possam explorar todas as capacidades da computação. Além disso, também visa facilitar a aprendizagem de

programação em linguagens como Scratch e Python.

Sobretudo, apesar do tamanho diminuto e de aspecto pouco convencional, o Raspberry Pi é um computador como outro qualquer. Isso quer dizer que ele pode servir para navegação na internet, reprodução de conteúdo multimédia, criação de conteúdo em forma de texto, imagens e, é claro, para jogos. Atualmente bastante utilizado como Media Center de complemento à TV, ou como maquina de jogos Arcade.

Especificações

O 8051 HAT tem as seguintes características:

Processador:

- AT89S8253
- Oscilador de 12MHz
- Malha de RESET
- Programação in-circuit

Alimentação:

- Regulador de tensão interno
- A placa funciona a 3.3V
- Alimentação a partir do RPi (a partir dos +5V) ou externa (USB) seleccionável

Outros:

- EEPROM com as informações do HAT (cumpre com as especificações do Raspberry Pi)
- Header para programação ICSP
- Quase todos os portos de E/S interligam com os GPIO do RPi
- Pode funcionar em modo Stand-Alone

Instalação

Este capítulo aborda os passos necessários para a configuração do Raspberry Pi e da instalação do *software* necessário para a utilização correcta do 8051 HAT.

3.1 Configuração do Raspberry Pi

Para que se possam aproveitar ao máximo as potencialidades de comunicação entre o Raspberry Pi e o microcontrolador presente no 8051 HAT, será necessário habilitar o funcionamento dos portos SPI e I2C no RPi.

Para tal será necessário aceder ao menu de configuração do mesmo, neste caso, via linha de comandos:

```
$ raspi-config
```

3.1.1 SPI

Aparecendo o seguinte menu:

Raspberry Pi 3 Model B Rev 1.2	
Raspberry Pi Software 1 Change User Password 2 Network Options 3 Boot Options 4 Localisation Options 5 Interfacing Options 6 Overclock 7 Advanced Options 8 Update 9 About raspi-config	Configuration Tool (raspi-config) Change password for the current u Configure network settings Configure options for start-up Set up language and regional sett Configure connections to peripher Configure overclocking for your P Configure advanced settings Update this tool to the latest ve Information about this configurat
<select></select>	<finish></finish>

Seleccionar a opção 5 Interfacing Options usando as teclas de direcção.

Raspberry	/ Pi Software	Configuration Tool (raspi-config)
P1 Camera P2 SSH P3 VNC <mark>P4 SPI</mark> P5 I2C P6 Serial P7 1-Wire P8 Remote GPIO		Enable/Disable connection to the Enable/Disable remote command lin Enable/Disable graphical remote a Enable/Disable automatic loading Enable/Disable automatic loading Enable/Disable shell and kernel m Enable/Disable one-wire interface Enable/Disable remote access to G
	<select></select>	<back></back>

Escolher a opção P4 SPI, e confirmar a escolha.

Would you like the SPI interface to be enabled?
<yes> <no></no></yes>

E obtemos a confirmação.

The SPI interface is enabled	
<0k>	

Atenção! - No final desta operação, o Raspberry Pi solicita se pretendemos efectuar um reboot para activar esta opção, responder *Não*, pois é ainda necessário efetuar a activação da interface I2C.

3.1.2 I2C

Para activar a interface I2C, seleccionar novamente a opção 5 Interfacing Options

Raspberry	Pi Software Con	figuration Tool (raspi-config)
Al Overscan A2 Hostname A3 Memory Split A4 SSH A5 Device Tree A6 SPI A7 I2C T A8 Seríal A9 Audio A0 Update		You may need to configure oversc Set the visible name for this Pi Change the amount of memory made Enable/Disable remote command li Enable/Disable the use of Device Enable/Disable automatic loading Enable/Disable automatic loading Enable/Disable shell and kernel Force audio out through HDMI or Update this tool to the latest v
	<select></select>	<back></back>
L		

Agora escolher a opção **P5 I2C**, confirmar, e após resposta positiva à activação, então sim, permitir que o Raspberry Pi efectue um reboot para activar estas opções.

3.2 Instalação de software

Para o desenvolvimento, simulação, compilação de programas para o 8051 e respectiva programação do microcontrolador, será necessário proceder à instalação de alguns programas no Raspberry pi:

- Sdcc
- MCU 8051 IDE
- AVRDUDE

3.2.1 Sdcc

O Sdcc (*Small Device C Compiler*) é um programa *open-source* que permite a compilação de programas em linguagem C para diversos tipos de microcontroladores de 8 bits.

Para a sua instalação, a partir da linha de comandos, ou se estiver no ambiente gráfico, abrir uma janela de terminal, e executar a seguinte instrução:

\$ sudo apt-get install sdcc

Para mais informações sobre o sdcc, podem aceder à página do projecto.

3.2.2 MCU 8051 IDE

O MCU 8051 IDE é um ambiente gráfico de desenvolvimento intergrado para microcontroladores da família 8051. Tem um compilador de assembly próprio e um simulador integrado. Permite também o desenvolvimento de programas para o 8051 em linguagem C, através da integração com o *sdcc*.

No modo de Debug, o MCU 8051 IDE permite simular diversos tipos de hardware externo, tais como:

- Botões
- LEDs
- Matriz de LEDs
- Display de 7 segmentos simples e multiplexado
- · Teclado matricial
- LCD de texto

O MCU 8051 IDE tem ainda um grande conjunto de utilitários que facilitam o desenvolvimento de programas e aplicações para o microcontrolador 8051.

A instalação do MCU 8051 IDE faz-se através da seguinte instrução:

\$ sudo apt-get install mcu8051ide

NOTA: Apesar da página oficial do projecto estar *off-line*, ainda se pode aceder à primeira versão da mesma no Sourceforge.

3.2.3 AVRDUDE

O AVRDUDE (*AVR Downloader/UploaDEr*) é um gravar/ler e manipular o conteúdo da ROM e EEPROM de diversos tipos de microcontroladores, e suporta uma grande variedade de programadores, incluíndo o interface SPI nativo do Raspberry Pi. Para instalar o AVRDUDE, basta executar o seguinte comando:

\$ sudo apt-get install avrdude

Embora o AVRDUDE seja descrito na sua página como um programa destinado a funcionar com microcontroladores AVR, pode também ser utilizado para microcontroladores da família 8051.

Por defeito, o AVRDUDE não suporta a programação do microcontrolador AT89S8253. Para adicionar a capacidade de programar este microcontrolador, será necessário editar o ficheiro *avrdude.conf.in* e acrescentar todos os dados necessários.

O 8051 HAT

é uma placa para ensino sobre o microcontrolador 8051, desenvolvida especialmente para ser utilizada em conjunto com um microcomputador Raspberry Pi 3. Pode também ser utilizada em modo isolado, sendo para tal necessário recorrer a um programador ISP, como por exemplo o USB ASP.

A grande vantagem desta placa é o facto de quase todos os pinos de E/S estarem ligados aos pinos de GPIO do Raspberry Pi, permitindo a interacção entre os dois.

Esta interligação, permite diversos tipos de situações, em que quer o microcontrolador, quer o RPi, podem para actuação ou leitura de sinais. O exemplo mais básico da interacção entre eles é a utilização do RPi para verificar o funcionamento do clássico *blinky* no microcontrolador sem necessitar de recorrer a uma resistência e um LED, bastanto para tal cirar/utilizar um pequeno programa, por exemplo, em *Python* para ler o estado de um pino de GPIO do RPi e apresentar essa informação ao utilizador.

4.1 Interligação RPi <-> microcontrolador

A tabela apresenta a correspondência entre os pinos E/S do microcontrolador e os GPIO do Raspberry Pi, bem como as suas funcionalidades.

Raspberry Pi			8051		
GPIO	Pino	Função	Pino	Porto/bit	Função
02	03	SDA1, I2C	42	P1.2	
03	05	SCL1, I2C	43	P1.3	
04	07	GPCLK0	08	P3.2	/INT0
05	29	GPCLK1	10	P3.4	TO
06	31	GPCLK2	11	P3.5	T1
07	26	CE0_N SPI0	12	P3.6	
08	24	CE1_N SPI0	44	P1.4	/SS
09	21	MISO SPI0	02	P1.6	MISO
10	19	MOSI SPI0	01	P1.5	MOSI
11	23	CLK SPI0	03	P1.7	SCK
12	32	PWM0	40	P1.0	T2
13	33	PWM1	09	P3.3	/INT1
22	15		13	P3.7	
23	16		37	P0.0	
24	18		36	P0.1	
25	22		35	P0.2	
14	08	TxD0	05	P3.0	RxD
15	10	RxD0	07	P3.1	TxD
16	36	CE2 SPI1	34	P0.3	
17	11	CE1 SPI1	33	P0.4	
18	12	PWM2 CE0 SPI1	41	P1.1	T2EX
19	35	PWM3 MISO SPI1	32	P0.5	
20	38	MOSI SPI1	31	P0.6	
21	20	SCLK SPI1	30	P0.7	
26	37		18	P2.0	
27	13		19	P2.1	