ManifoldLearning Documentation

Release 0.1.0

Art Wild

Oct 04, 2018

Contents

1	Isomap	3
2	Diffusion maps	5
3	Laplacian Eigenmaps	7
4	Locally Linear Embedding	9
5	Hessian Eigenmaps	11
6	Local Tangent Space Alignment	13

ManifoldLearning.jl is a Julia package for manifold learning and non-linear dimensionality reduction. It proides set of nonlinear dimensionality reduction methods, such as *Isomap*, *LLE*, *LTSA*, etc.

Methods:

Isomap

Isomap is a method for low-dimensional embedding. Isomap is used for computing a quasi-isometric, low-dimensional embedding of a set of high-dimensional data points¹.

This package defines a Isomap type to represent a Isomap results, and provides a set of methods to access its properties.

1.1 Properties

Let M be an instance of Isomap, n be the number of observations, and d be the output dimension.

```
\mathtt{outdim}\left(M
ight)
```

Get the output dimension d, *i.e* the dimension of the subspace.

```
projection(M)
```

Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation in projected subspace.

```
neighbors(M)
```

The number of nearest neighbors used for approximating local coordinate structure.

```
\texttt{ccomponent}(M)
```

The observations index array of the largest connected component of the distance matrix.

1.2 Data Transformation

One can use the transform method to perform Isomap over a given dataset.

```
transform (Isomap, X; ...)
```

Perform Isomap over the data given in a matrix X. Each column of X is an observation.

¹ Tenenbaum, J. B., de Silva, V. and Langford, J. C. "A Global Geometric Framework for Nonlinear Dimensionality Reduction". Science 290 (5500): 2319-2323, 22 December 2000. http://isomap.stanford.edu/

This method returns an instance of Isomap.

Keyword arguments:

ſ	name	description	default
	k	The number of nearest neighbors for determining local coordinate structure.	12
	d	Output dimension.	2

Example:

using ManifoldLearning
suppose X is a data matrix, with each observation in a column
apply Isomap transformation to the dataset
Y = transform(Isomap, X; k = 12, d = 2)

Diffusion maps

Diffusion maps leverages the relationship between heat diffusion and a random walk; an analogy is drawn between the diffusion operator on a manifold and a Markov transition matrix operating on functions defined on the graph whose nodes were sampled from the manifold¹.

This package defines a DiffMap type to represent a Hessian LLE results, and provides a set of methods to access its properties.

2.1 Properties

Let M be an instance of DiffMap, n be the number of observations, and d be the output dimension.

```
\texttt{outdim}\left(M\right)
```

Get the output dimension d, *i.e* the dimension of the subspace.

```
projection(M)
```

Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation in projected subspace.

kernel (*M*) The kernel matrix.

2.2 Data Transformation

One can use the transform method to perform DiffMap over a given dataset.

```
transform (DiffMap, X; ...)
```

Perform DiffMap over the data given in a matrix X. Each column of X is an observation.

This method returns an instance of DiffMap.

¹ Coifman, R. & Lafon, S. "Diffusion maps". Applied and Computational Harmonic Analysis, Elsevier, 2006, 21, 5-30. DOI:10.1073/pnas.0500334102

Keyword arguments:

name	description	default
d	Output dimension.	2
t	Number of time steps.	1
	The scale parameter.	1.0

Example:

```
using ManifoldLearning
# suppose X is a data matrix, with each observation in a column
# apply DiffMap transformation to the dataset
Y = transform(DiffMap, X; d=2, t=1, =1.0)
```

Laplacian Eigenmaps

Laplacian Eigenmaps (LEM) method uses spectral techniques to perform dimensionality reduction. This technique relies on the basic assumption that the data lies in a low-dimensional manifold in a high-dimensional space. The algorithm provides a computationally efficient approach to non-linear dimnsionality reduction that has locally preserving properties¹.

This package defines a LEM type to represent a Laplacian Eigenmaps results, and provides a set of methods to access its properties.

3.1 Properties

Let M be an instance of LEM, n be the number of observations, and d be the output dimension.

$\mathtt{outdim}\left(M ight)$

Get the output dimension d, *i.e* the dimension of the subspace.

```
projection(M)
```

Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation in projected subspace.

```
neighbors(M)
```

The number of nearest neighbors used for approximating local coordinate structure.

eigvals(M)

The eigenvalues of alignment matrix.

3.2 Data Transformation

One can use the transform method to perform LEM over a given dataset.

¹ Belkin, M. and Niyogi, P. "Laplacian Eigenmaps for Dimensionality Reduction and Data Representation". Neural Computation, June 2003; 15 (6):1373-1396. DOI:10.1162/089976603321780317

transform(LEM, X; ...)

Perform LEM over the data given in a matrix X. Each column of X is an observation.

This method returns an instance of LEM.

Keyword arguments:

name	description	
k	The number of nearest neighbors for determining local coordinate structure.	12
d	Output dimension.	2
t	The temperature parameters of the heat kernel.	1.0

Example:

```
using ManifoldLearning
# suppose X is a data matrix, with each observation in a column
# apply Laplacian Eigenmaps transformation to the dataset
Y = transform(LEM, X; k = 12, d = 2, t = 1.0)
```

Locally Linear Embedding

Locally Linear Embedding (LLE) technique builds a single global coordinate system of lower dimensionality. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds¹.

This package defines a LLE type to represent a LLE results, and provides a set of methods to access its properties.

4.1 Properties

Let M be an instance of LLE, n be the number of observations, and d be the output dimension.

```
\texttt{outdim}(M)
```

Get the output dimension d, *i.e* the dimension of the subspace.

```
projection(M)
```

Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation in projected subspace.

```
neighbors(M)
```

The number of nearest neighbors used for approximating local coordinate structure.

eigvals(M)

The eigenvalues of alignment matrix.

4.2 Data Transformation

One can use the transform method to perform HLLE over a given dataset.

transform (*LLE*, *X*; ...)

Perform LLE over the data given in a matrix X. Each column of X is an observation.

¹ Roweis, S. & Saul, L. "Nonlinear dimensionality reduction by locally linear embedding", Science 290:2323 (2000). DOI:10.1126/science.290.5500.2323

This method returns an instance of LLE.

Keyword arguments:

name	description	default
k	The number of nearest neighbors for determining local coordinate structure.	12
d	Output dimension.	2

Example:

using ManifoldLearning
suppose X is a data matrix, with each observation in a column
apply LLE transformation to the dataset
Y = transform(LLE, X; k = 12, d = 2)

Hessian Eigenmaps

The Hessian Eigenmaps (Hessian LLE, HLLE) method adapts the weights in *LLE* to minimize the Hessian operator. Like *LLE*, it requires careful setting of the nearest neighbor parameter. The main advantage of Hessian LLE is the only method designed for non-convex data sets¹.

This package defines a HLLE type to represent a Hessian LLE results, and provides a set of methods to access its properties.

5.1 Properties

Let M be an instance of HLLE, n be the number of observations, and d be the output dimension.

outdim(M)

Get the output dimension d, *i.e* the dimension of the subspace.

```
projection(M)
```

Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation in projected subspace.

```
neighbors (M)
```

The number of nearest neighbors used for approximating local coordinate structure.

eigvals(M)

The eigenvalues of alignment matrix.

5.2 Data Transformation

One can use the transform method to perform HLLE over a given dataset.

¹ Donoho, D. and Grimes, C. "Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data", Proc. Natl. Acad. Sci. USA. 2003 May 13; 100(10): 5591–5596. DOI:10.1073/pnas.1031596100

transform(HLLE, X; ...)

Perform HLLE over the data given in a matrix X. Each column of X is an observation.

This method returns an instance of HLLE.

Keyword arguments:

name	description	
k	The number of nearest neighbors for determining local coordinate structure.	12
d	Output dimension.	2

Example:

using ManifoldLearning
suppose X is a data matrix, with each observation in a column
<pre># apply HLLE transformation to the dataset</pre>
Y = transform(HLLE, X; k = 12, d = 2)

Local Tangent Space Alignment

Local tangent space alignment (LTSA) is a method for manifold learning, which can efficiently learn a nonlinear embedding into low-dimensional coordinates from high-dimensional data, and can also reconstruct high-dimensional coordinates from embedding coordinates¹.

This package defines a LTSA type to represent a LTSA results, and provides a set of methods to access its properties.

6.1 Properties

Let M be an instance of LTSA, n be the number of observations, and d be the output dimension.

$\mathtt{outdim}(M)$

Get the output dimension d, *i.e* the dimension of the subspace.

```
projection(M)
```

Get the projection matrix (of size (d, n)). Each column of the projection matrix corresponds to an observation in projected subspace.

```
neighbors(M)
```

The number of nearest neighbors used for approximating local coordinate structure.

eigvals(M)

The eigenvalues of alignment matrix.

6.2 Data Transformation

One can use the transform method to perform LTSA over a given dataset.

```
transform(LSTA, X; ...)
```

Perform LTSA over the data given in a matrix X. Each column of X is an observation.

¹ Zhang, Zhenyue; Hongyuan Zha. "Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment". SIAM Journal on Scientific Computing 26 (1): 313–338, 2004. DOI:10.1137/s1064827502419154

This method returns an instance of LTSA.

Keyword arguments:

name	description	default
k	The number of nearest neighbors for determining local coordinate structure.	12
d	Output dimension.	2

Example:

using ManifoldLearning
suppose X is a data matrix, with each observation in a column
apply LTSA transformation to the dataset
Y = transform(LTSA, X; k = 12, d = 2)

References

Notes:

All methods implemented in this package adopt the column-major convention of JuliaStats: in a data matrix, each column corresponds to a sample/observation, while each row corresponds to a feature (variable or attribute).

Index

С

ccomponent() (built-in function), 3

Е

eigvals() (built-in function), 7, 9, 11, 13

Κ

kernel() (built-in function), 5

Ν

neighbors() (built-in function), 3, 7, 9, 11, 13

0

outdim() (built-in function), 3, 5, 7, 9, 11, 13

Ρ

projection() (built-in function), 3, 5, 7, 9, 11, 13

Т

transform() (built-in function), 3, 5, 7, 9, 11, 13