
Manage Documentation
Release 0.1.13

Bruno Rocha

Sep 27, 2017

Contents

1 Manage 3
1.1 Command Line Manager + Interactive Shell for Python Projects . 3

2 Installation 11
2.1 Stable release . 11
2.2 From sources . 11

3 Usage 13

4 Contributing 15
4.1 Types of Contributions . 15
4.2 Get Started! . 16
4.3 Pull Request Guidelines . 17
4.4 Tips . 17

5 Indices and tables 19

i

ii

Manage Documentation, Release 0.1.13

Contents:

Contents 1

Manage Documentation, Release 0.1.13

2 Contents

CHAPTER 1

Manage

Command Line Manager + Interactive Shell for Python Projects

• Free software: ISC license

• Documentation: https://manage.readthedocs.io.

Features

With manage you add a command line manager to your Python project and also it comes with an interactive shell
with iPython support.

All you have to do is init your project directory (creating the manage.yml file)

$ pip install manage
$ cd /my_project_root_folder
$ manage init
creating manage.yml....

The file manage.yml describes how manage command should discover your app modules and custom commands and
also it defines which objects should be loaded in to the shell

Note: Windows users may need to install proper version of PyYAML depending on the version of that thing you call
an operating system, installable available in: https://pypi.python.org/pypi/PyYAML or consider using Linux and
don’t worry about this as everything works well in Linux except games, photoshop and solitary game :)

The Shell

By default the command manage shell is included, it is a simple Python REPL console with some configurable
options.

3

https://manage.readthedocs.io
https://pypi.python.org/pypi/PyYAML

Manage Documentation, Release 0.1.13

You can change the banner message to say anything you want, e.g: “Welcome to my shell!” and you can also specify
some objects to be automatically imported in to the shell context so when you enter in to the shell you already have
your project’s common objects available.

Also you can specify a custom function to run or a string based code block to run, useful to init and configure the
objects.

Consoles

manage shell can start different consoles by passing the options

• manage shell --ipython - This is the default (if ipython installed)

• manage shell --ptpython

• manage shell --bpython

• manage shell --python - This is the default Python console including support for autocomplete. (will
be default when no other is installed)

The first thing you can do with manage is customizing the objects that will be automatically loaded in to shell, saving
you from importing and initializing a lot of stuff every time you need to play with your app via console.

Edit manage.yml with:

project_name: My Awesome Project
help_text: |

This is the {project_name} interactive shell!
shell:

console: bpython
readline_enabled: false # MacOS has no readline completion support
banner:
enabled: true
message: 'Welcome to {project_name} shell!'

auto_import:
display: true
objects:

my_system.config.settings:
my_system.my_module.MyClass:
my_system.my_module.OtherClass:

as: NiceClass
sys.path:

as: sp
init:
insert:
args:
- 0
- /path/to/be/added/automatically/to/sys/path

init_script: |
from my_system.config import settings
print("Initializing settings...")
settings.configure()

Then the above manage.yaml will give you a shell like this:

$ manage shell
Initializing settings...
Welcome to My Awesome Project shell!

Auto imported: ['sp', 'settings', 'MyClass', 'NiceCLass']
>>> NiceClass. <tab> # autocomplete enabled

4 Chapter 1. Manage

Manage Documentation, Release 0.1.13

Watch the demo:

Check more examples in:

https://github.com/rochacbruno/manage/tree/master/examples/

The famous naval fate example (used in docopt and click) is in:

https://github.com/rochacbruno/manage/tree/master/examples/naval/

Projects using manage

• Quokka CMS (A Flask based CMS) is using manage

• Red Hat Satellite QE tesitng framework (robottelo) is using manage

Custom Commands

Sometimes you need to add custom commands in to your project e.g: A command to add users to your system:

$ manage create_user --name=Bruno --passwd=1234
Creating the user...

manage has some different ways for you to define custom commands, you can use click commands defined in your
project modules, you can also use function_commands defined anywhere in your project, and if really needed can
define inline_commands inside the manage.yml file

1. Using a custom click_commands module (single file)

Lets say you have a commands module in your application, you write your custom command there and manage will
load it

myproject/commands.py
import click
@click.command()
@click.option('--name')
@click.option('--passwd')
def create_user(name, passwd):

"""Create a new user"""
click.echo('Creating the user...')
mysystem.User.create(name, password)

Now you go to your manage.yml or .manage.yml and specify your custom command module.

click_commands:
- module: commands

Now you run manage –help

$ manage --help
...
Commands:

create_user Create a new user
debug Shows the parsed manage file
init Initialize a manage shell in current...
shell Runs a Python shell with context

1.1. Command Line Manager + Interactive Shell for Python Projects 5

https://github.com/rochacbruno/manage/tree/master/examples/
https://github.com/rochacbruno/manage/tree/master/examples/naval/

Manage Documentation, Release 0.1.13

Using a click_commands package (multiple files)

It is common to have different files to hold your commands so you may prefer having a commands/ package and some
python modules inside it to hold commands.

myproject/commands/user.py
import click
@click.command()
@click.option('--name')
@click.option('--passwd')
def create_user(name, passwd):

"""Create a new user"""
click.echo('Creating the user...')
mysystem.User.create(name, password)

myproject/commands/system.py
import click
@click.command()
def clear_cache():

"""Clear the system cache"""
click.echo('The cache will be erased...')
mysystem.cache.clear()

So now you want to add all those commands to your manage editing your manage file with.

click_commands:
- module: commands

Now you run manage –help and you have commands from both modules

$ manage --help
...
Commands:

create_user Create a new user
clear_cache Clear the system cache
debug Shows the parsed manage file
init Initialize a manage shell in current...
shell Runs a Python shell with context

Custom click_command names

Sometimes the name of commands differ from the name of the function so you can customize it.

click_commands:
- module: commands.system
config:

clear_cache:
name: reset_cache
help_text: This resets the cache

- module: commands.user
config:

create_user:
name: new_user
help_text: This creates new user

6 Chapter 1. Manage

Manage Documentation, Release 0.1.13

Having different namespaces

If customizing the name looks too much work for you, and you are only trying to handle naming conflicts you can user
namespaced commands.

namespaced: true
click_commands:

- module: commands

Now you run manage –help and you can see all the commands in the same module will be namespaced by module-
name_

$ manage --help
...
Commands:

user_create_user Create a new user
system_clear_cache Clear the system cache
debug Shows the parsed manage file
init Initialize a manage shell in current...
shell Runs a Python shell with context

And you can even customize namespace for each module separately

Note: If namespaced is true all commands will be namespaced, set it to false in order to define separately

click_commands:
- module: commands.system
namespace: sys

- module: commands.user
namespace: user

Now you run manage –help and you can see all the commands in the same module will be namespaced.

$ manage --help
...
Commands:

user_create_user Create a new user
sys_clear_cache Clear the system cache
debug Shows the parsed manage file
init Initialize a manage shell in current...
shell Runs a Python shell with context

2. Defining your inline commands in manage file directly

Sometimes your command is so simple that you do not want (or can’t) have a custom module, so you can put all your
commands in yaml file directly.

inline_commands:
- name: clear_cache
help_text: Executes inline code to clear the cache
context:

- sys
- pprint

1.1. Command Line Manager + Interactive Shell for Python Projects 7

Manage Documentation, Release 0.1.13

options:
--days:

default: 100
code: |

pprint.pprint({'clean_days': days, 'path': sys.path})

Now running manage –help

$ manage --help
...
Commands:

clear_cache Executes inline code to clear the cache
debug Shows the parsed manage file
init Initialize a manage shell in current...
shell Runs a Python shell with context

And you can run using

$ manage clear_cache --days 15

3. Using general functions as commands

And if you already has some defined function (any callable works).

my_system.functions.py
def create_user(name, password):

print("Creating user %s" % name)

function_commands:
- function: my_system.functions.create_user
name: new_user
help_text: Create new user
options:

--name:
required: true

--password:
required: true

Now running manage –help

$ manage --help
...
Commands:

new_user Create new user
debug Shows the parsed manage file
init Initialize a manage shell in current...
shell Runs a Python shell with context

$ manage new_user --name=Bruno --password=1234
Creating user Bruno

Further Explanations

• You can say, how this is useful?, There’s no need to get a separate package and configure everything in yaml,
just use iPython to do it. Besides, IPython configuration has a lot more options and capabilities.

8 Chapter 1. Manage

Manage Documentation, Release 0.1.13

• So I say: Nice! If you don’t like it, dont’t use it!

Credits

• This is inspired by Django’s manage.py command

• This is based on click

• This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

Similar projects

• Cobra is a manage for Go language https://github.com/spf13/cobra

1.1. Command Line Manager + Interactive Shell for Python Projects 9

http://click.pocoo.org
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage
https://github.com/spf13/cobra

Manage Documentation, Release 0.1.13

10 Chapter 1. Manage

CHAPTER 2

Installation

Stable release

To install Manage, run this command in your terminal:

$ pip install manage

This is the preferred method to install Manage, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

From sources

The sources for Manage can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/rochacbruno/manage

Or download the tarball:

$ curl -OL https://github.com/rochacbruno/manage/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

11

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/rochacbruno/manage
https://github.com/rochacbruno/manage/tarball/master

Manage Documentation, Release 0.1.13

12 Chapter 2. Installation

CHAPTER 3

Usage

This is the SIMPLE example, it is just a folder with a manage.yml

project_name: My Simple Project
help_text: |

This is the {project_name} interactive shell
You can have commands or open the shell

shell:
readline_enabled: true
banner:
enabled: true
message: 'Hello {project_name} World'

auto_import:
display: true
objects:

manage.utils.import_string:
os.path:

as: path
init:
exists:

kwargs:
path: /tmp

init_script: |
print("path object is:")
print(type(path))
print("Hello path from init_script")

sys.path:
as: sp
init:
insert:
args:
- 0
- /tmp/add_on_object_init

init_script: |
def function():

assert isinstance(sp, list)

13

Manage Documentation, Release 0.1.13

return type(sp)
print(function())

init:
sys.path.append:

args:
- /tmp/added_on_shell_init

init_script: |
add a path to sys.path
import sys
sys.path.append('/tmp/added_on_shell_init_script')
assert '/tmp/added_on_shell_init' in sys.path
assert '/tmp/add_on_object_init' in sys.path
assert '/tmp/added_on_shell_init_script' in sys.path

and it can be used as:

$ pip install manage

$ cd examples/simple/
$ manage --help
Usage: manage [OPTIONS] COMMAND [ARGS]...

This is the My Simple Project interactive shell You can have commands or
open the shell

Options:
--help Show this message and exit.

Commands:
debug Shows the parsed manage file
init Initialize a manage shell in current...
shell Runs a Python shell with context

And the shell according to defined attributes in manage.yml:

$ manage shell
<type 'list'>
path object is:
<type 'module'>
Hello path from init_script
Python 2.7.11 (default, Mar 31 2016, 20:46:51)
IPython 4.2.0 -- An enhanced Interactive Python.
...

Hello My Simple Project World
Auto imported: ['import_string', 'path', 'function', 'sp']

In [1]:

14 Chapter 3. Usage

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/rochacbruno/manage/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

15

https://github.com/rochacbruno/manage/issues

Manage Documentation, Release 0.1.13

Write Documentation

Manage could always use more documentation, whether as part of the official Manage docs, in docstrings, or even on
the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/rochacbruno/manage/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up manage for local development.

1. Fork the manage repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/manage.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv manage
$ cd manage/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 manage tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

16 Chapter 4. Contributing

https://github.com/rochacbruno/manage/issues

Manage Documentation, Release 0.1.13

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/
rochacbruno/manage/pull_requests and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_manage

4.3. Pull Request Guidelines 17

https://travis-ci.org/rochacbruno/manage/pull_requests
https://travis-ci.org/rochacbruno/manage/pull_requests

Manage Documentation, Release 0.1.13

18 Chapter 4. Contributing

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

19

	Manage
	Command Line Manager + Interactive Shell for Python Projects

	Installation
	Stable release
	From sources

	Usage
	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Indices and tables

