

malaffinity

Calculate affinity between MyAnimeList users

Contents:

	Getting Started

	Walkthrough

	API

	Handling exceptions

	Package info

Getting Started

	Introduction

	Getting Started

Walkthrough

	Walkthrough

API

	API

Handling exceptions

	Handling Exceptions

Package info

	Changelog

	Contributing

	Contact

	License

Introduction

What is this?

malaffinity provides a simple way to calculate affinity (Pearson’s correlation * 100)
between a “base” user and another user on MyAnimeList.

Note

The term “base user” refers to the user whose scores other users’ scores
will be compared to (and affinities to said scores calculated for).

Just assume the “base user” is referring to you, or whoever will be running
your script, unless you’re getting into some advanced mumbo-jumbo,
in which case you’re on your own.

malaffinity is meant to be used in bulk, where one user (the “base”)’s scores are compared
against multiple people, but there’s nothing stopping you from using this as a one-off.

But why should I bother using this? Doesn’t MAL give me an affinity?

Let’s consider what you’d have to do if you wanted MAL to give you an affinity value,
and a good estimation as to whether it’s “accurate” or not:

	Create a requests.Session()

	Make a GET request to MAL’s login page

	Retrieve the csrf_token from one of the meta headers

	Make a POST request to the login page, providing a username, password, a bunch
of stupid form data, and the csrf_token you’ve just obtained

	Confirm you are logged in, by seeing if the is_logged_in cookie is present
in the CookieJar

	Visit a users’ profile

	Look for the affinity value (hint: .user-compatability-graph .anime .bar-inner [sic])

	Read its innerHTML, retrieve the affinity value, add a case in to get rid of the
double-negative that appears on any negative value for some reason

	Find how many rated anime you share. The value MAL gives you includes unrated anime,
and PTW stuff. It’s not an accurate indicator
	Visit /shared.php?u1=you&u2=them and you find yourself trying to navigate through the
dark and murky world of bad HTML table parsing

Congrats, you’ve just wasted a few hours of your life, and you’re probably a bit stressed
right now. HTML parsing does that to you.

Let’s see how you could handle all this with malaffinity, assuming your
username is Xinil and you want to calculate affinity with Luna:

from malaffinity import MALAffinity

ma = MALAffinity("Xinil")

affinity, shared = ma.calculate_affinity("Luna")

Do whatever you like with ``affinity`` and ``shared``
print(affinity)
37.06659111674594
print(shared) # Note: Is referring to shared, rated anime
171

Note

ma now holds your scores. You can easily call ma.calculate_affinity
on anyone, and you’d get your affinity with them.

If you don’t want your scores to be stored, an option exists for quick, one-off calculations:

import malaffinity

affinity, shared = malaffinity.calculate_affinity("Xinil", "Luna")

...

I’m no expert, but the code(s) above looks a lot neater than the alternative would’ve looked.

Getting Started

Install

$ pip install malaffinity

Alternatively, download this repo and run:

$ python setup.py install

To use the development version (please don’t), run:

$ pip install --upgrade https://github.com/erkghlerngm44/malaffinity/archive/master.zip

Dependencies

	BeautifulSoup4

	lxml

	Requests

These should be installed when you install this package, so no need to worry about them.

lxml is a bit wonky sometimes. If install fails:

$ pip install --upgrade pip
$ pip install --upgrade lxml

If all else fails and you’re on Windows, download the
wheel [http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml]
yourself and:

$ pip install /path/to/wheel.whl

Development

This section demonstrates how documentation can be built, tests run,
and how to check if you’re adhering to PEP 8 [https://www.python.org/dev/peps/pep-0008] and PEP 257 [https://www.python.org/dev/peps/pep-0257].
These should not be used unless you’re contributing to the package.

Conventions

The flake8 and pydocstyle packages can be used to check that
PEP 8 and PEP 257 are being followed respectively.

These can be installed as follows:

$ pip install .[conventions]

The following commands can then be run:

$ flake8
$ pydocstyle malaffinity

which will print any warnings/errors/other stuff. These should ideally
be fixed, but in the event that they can’t, place a # noqa: ERROR_CODE
comment on the offending line(s).

Documentation

To install the dependencies needed to build the docs, run:

$ pip install .[docs]

The docs can then be built by navigating to the docs
directory, and running:

$ make html

The built docs will now be in ./_build/html. You can either run them
by clicking and viewing them, or by running a server in that directory,
which you can view in your browser.

Note

Any warnings that show up when building will be interpreted as errors
when the tests get run on Travis, which will cause the build to fail.
You’ll want to make sure these are taken care of.

Test Suite

To install the dependencies needed for the test suite, run:

$ pip install .[tests]

It is advised to run the test suite through coverage, so a
coverage report can be generated as well. To do this, run:

$ coverage run --source malaffinity setup.py test

The tests should then run. You can view the coverage report by running:

$ coverage report

Walkthrough

This section will show the various ways the MALAffinity class can be
initialised with the user Xinil (MAL creator), and used to calculate
affinity or get a comparison with the user Luna (MAL database admin).

Initialising the Class

The class can be initialised in either one of two ways:

Method 1: Normal initialisation

The class is initialised, with a “base user” passed as an argument to
MALAffinity.

ma = MALAffinity("Xinil")

Method 2: Specifying a “base user” after initialisation

The class is initialised, with a “base user” passed sometime later
after initialisation, which may be useful in scripts where creating
globals inside functions or classes or different files is a pain.

ma = MALAffinity()

This can be done anywhere, as long as it has access to ``ma``,
but MUST be done before ``calculate_affinity`` or ``comparison``
are called
ma.init("Xinil")

Rounding of the final affinity value

Note

This doesn’t affect comparison(), so don’t worry about
it if you’re just using that.

Do note that the class also has a round parameter, which is
used to round the final affinity value. This must be specified at class
initialisation if wanted, as it isn’t available in init().
A value for this can be passed as follows:

To round to two decimal places
ma = MALAffinity("Xinil", round=2)

Alternatively, the following can also work, if you decide to follow
method 2 for initialising the class
ma = MALAffinity(round=2)
ma.init("Xinil")

Doing Things with the Initialised Class

The initialised class, now stored in ma, can now perform the following actions:

Calculate affinity with a user

Note

Values may or may not be rounded, depending on the value you passed
for the round parameter at class initialisation.

print(ma.calculate_affinity("Luna"))
Affinity(affinity=37.06659111674594, shared=171)

Note that what is being returned is a namedtuple, containing the affinity and shared
rated anime. This can be separated into different variables as follows:

affinity, shared = ma.calculate_affinity("Luna")

print(affinity)
37.06659111674594
print(shared)
171

Alternatively, the following also works (as this is a namedtuple):

affinity = ma.calculate_affinity("Luna")

print(affinity.affinity)
37.06659111674594
print(affinity.shared)
171

Comparing scores with a user

comparison = ma.comparison("Luna")

print(comparison)
Note: this won't be prettified for you. Run it
through a prettifier if you want it to look nice.
{
1: [10, 6],
5: [8, 6],
6: [10, 7],
15: [7, 9],
16: [8, 5],
...
}

This can now be manipulated in whatever way you like, to suit your needs.
I like to just get the arrays on their own, zip them and plot a graph with it.

Extras

Warning

These send two GET requests over to MAL in a short amount of time,
with no wait inbetween them. If you’re getting in trouble with them
for breaking their rate limit, you might have a few problems getting
these to work without exceptions.MALRateLimitExceededError
getting raised.

Note

Don’t use these if you’re planning on calculating affinity or getting a comparison
again with one of the users you’ve specified when using these.

It’s better to create an instance of the MALAffinity class with
said user, and using that with the other user(s) that way.

That instance will hold said users’ scores, so they won’t have to be retrieved
again. See the other examples.

One-off affinity calculations

This is mainly used if you don’t want the “base user“‘s scores saved to a variable,
and you’re only interested in the affinity with one person.

Note that ``round`` can also be specified here if needed.
affinity, shared = calculate_affinity("Xinil", "Luna")

print(affinity)
37.06659111674594
print(shared)
171

Alternatively...
affinity = calculate_affinity("Xinil", "Luna")

print(affinity.affinity)
37.06659111674594
print(affinity.shared)
171

One-off comparison of scores

This is mainly used if you don’t want the “base user“‘s scores saved to a variable,
and you’re only interested in getting a comparison of scores with another user.

print(comparison("Xinil", "Luna"))

Note: this won't be prettified for you. Run it
through a prettifier if you want it to look nice.
{
1: [10, 6],
5: [8, 6],
6: [10, 7],
15: [7, 9],
16: [8, 5],
...
}

API

	
class malaffinity.MALAffinity(base_user=None, round=False)

	The MALAffinity class.

The purpose of this class is to store a “base user“‘s scores, so
affinity with other users can be calculated easily.

For the user Xinil, the class can be initialised as follows:

from malaffinity import MALAffinity

ma = MALAffinity("Xinil")

The instance, stored in ma, will now hold Xinil‘s scores.

comparison() and calculate_affinity() can now be called,
to perform operations on this data.

	
__init__(base_user=None, round=False)

	Initialise an instance of MALAffinity.

Note

To avoid dealing with dodgy globals, this class MAY
be initialised without the base_user argument,
in the global scope (if you wish), but init()
MUST be called sometime afterwards, with a base_user
passed, before affinity calculations take place.

Example (for the user Xinil):

from malaffinity import MALAffinity

ma = MALAffinity()

ma.init("Xinil")

The class should then be good to go.

	Parameters:	
	base_user (str or None) – Base MAL username

	round (int or False) – Decimal places to round affinity values to.
Specify False for no rounding

	
calculate_affinity(username)

	Get the affinity between the “base user” and username.

Note

The data returned will be a namedtuple, with the affinity
and shared rated anime. This can easily be separated
as follows (using the user Luna as username):

affinity, shared = ma.calculate_affinity("Luna")

Alternatively, the following also works:

affinity = ma.calculate_affinity("Luna")

with the affinity and shared available as
affinity.affinity and affinity.shared respectively.

Note

The final affinity value may or may not be rounded,
depending on the value of _round, set at
class initialisation.

	Parameters:	username (str) – The username to calculate affinity with

	Returns:	(float affinity, int shared)

	Return type:	tuple

	
comparison(username)

	Get a comparison of scores between the “base user” and username.

A Key-Value returned will consist of the following:

{
 ANIME_ID: [BASE_USER_SCORE, OTHER_USER_SCORE],
 ...
}

Example:

{
 30831: [3, 8],
 31240: [4, 7],
 32901: [1, 5],
 ...
}

Warning

The JSON returned isn’t valid JSON. The keys are stored
as integers instead of the JSON standard of strings.
You’ll want to force the keys to strings if you’ll be
using the ids elsewhere.

	Parameters:	username (str) – The username to compare the base users’ scores to

	Returns:	Key-value pairs as described above

	Return type:	dict

	
init(base_user)

	Retrieve a “base user“‘s list, and store it in _base_scores.

	Parameters:	base_user (str) – Base users’ username

Handling Exceptions

Which exceptions can be raised?

The types of exceptions that can be raised when calculating affinities are:

	
exception malaffinity.exceptions.NoAffinityError

	Raised when either the shared rated anime between the base user
and another user is less than 11, the user does not have any rated
anime, or the standard deviation of either users’ scores is zero.

	
exception malaffinity.exceptions.InvalidUsernameError

	Raised when username specified does not exist.

	
exception malaffinity.exceptions.MALRateLimitExceededError

	Raised when MAL’s blocking your request, because you’re going over their
rate limit of one request every two seconds. Slow down and try again.

If you’re planning on using this package in an automated or unsupervised script,
you’ll want to make sure you account for these getting raised, as not doing so
will mean you’ll be bumping into a lot of exceptions, unless you can guarantee
none of the above will get raised. For an example snippet of code that can
demonstrate this, see Exception Handling Snippet.

MALAffinityException

exceptions.NoAffinityError and exceptions.InvalidUsernameError
are descendants of:

	
exception malaffinity.exceptions.MALAffinityException

	Base class for MALAffinity exceptions.

which means if that base exception gets raised, you know you won’t be able to
calculate affinity with that person for some reason, so your script should
just move on.

What to do if MALRateLimitExceededError gets raised

exceptions.MALRateLimitExceededError rarely gets raised if you abide
by the rate limit of one request every two seconds. If it does get raised,
the following should happen:

	Halt the script for a few seconds. I recommend five.

	Try again.

	If you get roadblocked again, just give up. MAL obviously hates you.

Exception Handling Snippet

The above can be demonstrated via something along these lines. Do note that
this probably isn’t the best method, but it works.

This should be placed in the section where you are attempting to calculate
affinity with another user. Because I wrote this before
MALAffinity.comparison() was created, the snippet only shows
how you can apply this to calculating affinities, but it can easily be
modified, should you wish, to get a comparison of scores.

time.sleep(2)

success = False

for _ in range(2):
 try:
 affinity, shared = ma.calculate_affinity("OTHER_USERNAME")

 # Rate limit exceeded. Halt your script and try again
 except malaffinity.exceptions.MALRateLimitExceededError:
 time.sleep(5)
 continue

 # Any other malaffinity exception.
 # Affinity can't be calculated for some reason.
 # ``MALAffinityException`` is the base exception class for
 # all malaffinity exceptions
 except malaffinity.exceptions.MALAffinityException:
 break

 # Exceptions not covered by malaffinity. Not sure what
 # you could do here. Feel free to handle however you like
 except Exception as e:
 print("Something went wrong. Please contact Xinil for further assistance:")
 print("* https://myanimelist.net/profile/Xinil")
 print("* https://www.reddit.com/user/Xinil")
 print("Please also nag him to create a half-decent MAL API for gods sake.")
 print("")
 print("Exception: `{}`".format(e))
 break

 # Success!
 else:
 success = True
 break

``success`` will still be ``False`` if affinity can't been calculated.
If this is the case, you'll want to stop doing anything with this person
and move onto the next, so use the statement that will best accomplish this,
given the layout of your script
if not success:
 return

Assume from here on that ``affinity`` and ``shared`` hold their corresponding
values, and feel free to do whatever you want with them

Feel free to use a while loop instead of the above. I’m just a bit wary of them,
in case something happens and the script gets stuck in an infinite loop. Your choice.

To see the above snippet in action, visit
erkghlerngm44/r-anime-soulmate-finder [https://github.com/erkghlerngm44/r-anime-soulmate-finder/blob/v4.2.0/soulmate_finder/__main__.py#L80-L113].

Changelog

v2.5.2 (2017-10-06)

	Happy birthday to me.

	Correct incorrect information in the NoAffinityError docstring, which
stated that the minimum shared rated anime threshold for calculating affinity
was ten, when it’s actually eleven.

v2.5.1 (2017-09-14)

	Add the conventions section to extras_require, so conventions
dependencies can easily be installed if needed.

	Add the travis section to extras_require, so Travis can easily
install any additional dependencies it needs.

	Rename the doc and test sections in extras_require to docs
and tests respectively.

v2.5.0 (2017-08-26)

	Create the Affinity namedtuple, and return that instead of a normal tuple
when calculating affinity.

	Rename the “their_list” var in MALAffinity.calculate_affinity to
“user_list”. It’s an improvement, but still a bad var name.

v2.4.0 (2017-08-17)

	Tidy up the MALAffinity __repr__, and dynamically specify the class
name, in case the class needs to be renamed (which it probably won’t).

	Use double backticks instead of a single backtick in the calculate_affinity
function’s docstring.

	Add a one-off comparison function (+ docs).

	Move the “shared rated anime threshold” check to the calculate_affinity method,
as a comparison can be done no matter how many shared rated anime two users share.

	Add the error/warning codes to ignore next to the # noqa comments.

	Rewrite the contributing page in the docs, and create CONTRIBUTING.rst
to link to it.

v2.3.1 (2017-08-12)

	Use Xinil and Luna‘s usernames to demonstrate how MALAffinity
can be used, in the docstring examples.

	Use different anime in the comparison method’s key:value example
(in the docstring), so a wider range of ratings can be shown.

v2.3.0 (2017-07-25)

	Rewrite calcs.pearson to make it 5x faster.

	Do the “standard deviation is zero” checking in calcs.pearson,
so the standard deviation doesn’t actually have to be calculated.

	Don’t make MALRateLimitExceededError a descendant of
MALAffinityException.

v2.2.3 (2017-07-20)

	Move test dependencies to extras_require in setup.py, and have
tests_require mirror that.

	Add documentation dependencies to extras_require in setup.py.

	Make all docstrings PEP 257 compliant.

	Add more classifiers to setup.py.

v2.2.2 (2017-07-17)

	Have Travis deploy the package to PyPI when a release is drafted.

This release exists solely to test that the above is working.
No code changes have been made.

v2.2.1 (2017-07-17)

	Fix tests up to use the mock module, and be less hacky.

	Hook tests up to setup.py, so python setup.py test can be called,
for the test suite to run.

	Add version constraints in for dependencies.

v2.2.0 (2017-07-12)

	Create the comparison method, and have calculate_affinity use that
to retrieve both sets of scores.

	Rewrite the docstrings in the MALAffinity class, to be more useful and
more compliant with le Sphinx syntax.

	Add docs to the project, and have them hosted on readthedocs.io.

	Add (badly written) tests, and hook them up to Travis and Coveralls.

	Get rid of Markdown altogether, and rewrite the README, as most of the info
is now in the docs.

v2.1.0 (2017-07-08)

	Fix a typo in the calcs.pearson docstring, which incorrectly said
the :rtype was a bool.

	Use the find_all BS4 method instead of findAll.

	Fix a typo in the “Shared rated anime count is less than required” exception
message, which incorrectly stated that the minimum required was ten, when it’s
actually eleven.

	Add a docstring for .__about__.

	Add a docstring for MALAffinity._retrieve_scores.

	Remove the useless kwargs from MALAffinity._retrieve_scores.

	Make the statistics pypi package a requirement for all Python versions.

	Add a __repr__ to the MALAffinity class.

	Move the _retrieve_scores method in the MALAffinity class
to its own file (endpoints.py).

	Create a const.py file for constants.

	Add a # NOQA comment to the .__about__ imports in __init__, to suppress
the F401 flake8 warnings.

v2.0.0 (2017-06-20)

	Move the MALAffinity class to its own separate file (malaffinity.malaffinity)
and import that into the malaffinity namespace via __init__.

	Move exceptions to its own separate file (malaffinity.exceptions).

	Modify description of the package slightly (“Calculate affinity between
two MyAnimeList users” => “Calculate affinity between MyAnimeList users”).

	Add exception message for when the standard deviation of one of the two users’
scores is zero, and affinity can’t be calculated.

	Create the base MALAffinityException class and derive all malaffinity
exceptions from that.

	Add docstrings for malaffinity.calcs.

	Modify docstrings to remove typos and unnecessary information,
and reword some sections.

	Reword exception messages to be more useful.

	Have the init method return self, to allow for
chaining [https://en.wikipedia.org/wiki/Method_chaining].

	Make all code PEP8-compliant (ignoring F401 for meta reasons).

v1.1.0 (2017-06-15)

	Remove scipy (and numpy) as a dependency. Pearson’s correlation code is now in
malaffinity.calcs and stdev checking is handled by the statistics module.

	Use lxml for XML parsing, instead of the default html.parser.

	Add return types for components inside the return tuple into the docstring.

v1.0.3 (2017-05-05)

	Change ‘base user has been set’ testing to also check if self._base_scores
has been set as well.

	Use zip to create the scores1 and scores2 arrays
that calculations are done with.

	Check if the standard deviation of scores1 or scores2 is zero,
and thrown an error if so.

	Use scipy.asscalar as opposed to .item() for numpy.float64 => float conversion.

v1.0.2 (2017-04-17)

	Better handling for numpy.float64 => float conversion.

	Update docstrings to include types.

v1.0.1 (2017-04-12)

	Don’t count rated anime on a user’s PTW. MAL didn’t count this,
so our affinity values were a bit off when a user did this.

v1.0.0 (2017-04-09)

	Konnichiwa, sekai!

Contributing

In the unlikely event that someone finds this package, and in the even unlikelier
event that someone wants to contribute,
send me a pull request [https://github.com/erkghlerngm44/malaffinity/pulls]
or create an issue [https://github.com/erkghlerngm44/malaffinity/issues].

Note

Please Contact and notify me if you use the above, as this isn’t my
main GitHub account, so I won’t be checking it that much. I’ll probably see
it weeks/months later if you don’t.

Feel free to use those for anything regarding the package, they’re there to be used,
I guess.

How to Contribute

	Fork the repo [https://github.com/erkghlerngm44/malaffinity].

	git clone https://github.com/YOUR_USERNAME/malaffinity.git

	cd malaffinity

	git checkout -b new_feature

	Make changes.

	git commit -am "Commit message"

	git push origin new_feature

	Navigate to https://github.com/YOUR_USERNAME/malaffinity

	Create a pull request.

Notes and Stuff

I had a whole section on conventions to follow and other stuff, but that
seemed a bit weird, so I just scratched it. If someone out there wants to
contribute to this package in any way, shape or form, have at it. I’d prefer
the changes to be non-breaking (i.e. existing functionality is not affected),
but breaking changes are still welcome.

I only ask that you try to adhere to PEP 8 [https://www.python.org/dev/peps/pep-0008] and PEP 257 [https://www.python.org/dev/peps/pep-0257] (if you can), and
try to achieve 100% coverage in tests (again, if you can). For information on how
to check if you’re adhering to those conventions, see Conventions.

For information on how to build docs and run tests, see Documentation and
Test Suite respectively.

This package is based off a
class [https://github.com/erkghlerngm44/r-anime-soulmate-finder/blob/v1.0.0/affinity_gatherer.py#L25-L112]
I wrote for erkghlerngm44/r-anime-soulmate-finder, and while I have tried to
modify it for general uses (and tried to clean the bad code up a bit), there are
still a few iffy bits around. I’d appreciate any PRs to fix this up.

I think the package is mostly complete, so my main focus right now is making it
as fast as can-be, as every fraction of a second counts when you’re using this
to calculate affinity with tens of thousands of people. PRs regarding this are
especially welcome.

That’s it, I guess. Contact me if you need help or anything.

[image:]

Contact

On the off chance that someone wants to contact me, I can be reached via the following
(ordered from fastest to slowest in terms of time it’ll take to get a response from me):

	Discord (erkghlerngm44#9210)

	Reddit (/u/erkghlerngm44 [https://www.reddit.com/message/compose/?to=erkghlerngm44])

	Email (erkghlerngm44@protonmail.com)

Note

Emailing me is pretty much pointless, since I rarely check that address.
Contact me on Discord or Reddit if you need anything.

[image:]

License

Licensed under MIT.

MIT License

Copyright (c) 2017 erkghlerngm44

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

[image:]

Index

 _
 | C
 | I
 | M
 | N
 | P

_

 	
 	__init__() (malaffinity.MALAffinity method)

C

 	
 	calculate_affinity() (malaffinity.MALAffinity method)

 	
 	comparison() (malaffinity.MALAffinity method)

I

 	
 	init() (malaffinity.MALAffinity method)

 	
 	InvalidUsernameError

M

 	
 	MALAffinity (class in malaffinity)

 	
 	MALAffinityException

 	MALRateLimitExceededError

N

 	
 	NoAffinityError

P

 	
 	
 Python Enhancement Proposals

 	PEP 257, [1]

 	PEP 8, [1]

 _static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		malaffinity

 		Introduction

 		What is this?

 		But why should I bother using this? Doesn't MAL give me an affinity?

 		Getting Started

 		Install

 		Dependencies

 		Development

 		Conventions

 		Documentation

 		Test Suite

 		Walkthrough

 		Initialising the Class

 		Method 1: Normal initialisation

 		Method 2: Specifying a “base user” after initialisation

 		Rounding of the final affinity value

 		Doing Things with the Initialised Class

 		Calculate affinity with a user

 		Comparing scores with a user

 		Extras

 		One-off affinity calculations

 		One-off comparison of scores

 		API

 		Handling Exceptions

 		Which exceptions can be raised?

 		MALAffinityException

 		What to do if MALRateLimitExceededError gets raised

 		Exception Handling Snippet

 		Changelog

 		v2.5.2 (2017-10-06)

 		v2.5.1 (2017-09-14)

 		v2.5.0 (2017-08-26)

 		v2.4.0 (2017-08-17)

 		v2.3.1 (2017-08-12)

 		v2.3.0 (2017-07-25)

 		v2.2.3 (2017-07-20)

 		v2.2.2 (2017-07-17)

 		v2.2.1 (2017-07-17)

 		v2.2.0 (2017-07-12)

 		v2.1.0 (2017-07-08)

 		v2.0.0 (2017-06-20)

 		v1.1.0 (2017-06-15)

 		v1.0.3 (2017-05-05)

 		v1.0.2 (2017-04-17)

 		v1.0.1 (2017-04-12)

 		v1.0.0 (2017-04-09)

 		Contributing

 		How to Contribute

 		Notes and Stuff

 		Contact

 		License

