

 Navigation

 	
 index

 	
 next |

 	Mailman CLI 1 documentation

mailman.client - Python bindings for the Mailman 3 REST API

This package is called mailman.client.

mailman.client

The mailman.client library provides official Python bindings for the GNU
Mailman 3 REST API.

Note that the test suite current requires that a Mailman 3 server be running.
It should be running using a dummy or throw-away database, as this will make
changes to the running system. TBD: mock the real Mailman engine so that it
is not necessary in order to run these tests.

Requirements

mailman.client requires Python 2.6 or newer.

Project details

You may download the latest version of the package from the Python
Cheese Shop [http://pypi.python.org/mailman.client] or from Launchpad [https://launchpad.net/mailman.client].

You can also install it via easy_install or pip.:

% sudo easy_install mailman.client
% sudo pip install mailman.client

See the Launchpad project page for access to the Bazaar branch, bug report,
etc.

Documentation

A simple guide to using the library is available within this package, in
the form of doctests. The manual is also available online in the Cheeseshop
at:

http://package.python.org/mailman.client

Acknowledgements

Many thanks to Florian Fuchs for his contribution of an initial REST client.

Table of Contents

	Mailman REST client
	Domains

	Mailing lists

	Membership

	Users
	User Subscriptions

	List Settings

	Preferences

	Owners and Moderators

	Moderation
	Message Moderation

	Subscription Moderation

	The Mailman Command Line Shell
	Firing and Exiting the Shell

	Displaying Mailman Objects

	The Shell Environment

	Create Objects

	Delete Objects

	Subscription

	Update Preferences

	The Mailman Command Line Tools
	Initialization

	Domains
	Create a new domain

	List Domains

	Delete a domain

	Mailing List
	Create a mailing list

	Show Mailing lists

	Delete Mailing list

	Manage list owners, members and moderators::

	Add or remove list owners and moderators

	User
	Craete User

	Delete User

	Describe user

	Subscription and Unsubscription

	Preferences
	Update Preference

	View Setting

	Backup and Restore
	Backup

	Restore

	Writing a new command
	Writing a new command for Command tools

	Writing a new command for the Shell

	Mailman Shell Parsers
	The show command
	Tokens

	Grammar

	The create command
	Tokens

	Grammar

	The delete command
	Tokens

	Grammar

	The subscribe Command
	Tokens

	Grammar

	The unsubscribe Command
	Tokens

	Grammar

	The unset command
	Tokens

	Grammar

	The set Command
	Tokens

	Grammar

	The update command
	Tokens

	Grammar

	NEWS for mailman.client
	0.1 (201X-XX-XX)

 Copyright 2014, Rajeev S.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mailman CLI 1 documentation

Mailman REST client

>>> import os
>>> import time
>>> import smtplib
>>> import subprocess

>>> from mock import patch

This is the official Python bindings for the GNU Mailman REST API. In order
to talk to Mailman, the engine’s REST server must be running. You begin by
instantiating a client object to access the root of the REST hierarchy,
providing it the base URL, user name and password (for Basic Auth).

>>> from mailmanclient import Client
>>> client = Client('http://localhost:9001/3.0', 'restadmin', 'restpass')

We can retrieve basic information about the server.

>>> dump(client.system)
http_etag: "..."
mailman_version: GNU Mailman 3.0... (...)
python_version: ...
self_link: http://localhost:9001/3.0/system

To start with, there are no known mailing lists.

>>> client.lists
[]

Domains

Before new mailing lists can be added, the domain that the list will live in
must be added. By default, there are no known domains.

>>> client.domains
[]

It’s easy to create a new domain; when you do, a proxy object for that domain
is returned.

>>> example_dot_com = client.create_domain('example.com',
... contact_address='admin@example.com')
>>> example_dot_com
<Domain "example.com">
>>> print example_dot_com.base_url
http://example.com
>>> print example_dot_com.contact_address
admin@example.com
>>> print example_dot_com.description
None
>>> print example_dot_com.mail_host
example.com
>>> print example_dot_com.url_host
example.com

You can also get an existing domain independently using its mail host.

>>> example = client.get_domain('example.com')
>>> example
<Domain "example.com">
>>> print example_dot_com.base_url
http://example.com

Additionally you can get an existing domain using its web host.

>>> example = client.get_domain(web_host='http://example.com')
>>> example
<Domain "example.com">
>>> print example_dot_com.base_url
http://example.com

But you cannot retrieve a non-existent domain.

>>> client.get_domain('example.org')
Traceback (most recent call last):
...
HTTPError: HTTP Error 404: 404 Not Found

After creating a few more domains, we can print the list of all domains.

>>> client.create_domain('example.net')
<Domain "example.net">
>>> client.create_domain('example.org')
<Domain "example.org">
>>> for mail_host in client.domains:
... print mail_host
<Domain "example.com">
<Domain "example.net">
<Domain "example.org">

Also, domain can be deleted.

>>> client.delete_domain('example.org')
>>> for mail_host in client.domains:
... print mail_host
<Domain "example.com">
<Domain "example.net">

Mailing lists

Once you have a domain, you can create mailing lists in that domain.

>>> test_one = example.create_list('test-one')
>>> test_one
<List "test-one@example.com">
>>> print test_one.fqdn_listname
test-one@example.com
>>> print test_one.mail_host
example.com
>>> print test_one.list_name
test-one
>>> print test_one.display_name
Test-one

You can also retrieve the mailing list after the fact.

>>> my_list = client.get_list('test-one@example.com')
>>> my_list
<List "test-one@example.com">

And you can print all the known mailing lists.

>>> example.create_list('test-two')
<List "test-two@example.com">
>>> domain = client.get_domain('example.net')
>>> domain.create_list('test-three')
<List "test-three@example.net">
>>> example.create_list('test-three')
<List "test-three@example.com">

>>> for mlist in client.lists:
... print mlist
<List "test-one@example.com">
<List "test-two@example.com">
<List "test-three@example.net">
<List "test-three@example.com">

List results can be retrieved as pages:

>>> page = client.get_list_page(count=2, page=1)
>>> page.nr
1
>>> len(page)
2
>>> for m_list in page:
... print m_list
<List "test-one@example.com">
<List "test-two@example.com">
>>> page = page.next
>>> page.nr
2
>>> for m_list in page:
... print m_list
<List "test-three@example.net">
<List "test-three@example.com">

If you only want to know all lists for a specific domain, use the domain object.

>>> for mlist in example.lists:
... print mlist
<List "test-one@example.com">
<List "test-three@example.com">
<List "test-two@example.com">

You can use a list instance to delete the list.

>>> test_three = client.get_list('test-three@example.net')
>>> test_three.delete()

You can also delete a list using the client instance’s delete_list method.

>>> client.delete_list('test-three@example.com')

>>> for mlist in client.lists:
... print mlist
<List "test-one@example.com">
<List "test-two@example.com">

Membership

Email addresses can subscribe to existing mailing lists, becoming members of
that list. The address is a unique id for a specific user in the system, and
a member is a user that is subscribed to a mailing list. Email addresses need
not be pre-registered, though the auto-registered user will be unique for each
email address.

The system starts out with no members.

>>> client.members
[]

New members can be easily added; users are automatically registered.

>>> test_two = client.get_list('test-two@example.com')

>>> test_one.subscribe('anna@example.com', 'Anna')
<Member "anna@example.com" on "test-one.example.com">
>>> test_one.subscribe('bill@example.com', 'Bill')
<Member "bill@example.com" on "test-one.example.com">
>>> test_two.subscribe('anna@example.com')
<Member "anna@example.com" on "test-two.example.com">
>>> test_two.subscribe('cris@example.com', 'Cris')
<Member "cris@example.com" on "test-two.example.com">

We can retrieve all known memberships. These are sorted first by mailing list
name, then by email address.

>>> for member in client.members:
... print member
<Member "anna@example.com" on "test-one.example.com">
<Member "bill@example.com" on "test-one.example.com">
<Member "anna@example.com" on "test-two.example.com">
<Member "cris@example.com" on "test-two.example.com">

We can also view the memberships for a single mailing list.

>>> for member in test_one.members:
... print member
<Member "anna@example.com" on "test-one.example.com">
<Member "bill@example.com" on "test-one.example.com">

Membership lists can be paginated, to recieve only a part of the result.

>>> page = client.get_member_page(count=2, page=1)
>>> page.nr
1
>>> for member in page:
... print member
<Member "anna@example.com" on "test-one.example.com">
<Member "bill@example.com" on "test-one.example.com">

>>> page = page.next
>>> page.nr
2
>>> for member in page:
... print member
<Member "anna@example.com" on "test-two.example.com">
<Member "cris@example.com" on "test-two.example.com">

>>> page = test_one.get_member_page(count=1, page=1)
>>> page.nr
1
>>> for member in page:
... print member
<Member "anna@example.com" on "test-one.example.com">
>>> page = page.next
>>> page.nr
2
>>> for member in page:
... print member
<Member "bill@example.com" on "test-one.example.com">

We can get a single membership too.

>>> cris_test_two = test_two.get_member('cris@example.com')
>>> cris_test_two
<Member "cris@example.com" on "test-two.example.com">
>>> print cris_test_two.role
member

A membership has preferences.

>>> prefs = cris_test_two.preferences
>>> print prefs['delivery_mode']
regular
>>> print prefs['acknowledge_posts']
None
>>> print prefs['delivery_status']
None
>>> print prefs['hide_address']
None
>>> print prefs['preferred_language']
None
>>> print prefs['receive_list_copy']
None
>>> print prefs['receive_own_postings']
None

The membership object’s user attribute will return a User object:

>>> cris_test_two.user
<User "Cris" (...)>

If you use an address which is not a member of test_two ValueError is raised:

>>> test_two.unsubscribe('nomember@example.com')
Traceback (most recent call last):
...
ValueError: nomember@example.com is not a member address of test-two@example.com

After a while, Anna decides to unsubscribe from the Test One mailing list,
though she keeps her Test Two membership active.

>>> test_one.unsubscribe('anna@example.com')
>>> for member in client.members:
... print member
<Member "bill@example.com" on "test-one.example.com">
<Member "anna@example.com" on "test-two.example.com">
<Member "cris@example.com" on "test-two.example.com">

A little later, Cris decides to unsubscribe from the Test Two mailing list.

>>> cris_test_two.unsubscribe()
>>> for member in client.members:
... print member
<Member "bill@example.com" on "test-one.example.com">
<Member "anna@example.com" on "test-two.example.com">

If you try to unsubscribe an address which is not a member address ValueError is raised:

>>> test_one.unsubscribe('nomember@example.com')
Traceback (most recent call last):
...
ValueError: nomember@example.com is not a member address of test-one@example.com

Users

Users are people with one or more list memberhips. To get a list of all users, access the clients user property.

>>> for user in client.users:
... print user
<User "..." (...)>
<User "..." (...)>
<User "..." (...)>

The users can also be paginated:

>>> page = client.get_user_page(count=2, page=1)
>>> page.nr
1

>>> for user in page:
... print user
<User "Anna" (...)>
<User "Bill" (...)>

You can get the next or previous pages without calling get_userpage again.

>>> page = page.next
>>> page.nr
2

>>> for user in page:
... print user
<User "Cris" (...)>

>>> page = page.previous
>>> page.nr
1

>>> for user in page:
... print user
<User "Anna" (...)>
<User "Bill" (...)>

A single user can be retrieved using their email address.

>>> cris = client.get_user('cris@example.com')
>>> print cris.display_name
Cris

Every user has a list of one or more addresses.

>>> for address in cris.addresses:
... print address
... print address.display_name
... print address.registered_on
cris@example.com
Cris
...

Addresses can be accessed directly:

>>> address = client.get_address('cris@example.com')
>>> print address
cris@example.com
>>> print address.display_name
Cris

The address has not been verified:

>>> print address.verified_on is None
True

But that can be done via the address object:

>>> address.verify()
>>> address.verified_on is None
False

It can also be unverified:

>>> address.unverify()
>>> address.verified_on is None
True

	Users can be added using create_user. The display_name is optional:

	>>> client.create_user(email='ler@primus.org',
... password='somepass',
... display_name='Ler')
<User "Ler" (...)>
>>> ler = client.get_user('ler@primus.org')
>>> print ler.password
$...
>>> print ler.display_name
Ler

User attributes can be changed through assignment, but you need to call the
object’s save method to store the changes in the mailman core database.

>>> ler.display_name = 'Sir Ler'
>>> ler.save()
>>> ler = client.get_user('ler@primus.org')
>>> print ler.display_name
Sir Ler

Passwords can be changed as well:

>>> old_pwd = ler.password
>>> ler.password = 'easy'
>>> old_pwd == ler.password
True
>>> ler.save()
>>> old_pwd == ler.password
False

User Subscriptions

A User’s subscriptions can be access through their subscriptions property.

>>> bill = client.get_user('bill@example.com')
>>> for subscription in bill.subscriptions:
... print subscription
<Member "bill@example.com" on "test-one.example.com">

If all you need are the list ids of all mailing lists a user is subscribed to, you can use the subscription_list_ids property.

>>> for list_id in bill.subscription_list_ids:
... print list_id
test-one.example.com

List Settings

We can get all list settings via a lists settings attribute. A proxy object for the settings is returned which behaves much like a dictionary.

>>> settings = test_one.settings
>>> len(settings)
48

>>> for attr in sorted(settings):
... print attr + ': ' + str(settings[attr])
acceptable_aliases: []
...
welcome_message_uri: mailman:///welcome.txt

>>> print settings['display_name']
Test-one

We can access all valid list settings as attributes.

>>> print settings['fqdn_listname']
test-one@example.com
>>> print settings['description']

>>> settings['description'] = 'A very meaningful description.'
>>> settings['display_name'] = 'Test Numero Uno'

>>> settings.save()

>>> settings_new = test_one.settings
>>> print settings_new['description']
A very meaningful description.
>>> print settings_new['display_name']
Test Numero Uno

The settings object also supports the get method of usual Python dictionaries:

>>> print settings_new.get('OhNoIForgotTheKey', 'HowGoodIPlacedOneUnderTheDoormat')
HowGoodIPlacedOneUnderTheDoormat

Preferences

Preferences can be accessed and set for users, members and addresses.

By default, preferences are not set and fall back to the global system preferences. They’re read-only and can be accessed through the client object.

>>> global_prefs = client.preferences
>>> print global_prefs['acknowledge_posts']
False
>>> print global_prefs['delivery_mode']
regular
>>> print global_prefs['delivery_status']
enabled
>>> print global_prefs['hide_address']
True
>>> print global_prefs['preferred_language']
en
>>> print global_prefs['receive_list_copy']
True
>>> print global_prefs['receive_own_postings']
True

Preferences can be set, but you have to call save to make your changes permanent.

Owners and Moderators

Owners and moderators are properties of the list object.

>>> test_one.owners
[]
>>> test_one.moderators
[]

Owners can be added via the add_owner method:

>>> test_one.add_owner('foo@example.com')
>>> for owner in test_one.owners:
... print owner
foo@example.com

The owner of the list not automatically added as a member:

>>> test_one.members
[<Member "bill@example.com" on "test-one.example.com">]

Moderators can be added similarly:

>>> test_one.add_moderator('bar@example.com')
>>> for moderator in test_one.moderators:
... print moderator
bar@example.com

Moderators are also not automatically added as members:

>>> test_one.members
[<Member "bill@example.com" on "test-one.example.com">]

Members and owners/moderators are separate entries in in the general members
list:

>>> test_one.subscribe('bar@example.com')
<Member "bar@example.com" on "test-one.example.com">

>>> for member in client.members:
... print '%s: %s' %(member, member.role)
<Member "foo@example.com" on "test-one.example.com">: owner
<Member "bar@example.com" on "test-one.example.com">: moderator
<Member "bar@example.com" on "test-one.example.com">: member
<Member "bill@example.com" on "test-one.example.com">: member
<Member "anna@example.com" on "test-two.example.com">: member

Both owners and moderators can be removed:

>>> test_one.remove_owner('foo@example.com')
>>> test_one.owners
[]

test_one.remove_moderator('bar@example.com‘)
test_one.moderators
[]

Moderation

Message Moderation

>>> msg = """From: nomember@example.com
... To: test-one@example.com
... Subject: Something
... Message-ID: <moderated_01>
...
... Some text.
...
... """
>>> server = smtplib.LMTP('localhost', 8024)
>>> server.sendmail('nomember@example.com', 'test-one@example.com', msg)
{}
>>> server.quit()
(221, 'Bye')
>>> time.sleep(2)

Messages held for moderation can be listed on a per list basis.

>>> held = test_one.held
>>> print held[0]['subject']
Something
>>> print held[0]['reason']

>>> print held[0]['request_id']
1

>>> print test_one.defer_message(held[0]['request_id'])['status']
204

>>> len(test_one.held)
1

>>> print test_one.discard_message(held[0]['request_id'])['status']
204

>>> len(test_one.held)
0

Subscription Moderation

>>> patcher = patch('mailmanclient._client._Connection.call')
>>> mock_call = patcher.start()
>>> mock_call.return_value = [None, dict(entries=[
... dict(address=u'ler@primus.org',
... delivery_mode=u'regular',
... display_name=u'Ler',
... http_etag=u'...',
... language=u'en',
... password=u'password',
... request_id=1,
... type=u'subscription',
... when=u'2005-08-01T07:49:23',
...)
...])]

>>> requests = test_one.requests
>>> print requests[0]['address']
ler@primus.org
>>> print requests[0]['delivery_mode']
regular
>>> print requests[0]['display_name']
Ler
>>> print requests[0]['language']
en
>>> print requests[0]['password']
password
>>> print requests[0]['request_id']
1
>>> print requests[0]['type']
subscription
>>> print requests[0]['request_date']
2005-08-01T07:49:23

>>> patcher.stop()

 Copyright 2014, Rajeev S.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mailman CLI 1 documentation

The Mailman Command Line Shell

This document describes the usage of the Mailman Command line
shell, using which you can query a mailman installation with ease.

Firing and Exiting the Shell

You can start the mailman shell by executing the mmclient command,
without any arguments:

$./mmclient
Mailman Command Line Interface
>>>

To exit the shell, use the EOF character, that is, Ctrl + d.

Displaying Mailman Objects

The shell can be used to display the mailman objects, using the show
command.

For example:

>>> show users
>>> show domains
>>> show lists

Further, the CLI supports filtering of mailman objects based upon their
attribute values or properties, using a where clause. For this, the CLI
employs 3 filters, which are:

= Equality
like Case insensitive regular exp mathcing
in Search inside a property which list

These filteres can be used in conjunction by using an and clause

Examples:

>>> show users where `display_name` = `Foo`
>>> show users where `display_name` like `.*Foo*`
>>> show lists where `foo@bar.com` in `moderators`
>>> show lists where `foo@bar.com` in `moderators` and `a@b.com` in `owners`

The Shell Environment

The shell provides a facility to create variables that can be used to
make the querying easier.

For using the shell, two commands, set and unset are used.

Example:

>>> set `useremail` = `foo@bar.com`

The variables can be used in the queries as follows:

>>> show lists where `$useremail` in `moderators`

The $username will be replaced with the value of useremail

The environment can be disabled using the disable environemt
command, that prevents the CLI from replacing the query terms
with environment variables, or appending of the specialised
variables.

The disabled environment can be enabled using the enable env
command.:

>>> disable env
>>> enable env

The environment supports a set of special variables, which denote
the names of the scopes available in mailman. They are domain, list and
user.

The special environment variables are appended automatically with relevant commands

For example, if the environment variable domain is set to a domain name, then the
`show list ` command automatically applies a domain = <set domain> filter to
the result list.:

>>> set `domain` = `domain.org`
>>> show lists //Shows lists under domain.org
>>> disable env
>>> show lists //Shows all lists
>>> enable env

The value of stored variables can be viewed using the show_var command:

>>> show_var `domain`

Create Objects

The Mailman objects can be created using the create command

The create command accepts the object properties and creates
the object.

If the supplied arguments are invalid or insufficient, the list
of arguments that are required are displayed.

The create command can be used as follows:

>>> create list where `fqdn_listname` = `list@domain.org`
>>> create domain where `domain` = `domain.org` and `contact` = `a@b.com`
>>> create user where `email` = `foo@bar.com` and `password` = `a` and `name` = `Foo`

Delete Objects

The Mailman objects can be deleted using the delete command. The
delete command supports the same filters as those by the show command.

For example:

>>> delete domain where `domain` like `test_.*`

Subscription

The subscription commands include two commands, subscribe and
unsubscribe users, which are respectively used to subscribe users to a
list and unsubscribe users from a list. The commands allow applying
the action on a single user or multiple users at a time.:

>>> subscribe users `a@b.com` `foo@bar.com` to `list@domain.org`
>>> unsubscribe users `a@b.com` `foo@bar.com` from `list@domain.org`

Update Preferences

	Preferences can be updated using the shell for the following domains

	
	Globally

	Users

	Members

	Addresses

The actions are performed using the update command which can be used as follows:

>>> update preference `<preference_name>` to `<value>` globally
>>> update preference `<preference_name>` to `<value>` for member with `email` = `foo@bar.com`
 and `list` = `list@domain.org`
>>> update preference `<preference_name>` to `<value>` for user with `email` = `foo@bar.com`
>>> update preference `<preference_name>` to `<value>` for address with `email` = `foo@bar.com`

 Copyright 2014, Rajeev S.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mailman CLI 1 documentation

The Mailman Command Line Tools

Initialization

The CLI can be started by running mmclient [options|arguments]

If the mmclient is run without any arguments, the shell
is started, else the specified action is performed. Use EOF
to exit the shell.:

$> mmclient
Mailman Command Line Interface v1.0
>>>
Bye!

$> mmclient [options]

If you have non-default login credentials, specify them with the
following options:

--host HOSTNAME [defaults to http://127.0.0.1]
--port PORTNUMBER [defaults to 8001]
--restuser USERNAME [defaults to restadmin]
--restpass PASSWORD [defaults to restpass]

Domains

This section describes the domain related functions that can be performed
with the CLI.

Create a new domain

To create a new domain:

$> mmclient create domain testdomain.org

List Domains

To list the domains in the system:

$> mmclient show domain
http://domain.org

To obtain a detailed listing, use the -v/–verbose switch.
The detailed listing of domains displays the domains as a table:

$> mmclient show domain -v
Base URL Contact address Mail host URL host
http://domain.org postmaster@domain.org domain.org domain.org

In addition, the long listing has a no-header switch that can be used
to remove the header, making it more comfortable to pipe the output.:

$> mmclient show domain -v --no-header
http://domain.org postmaster@domain.org domain.org domain.org

Delete a domain

	To delete a domian ::

	$> mmclient delete domain domain.org

To supress the confirmation message:

$> mmclient delete domain domain.org --yes

To obtain a detailed description of a domain at one glance:

$> mmclient show domain domain.org

Mailing List

This section describes the mailing list related function that can be
performed with the CLI.

Create a mailing list

To create a mailing list:

$> mmclient create list list@domain.org

Show Mailing lists

Show all mailing lists in the system:

$> mmclient show list
foo.domain.org
bar.example.org

To display the lists under the domain domain.org:

$> mmclient show list -d domain.org
foo.domain.org

Further, a switch -v/–verbose can also be used to print a detailed listing:

$> mmclient show list --verbose
ID Name Mail host Display Name FQDN
list.domain.org list domain.org List list@domain.org

Again, the show list supports a –no-header switch that removes
the header line of the long listing:

$> mmclient show list --verbose --no-header
list.domain.org list domain.org List list@domain.org

Delete Mailing list

To delete a list:

$> mmclient delete list list@domain.org

To supress the confirmation message, do:

$> mmclient delete list list@domain.org --yes

To obtain a detailed description of a list at one glance:

$> mmclient show list list@domain.org

Manage list owners, members and moderators::

Adding and removing moderators can be performed using the CLI as follows

To get a list of members of a mailing list:

$> mmclient show-members list list@domain.org

The above command is equivalent to:

$> mmclient show user --list list@domain.com

The command also supports flags like:

--verbose Show a detailed listing
--no-header Hide header in detailed listing

Refer the show user command for more details

Add or remove list owners and moderators

To add moderators or owners:

$> mmclient add-moderator list list@domain.org --user a@b.com b@c.com
$> mmclient add-owner list list@domain.org --user a@b.com b@c.com

And to remove moderators or owners:

$> mmclient remove-moderator list list@domain.org --user a@b.com b@c.com
$> mmclient remove-owner list list@domain.org --user a@b.com b@c.com

The add and remove commands support the action on a list of users
at once. Success or failure messages are provided upon completion or
failure of an action. The messages can be supressed by using a quiet flag:

$> mmclient remove-moderator list list@domain.org --user a@b.com b@c.com --quiet

If the action fails for a user, the user is ignored and the action continues
without stalling.

User

Craete User

To create a new user:

$> mmclient create user foo@bar.com --name "Foo" --password "password"

The show user command lists a single email ID of each user:

$> mmclient show user
foo@bar.com

To list users who are members of a list:

$> mmclient show user --list list@domain.org
foo@bar.com

The show command also supports a –verbose switch

$> mmclient show user --verbose
Display Name Address Created on User ID
Foo foo2@bar.com 2014-05-30T00:52:52.564634 220337223817757552725201672981303248133

and a –no-header switch:

$> mmclient show user --verbose --no-header
Foo foo2@bar.com 2014-05-30T00:52:52.564634 220337223817757552725201672981303248133

Delete User

To delete a user:

$> mmclient delete user foo@bar.com

To supress the confirmation message, do:

$> mmclient delete user foo@bar.com --yes

Describe user

To obtain a detailed description of a user at one glance:

$> mmclient show user foo@bar.com

Subscription and Unsubscription

Users can be subscribed to a mailing list by using the subscribe
command:

$> mmclient subscribe user user1@bar.com user2@bar.com --list list@domain.org
user1@bar.com subscribed to list@domain.org
Failed to subscribe user2@bar.com : HTTP Error 409: Member already subscribed

Multiple users can be subscribed to the list at the same time.

Similarly, Users can be unsubscribed to a mailing list by using the unsubscribe
command:

$> mmclient unsubscribe user user1@bar.com user2@bar.com --list list@domain.org
user1@bar.com unsubscribed from list@domain.org
user2@bar.com unsubscribed from list@domain.org

The feedback for the subscribe and unsubscribe actions can be supressed by
using the –quiet flag:

$> mmclient subscribe user user1@bar.com user2@bar.com --list list@domain.org --quiet
$> mmclient unsubscribe user user1@bar.com user2@bar.com --list list@domain.org --quiet

The subscribe and unsubscribe actions continue even if one the users
fail to subscribe/unsubscribe to a list. A relevant feedback message is
provided if the –quiet flag is not enabled.

Preferences

Update Preference

Preferences for user,address,member or globally can be updated and retrieved
by using the commands of preference scope.

To update the value of a preference of an user:

$> mmclient update preference user --email foo@bar.com [key] [value]

To update the value of a preference of a member:

$> mmclient update preference member --email foo@bar.com --list list@domain.org [key] [value]

To update the value of a preference of an address:

$> mmclient update preference address --email foo@bar.com [key] [value]

To update the value of a preference globally:

$> mmclient update preference global [key] [value]

View Setting

To view the current value of a preference, use the mmclient show preference command
in the same way above, obviously, without the value argument

For eg, to view a setting of a member:

$> mmclient show preference member --email foo@bar.com --list list@domain.org [key]

Both the commands try to suggest the possible preference keys upon errors while typing the
keys. The commands return 1 upon an invalid key.

Backup and Restore

The CLI tools can be used to create backups and restore the backups of the
Mailman data. The backup currently supports the backup for SQLite mode.

Backup

The backup tools backs up the $var_dir specified by the Mailman configuration
as a zip archive to a specified location:

$> mmclient backup ~/backup.zip

Restore

To restore the backup, specfiy the path to the backup file:

$> mmclient restore ~/backup.zip

Please remember to stop the mailman runner before performing
the backup and restore operations.

The paths for backup and restore are read from the Mailman configuration
file.

 Copyright 2014, Rajeev S.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mailman CLI 1 documentation

Writing a new command

There are two types of commands in the CLI project, either add a new command
to the CLI tools, that gives a normal terminal command, or build a command
for the Mailman custom shell.

Writing a new command for Command tools

To write a new command for the command line tools, the following
steps are to be followed.

	Decide a command name and arguments expected

	Decide whether the command comes under a scope. Currently

the following scopes are supported

	users

	domains

	preferences

	lists

The new command can either be under any of these scopes or
can exist independently without a scope.

	If the new command BAR is to be added to an existing scope FOO,
the command would look like FOO BAR, where FOO is the action and
BAR is the scope

	Add a new parser to the action parser as:

new_cmd = action.add_parser('FOO')

Add the scope as follows:

scope = new_cmd.add_subparser(dest='scope')
FOO_BAR = scope.add_parser('BAR')

	Add the arguments as follows:

FOO_BAR.add_argument('-x','--xxxx',help='<help text>',[required=True/False])

	Add the action method in the core/bar.py file, to the Bar class. In effect, the action
method would be core.bar.Bar.action. Note that the function name must be same as the
action name

	If there is no specific scope, skip the scope parser and add the action the Misc class
under core/misc.py. The action would be core.misc.Misc.action

Writing a new command for the Shell

To write a new shell command, first add a new parser for the command to the client/parsers directory.

Add the command method to the client/shell.py

Import the parser in the corresponding method and parse the user input, present in the self.line attribute
to obtain the arguments. Perform the action.

 Copyright 2014, Rajeev S.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mailman CLI 1 documentation

Mailman Shell Parsers

This directory consists of the various parsers that
have been built for use with the mailman shell. The shell
parser has been built in such a way that each command has
a different and independent parser, so that adding new commands
can be done flexibly and easily, without worrying about the
existing code.

The show command

The command to display the mailman objects

Tokens

SHOW : 'show'
SCOPE : '(user|domain|list)s?'
WHERE : 'where'
OP : '=|in|like'
AND : 'and'
STRING : '`([a-zA-Z0-9_@\.*\-\$]*)`'

Grammar

S : SHOW SCOPE FILTER ;
FILTER : WHERE EXP | ;
EXP : STRING OP STRING CONJ ;
CONJ : AND EXP | ;

The create command

The commands to create mailman objects

Tokens

CREATE : 'create'
SCOPE : 'user|domain|list'
WITH : 'with'
AND : 'and'
STRING : '`([a-zA-Z0-9_@\.*\-\$]*)`'

Grammar

S : CREATE SCOPE WITH EXP ;
EXP : STRING "=" STRING CONJ ;
CONJ : AND EXP | ;

The delete command

The commands to delete mailman objects

Tokens

DELETE : 'delete'
SCOPE : '(user|domain|list)s?'
WHERE : 'where'
OP : '=|in|like'
AND : 'and'
STRING : '`([a-zA-Z0-9_@\.*\-\$]*)`'

Grammar

S : DELETE SCOPE FILTER ;
FILTER : WHERE EXP | ;
EXP : STRING OP STRING CONJ ;
CONJ : AND EXP | ;

The subscribe Command

The commands to subscribe a list of users to a mailing lists

Tokens

SUBSCRIBE : 'subscribe'
USER : '(user)?'
TO : 'to'
STRING : '`([a-zA-Z0-9_@\.*\-\$]*)`'

Grammar

S : SUBSCRIBE USER USERLIST TO STRING ;
USERLIST : STRING NEXT ;
NEXT : USERLIST | ;

The unsubscribe Command

The commands to unsubscribe a list of users from a mailing lists

Tokens

UNSUBSCRIBE : 'unsubscribe'
USER : '(user)?'
FROM : 'from'
STRING : '`([a-zA-Z0-9_@\.*\-\$]*)`'

Grammar

S : UNSUBSCRIBE USER USERLIST TO STRING ;
USERLIST : STRING NEXT ;
NEXT : USERLIST | ;

The unset command

Command to unset a shell variable

Tokens

UNSET : 'unset'
STRING : '`([a-zA-Z0-9_@\.*\-\$]*)`'

Grammar

S : UNSET STRING ;

The set Command

Command to set a shell variable

Tokens

SET : 'set'
STRING : '`([a-zA-Z0-9_@\.*\-\$]*)`'

Grammar

S : SET STRING "=" STRING ;

The update command

Command to update a preference

Tokens

UPDATE : 'update'
PREFERENCE : 'preference'
STRING : '`([a-zA-Z0-9_@\.*\-\$]*)`'
TO : 'to'
WITH : 'with'
AND : 'and'
FOR : 'for'
GLOBALLY : 'globally'
DOMAIN : 'user|address|member'

Grammar

S : UPDATE PREFERENCE STRING TO STRING E ;
E : GLOBALLY | FOR DOMAIN WITH EXP ;
EXP : STRING "=" STRING CONJ ;
CONJ : AND EXP | ;

 Copyright 2014, Rajeev S.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Mailman CLI 1 documentation

NEWS for mailman.client

0.1 (201X-XX-XX)

	Initial release.

 Copyright 2014, Rajeev S.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Mailman CLI 1 documentation

Index

 Copyright 2014, Rajeev S.
 Created using Sphinx 1.2.2.

 _static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

