
MagickBox Documentation
Release 0.0.1

Hauke Bartsch

September 14, 2015

Contents

1 System Architecture 3
1.1 MasterTemplate . 3
1.2 Processing Streams . 4

2 Setup of MagickBox 7
2.1 Setup of MagickBox without VM . 7
2.2 DICOM connectivity . 7

3 MagickBox command shell 9
3.1 Setup . 10
3.2 Usage . 11

4 How to process a large number of subjects 13

5 Routing DICOM 15
5.1 Configuration . 15
5.2 Logging . 17

6 Bucket development 19
6.1 Create . 19
6.2 Test . 20
6.3 Install . 20
6.4 Advanced: Persistent memory for buckets . 20

7 Classification of DICOM Files 21
7.1 Views/raw . 21
7.2 ClassifyType . 22

i

ii

MagickBox Documentation, Release 0.0.1

This documentation is a work in progress. All functionality described is still experimental.

The MagickBox computer system executes processing tasks on data. Data is send to the system which reacts by
performing an operation on the data optionally followed by a reply to the sender. Because of its simplicity it integrates
well into existing institutions with large data processing needs. As a primary use case MagickBox was developed to
facilitate image processing in a research hospital environment by supporting DICOM send/receive operations as well
as distributed computations of large numbers of image studies in a heterogeneous compute environment.

Contents 1

MagickBox Documentation, Release 0.0.1

2 Contents

CHAPTER 1

System Architecture

The system runs inside a virtual machine usually called MasterTemplate. Access to the virtual machine is provided by
RDP (Microsoft Remote Desktop Connection). If you are running the virtual machines inside VirtualBox a connection
will only be successful after installing the “VirtualBox Extension Pack”. Use the following information to access the
console of the virtual machine:

MasterTemplate user name: processing, password: processing

1.1 MasterTemplate

Inside the virtual machine runs Linux (Ubuntu). There are two partitions, one for the main system (/, 20GB) the other
for data storage during processing (/data/scratch, >200GB). The dcmtk tools provide the DICOM connectivity and
run as a system service (ps aux | grep store). Processing starts automatically when storescpd receives an image study.
As processing is data dependent the user needs to select the appropriate processing stream using the AETitle during
DICOM send. The list of available processing (AETitles) streams is displayed on the web interface (see below). After
processing is done the routing will be executed. This usually just sends the newly generated images back to a listening
DICOM node on your network (such as OsiriX or a PACS).

Each processing stream is implemented as a docker container and is controlled in its own directory
(/data/streams/bucket<AETitle>) with a configuration file (info.json). All streams run in parallel as system services
under gearman (http://gearman.org). This configuration will buffer large numbers of incoming processing requests
and tunnel them through each processing stream one at a time.

All system services are monitored using monit (https://mmonit.com/monit/download/) which provides its own user
interface to start/stop services. Monit makes sure that after a restart all system services are also restarted. This
functionality uses process id files stored in /data/.pids/. On newer monit implementations instead of pid files the
process name is used to detect if a service is running. The storescpd service may be stopped automatically by a
heart-beat function if it runs but does not respond to the echoscu command. In this case monit will restart the service
automatically. The monit user interface runs locally inside the MagickBox only (http://localhost:2812/).

Functionality provided by MagickBox:

• DICOM node listening to incoming connections

• Web interface which provides a user interface for configuration, log files and processed data downloads. The
routing functionality can send processed data to any specified DICOM node. When configured to use routing,
no continuous access to the web interface is required appart from the initial configuration.

MasterTemplate runs on a Host computer using network address translation (NAT). Using this configuration no sepa-
rate IP address is required. In order to be accessible to the outside the virtual machine forwards two ports to the outside
world.:

3

http://gearman.org
https://mmonit.com/monit/download/
http://localhost:2812/

MagickBox Documentation, Release 0.0.1

[TCP, Host IP, port 11113] -> [TCP, Guest IP, port 1234]
[TCP, Host IP, port 2813] -> [TCP, Guest IP, port 2813]
[TCP, Host IP, port 4321] -> [TCP, Guest IP, port 22] (optional ssh access)

The web interface is available at:

http://<Host IP>:2813/

Images to be processed should be sent to port 11113 on the host IP, using OsiriX or storescu (part of the dcmtk toolkit).

Fig. 1.1: Web-interface of MagickBox with timeline and processing jobs..

1.2 Processing Streams

Each processing stream is stored in a separate directory in /data/streams/. This directory is controlled by the buckets
script. Each stream directory contains an info file (info.json) with the following content:

{
"name": "My stream",

4 Chapter 1. System Architecture

http:/

MagickBox Documentation, Release 0.0.1

"description": "DICOM images are processed.",
"version": "0.0.1",
"AETitle": "ProcPics",
"license": "Feel free to change the code.",
"enabled": 1

}

This identifies a stream by an AETitle which has to be used by the sending DICOM node. Information about the
available streams are extracted from these info files and displayed in the web-interface.

Every processing stream is linked to a system service that is responsible for scheduling the stream. Monit is used to
monitor these services. The monit configuration files in /etc/monit/conf.d/processing-bucket<AETitle>.conf describes
for each bucket the stream which can start/stop/restart the processing.

The script starts the processing stream using a gearman services. Each gearman deamon will wait for a processing
job, or list of jobs and execute them one after another (first in - first out). Warning: This does not prevent several
streams to run at the same time. For example sending DICOM images between nodes is a separate gearman service
and computation will run in parallel with DICOM Send operations.

1.2. Processing Streams 5

MagickBox Documentation, Release 0.0.1

6 Chapter 1. System Architecture

CHAPTER 2

Setup of MagickBox

The setup of a MagickBox has to be performed if the IP of the machine that hosts the service changes. In this case the
user interface provides a “Setup” button at the top that allows the user to specify the IP address of the hosts machine.

In order to setup a new MagickBox follow the steps outlined below.

• install VirtualBox and the VirtualBox extension package (or another virtualization environment)

• import the MasterTemplate OVA file

• setup the virtual machines to start when the host computer starts (/Library/LaunchDaemon/ scripts)

2.1 Setup of MagickBox without VM

MagickBox can also run natively on a Linux system. This requires the following packages to be installed.

• monit - provides monitoring of system services, starts and restarts services

• gearman - provides job scheduling capabilities

• dcmtk - provides native DICOM connectivity

• apache/php5 - web-interface components and endpoints for mb-API calls

• python2.7/pydicom - optional if processSingleFiles.py is used to create alternative views for the data

2.2 DICOM connectivity

MagickBox uses dcmtk (OFFIS toolkit) for its basic DICOM Send/Receive functionality. In order to debug the con-
nection to an existing node edit the /data/code/bin/logger.cfg file. Switch on logging by changing the line:

log4cplus.rootLogger = DEBUG, console, logfile

This option will write DEBUG, INFO, WARN, ERROR, and FATAL messages to the storescp.log files in /data/logs/.
Change the option back to:

log4cplus.rootLogger = WARN, console, logfile

to reduce the number of log messages. Less log messages can improve the speed of the system.

7

MagickBox Documentation, Release 0.0.1

8 Chapter 2. Setup of MagickBox

CHAPTER 3

MagickBox command shell

The MagickBox command shell is used to query, send, receive, and remove jobs from a collection of MagickBox ma-
chines. This command line tool provides a convenient way to interface with MagickBox instances for larger projects.
If you have ever worked with programs like git the usage pattern should be familiar.

You can download the command shell executable (mb) for your platform here:

• Linux (MD5 = 764a386128376368528cdd6e66f15487) wget https://github.com/HaukeBartsch/MagickBox/raw/master/code/mb-
shell/LinuxAMD64/mb

• MacOSX (MD5 = 916df7853de9d82f6ec7a3b20a3d0c9e) wget https://github.com/HaukeBartsch/MagickBox/raw/master/code/mb-
shell/MacOSX/mb

• Windows (MD5 = 68b9e25fef9f351eca91be531e2f033d) wget https://github.com/HaukeBartsch/MagickBox/raw/master/code/mb-
shell/Windows/mb.exe

This is the basic help page of the application:

NAME:
mb - MagickBox command shell for query, send, retrieve, and deletion of data.

Setup: Start by listing known MagickBox instances (queryMachines). Identify
your machine and add them using 'activeMachines add'. They will be used

for all future commands.

Add your own identity using the setSender command. You can also add your
projects name (see example below) to make it easier to identify your
session later.

Most calls return textual output in JSON format that can be processed by
tools such as jq (http://stedolan.github.io/jq/).

Regular expressions are used to identify individual sessions. They can
be supplied as an additional argument to commands like list, log, push,
pull, and remove. Only if a session matches, the command will be applied.

If data is send (push) and there is more than 1 machine available that
provide that type of processing one of them will be selected based on load.
Commands such as 'list' will return the machine and port used for that session.

Example:
> mb setSender "hauke:testproject"
> mb push Proc data_01/
> mb push Proc data_02/
> mb list hauke:testproject

9

https://github.com/HaukeBartsch/MagickBox/raw/master/code/mb-shell/LinuxAMD64/mb
https://github.com/HaukeBartsch/MagickBox/raw/master/code/mb-shell/LinuxAMD64/mb
https://github.com/HaukeBartsch/MagickBox/raw/master/code/mb-shell/MacOSX/mb
https://github.com/HaukeBartsch/MagickBox/raw/master/code/mb-shell/MacOSX/mb
https://github.com/HaukeBartsch/MagickBox/raw/master/code/mb-shell/Windows/mb.exe
https://github.com/HaukeBartsch/MagickBox/raw/master/code/mb-shell/Windows/mb.exe

MagickBox Documentation, Release 0.0.1

> mb pull hauke:testproject

USAGE:
mb [global options] command [command options] [arguments...]

VERSION:
0.0.5

AUTHOR:
Hauke Bartsch - <HaukeBartsch@gmail.com>

COMMANDS:
pull, g Retrieve matching jobs output [pull <regular expression>]
pull-input, pi Retrieve matching jobs input [pull-input <regular expression>]
push, p Send a directory for processing [push <aetitle>

<dicom directory> [<arguments>]]
remove, r Remove data [remove <regular expression>]
list, l Show list of matching jobs [list [regular expression]]
log, l Show processing log of matching jobs

[log [regular expression]]
queryMachines, q Display list of known MagickBox instances

[queryMachines]
setSender, w Specify a string identifying the sender

[setSender [<sender>]]
setSetting Get or overwrite a program setting [setSetting

[<name> | <name> <value>]]
computeModules, c Get list of buckets for the active machines
activeMachines, a Get list of active magick box machines
help, h Shows a list of commands or help for one command

GLOBAL OPTIONS:
--config-sender Identify yourself, value is used as AETitleCaller

[--config-sender <string>]
--help, -h show help
--version, -v print the version

3.1 Setup

Start by using the queryMachines command to identify your processing machines (MagickBox needs to run on those
machines). You need to activate your MagickBox instances using ‘activeMachines’ once and all future calls to mb
will use these machines. Also specify the ‘sender’ (your name or the name of your project for example) as it makes it
easier later to identify your scans:

> mb queryMachines
[{ "id": "0", "machine": "137.110.172.9", "port": "2813" },
{ "id": "1", "machine": "10.193.13.181", "port": "2813" }]

> mb activeMachines add 137.110.172.9 2813
> mb activeMachines add 10.193.172.181 2813
> mb setSender hauke:project01

10 Chapter 3. MagickBox command shell

MagickBox Documentation, Release 0.0.1

3.2 Usage

The basic workflow is to first identify some data that is locally available on your harddrive. This could be a directory
with T1-weighted images in DICOM format. Send the data to a processing bucket on your MagickBox. Here an
example that sends data for gradient unwarp (distortion correction for MRI data):

> mb push ProcGradUnwarp ~/data/testdata/DICOMS

Mb will zip all files in the directory and upload the zip-file to your MagickBox for processing using the ‘ProcGradUn-
warp’ bucket. Check on the progress of the processing using the ‘list’ and ‘log’ commands:

> mb list hauke
[{

"AETitleCalled": "ProcGradUnwarp",
"AETitleCaller": "hauke:project01",
"CallerIP": "10.0.2.2",
"lastChangedTime": "Tue, 02 Sep 2014 00:05:57 -0700",
"pid": "tmp.8938590",
"processingLast": 115683,
"processingLogSize": 1459,
"processingTime": 387,
"received": "Mon Sep 1 23:59:30 PDT 2014",
"scratchdir": "tmp.cPQ1qwWqdw"

}]

The ‘list’ command on its own will list all sessions that exist on the MagickBox, specifying the sender or parts of the
sender string will limit the output to entries that match. Here we have a single session returned in JSON format. As a
unique key to identify this session use the value of the ‘scratchdir’ key which is based on a random sequence of letters
and numbers.

Use any other string as a search term instead of the sender. You could specify “Sep” and all session that contain “Sep”
will be listed. The specified string can also be a regular expression.

A command that works very similar to ‘list’ is ‘log’. Additionally to the information listed by ‘list’, ‘log’ will also
contain the processing log. Getting the processing log is more time consuming, therefore ‘log’ is a separate command.
You can use it for example to search for error messages in the log files.

Once you have identified your session and processing finished you can download them using ‘pull’ with the same
search term:

> mb pull hauke

The output of your processing will be downloaded as a zip file into your current directory. The name of the zip file
will contain the ‘scratchdir’.

3.2. Usage 11

MagickBox Documentation, Release 0.0.1

12 Chapter 3. MagickBox command shell

CHAPTER 4

How to process a large number of subjects

There are two ways to process large numbers of cases. Use the new command line utility ‘mb’ or follow the description
below.

Lets assume that we have a directory with a larger number of DICOM datasets that we want to process. We will
send the data to the MB and download the results. First load the data into OsiriX (MacOS) or use the dcmtk toolkit
(http://dicom.offis.de) to send the DICOM data to the processing system:

storescu +sd +r -nh -aet MySelf -aec ProcBucket \
<ip of MagickBox> <port of MagickBox> <single DICOM directory>

The call above will descend into sub-directories and keep going even if non-DICOM files are encountered. The
receiving AE title “ProcBucket” will be used to select the processing stream. Only single subject data should be send
to the system in this way as each send operation is interpreted as a command for processing the received data. The
above line should therefore be used in a loop with some sleep interval between send operations if more than one
session needs to be send.

In order to find out the status of the processing we can either use the web-interface provided by MB or we can use
‘curl’ together with ‘jq’ to automate the procedure. Lets assume that curl and jq are installed. We can get a list of
sessions send from a specific machine (here ip44) by:

curl http://<ip of MB>:2813/code/php/getScratch.php | jq '.[] | \
select(.AETitleCaller=="ip44" and .processingTime!="0")'

In order to count how many sessions are still in the pipeline for processing use:

curl http://<ip of MB>:2813/code/php/getScratch.php | jq -c -M '.[] | \
select(.AETitleCaller=="ip44" and .processingTime=="0")' | wc -l

In order to download the OUTPUT directory of a processed session we need to get the scratchdir and pid information
for each finished session:

fileList=`curl <ip of MB>:2813/code/php/getScratch.php | jq '.[] | \
select(.AETitleCaller=="ip44" and .processingTime!="0")' | \
jq '{"scratchdir": .scratchdir, "pid": .pid}'`

We can now download each finished session as a zip file into a separate directory:

echo $fileList | jq -c -M . | while read line; do sc=`echo $line | \
cut -d'"' -f4`; d=`echo $line | cut -d'"' -f8`; mkdir -p "$d"; cd $d; \
curl -o ${d}.zip http://<ip of MB>:2813/code/php/getOutputZip.php?folder=$sc; \
cd ..; done

In order to delete processed scans use the same mechanism as above:

13

http://dicom.offis.de

MagickBox Documentation, Release 0.0.1

echo $fileList | jq -c -M . | while read line; do sc=`echo $line | \
cut -d'"' -f4`; d=`echo $line | cut -d'"' -f8`; mkdir -p "$d"; cd $d; \
curl http://<ip of MB>:2813/code/php/deleteStudy.php?scratchdir=$sc; \
cd ..; done

14 Chapter 4. How to process a large number of subjects

CHAPTER 5

Routing DICOM

The routing function sends processed DICOM files to other DICOM aware systems. It can react differently in response
to success or failure of the computations. Here are some use cases:

• specify the destination for sending result images

• setup a dedicated system that collects copies of partially generated result images

• try to send to a specific PACS system, if send fails try to send to an alternative system (see “break” option)

Routing is performed after a computation is finished. Computations are performed on an INPUT folder and results are
placed in an OUTPUT folder. Routing only works on DICOM files found in the OUTPUT folder.

At the level of the parent directory (directory that contains INPUT/ and OUTPUT/ folders) is one file initially called
info.json. This file contains information that describes the input connection the data comes from. The computation
should place a new file called ‘proc.json’ next to info.json. This file is evaluated to obtain the information required to
start routing. Here is an example content:

[{ "success": "failed", "message": "today is Monday" }]

This file specifies that the computation failed and provides a reason. In a later version of the program more than one
success entry will be read. Currently only the first entry is evaluated.

5.1 Configuration

The configuration of the routing function is done in the user interface. Here an example:

{ "routing": [
{

"name": "Default Rule for OUTPUT to OsiriX",
"AETitleIn": ".*",
"status": 0,
"send": [

{
".*": {

"IP": "$me",
"PORT": "$port",
"AETitleSender": "ProcDefault",
"AETitleTo": "OsiriX"

}
}

],
"break": 0

15

MagickBox Documentation, Release 0.0.1

},
{
"name": "ProcRSI bucket routing of results",
"AETitleIn": "ProcRSI",
"AETitleFrom": "PACS",
"send": [

{ "success": {
"IP": "192.168.0.1",
"PORT": "403",
"AETitleSender": "me",
"AETitleTo": "PACS",
"break": 1,
"which": [

{ "0008,103e": ".*" }
]

},
"failed": {

"IP": "192.168.0.1",
"PORT": "403",
"AETitleSender": "me",
"AETitleTo": "PACS",
"break": 1

},
"partial": {

"IP": "192.168.0.1",
"PORT": "403",
"AETitleSender": "me",
"AETitleTo": "PACS",
"break": 1

}
}

],
"break": 0

},
{

"name": "Route Input to PACS",
"RouteDirectory": "INPUT", // default value is "OUTPUT"
"AETitleIn": ".*",
"enabled": "F",
"send": [

{
".*": {

"IP": "$me",
"PORT": "$port",
"AETitleSender": "ProcDefault",
"AETitleTo": "PACS1"

}
}

],
"break": 0

}
]

}

A DICOM connection from a station A (PACS) that sends DICOM data to station B (MagickBox) is specified by three
types of information for both the sender and the receiver of the information. The Application Entity (AE) title of A
and B, the internet protocol (IP) numbers of both stations and the port number that A called on the IP of B. MagickBox
uses a single port for all its incoming connections, therefore routing depends on the AETitles and the status (success)

16 Chapter 5. Routing DICOM

MagickBox Documentation, Release 0.0.1

returned by the computation.

The default rule above specifies “AETitleIn” which is the application entity title of our MagickBox (B). Additionally,
or as an alternative one can also specify “AETitleFrom” as the AETitle that was used by the sending station (A). These
two entries, AETitleIn and AETitleFrom are used by the routing function to find out if a specifc routing rule should be
applied. A status entry, if present, is used to activate (1, default) or de-active a route (0).

Currently we do not support the IP-address as a possible filter. This is because the MagickBox runs as
a virtual machine using NAT and port forwarding. Therefore the IP address of the incoming DICOM
connection is not the IP of the sending machine but of the interface that forwards the packages (host
computer running the VM).

For example, the default rule above applies if the AETitle called on B by A matches the pattern ”.*”. This is a regular
expression that reads as some character (.) and there can be none, one or more of those. As this rules matches any
string, the rule will always apply (default rule) regardless of where the data comes from.

The “send” section contains one or more destinations for sending. Each of the entries is matched one at a time
against the processing result (returned proc.json “success” value string). The default rule matches any value of “suc-
cess” whereas the rule named “ProcRSI bucket routing of results” matches specific strings like “success”, “failed”, or
“partial”. If the “success” string matches one of these entries the corresponding destination is chosen to receive the
OUTPUT data.

If the “break” entry of a successful sending operation has the value 1 sending stops without evaluating if other send
entries would match as well. This allows for a fail-back send destination.

If a “which” statement is set DICOM files are tested before they are send. This filtering step allows you to select
DICOM images based on DICOM tags. The value of each tag is filtered by a regular expression and only files that
fullfil at least one of the “which” array entries are send to the corresponding destination.

Input data can also be routed. This will happen only after processing and requires a route with a “RouteDirectory”:
“INPUT” entry.

A routing rule can be disabled if “enabled” is set to “F”. By default routing rules are executed.

Two placeholders are available “$me” references the IP of the MagickBox and “$port” the port specified in the Setup
interface. Both usually refer to a default PACS to send images to.

5.2 Logging

A log file for routing (/data/logs/routing.log) contains routing related messages.

5.2. Logging 17

MagickBox Documentation, Release 0.0.1

18 Chapter 5. Routing DICOM

CHAPTER 6

Bucket development

A bucket is a portable light-weight container (based on docker) for MR image analysis pipelines. A bucket runs in the
same way a program is executed. If data is available the bucket will start, perform its function and quit. This page
explains the ‘buckets’ development program that is used to create, run and install buckets.

Note: The instructions to develop a bucket work on Linux, MacOS and Windows/cygwin systems only. You need to
have docker or boot2docker installed.

6.1 Create

Name your bucket using lower-case characters and numbers only. Create one by downloading the “buckets” script:

wget https://raw.githubusercontent.com/HaukeBartsch/MagickBox/master/code/bin/buckets

Make the script executable:

chmod +x buckets

And run its ‘create’ command:

./buckets create mytestbucket

This will create “mytestbucket” as an almost empty bucket with some MagickBox special sauce. The bucket contains
already its own documentation and a basic configuration. Edit the setup by starting the bucket using the “open”
command. It should start an editor (github.com/HaukeBartsch/editor) inside the bucket open a web-browser that
points it it (http://localhost:9090):

./buckets open mytestbucket

Set the application entity title of info.json (AETitle) to be something short and unique. This string is later used to
address this processing bucket. Store your changes inside the bucket using a second terminal. Remember to commit
your changes after you edited any file inside the bucket.

docker ps docker commit <running image id> mytestbucket

Now it is time to install your program into the bucket. The program will receive input data in an /input directory and
it can produce output data in /output. The bucket is based on ubuntu so you can install a large number of existing
programs simply by calling ubuntu’s package manager apt-get.

To link up your program and the MagickBox processing entry point work.sh edit that script using the web-editor and
have it execute your program given the input and output directories:

19

http://localhost:9090

MagickBox Documentation, Release 0.0.1

./bucket open mytestbucket

The ‘open’ command will also create a link to your local directory inside the bucket. If your program is not avialable
from one of the apt repositories you can copy the files into your local directory. That directory is available inside
the bucket as /local/. Only use this connection to copy data into the bucket during installation of your program. The
directory will not be available if the bucket runs inside the MagickBox environment.

6.2 Test

Test your bucket by specifying an input and output directory for the ‘run’ command (this will emulate tbe work done
by MagickBox later):

./bucket run mytestbucket <input directory> <output directory>

After a successful run you should see your results appear in the directory you specified as the output folder. This is
also a great way to locally run a computation on a limited number of cases.

Optionally you can include a plugin that extracts measurements from your output files. Measures exported this way
will be available to MagickBox. Useful measures include demographic information or for example measures for
volumes of interest. An example plugin file is included with your bucket and listed in the web editor page.

6.3 Install

After developing a bucket and successful local testing using run it can be integrated into a MagickBox machine. If you
don’t do your development inside MagickBox start by creating a tar-file that represents the content of your bucket:

docker export <id of running docker container> > mytestbucket.tar

Copy this file to your MagickBox machine and import the bucket using docker followed by “buckets install mytest-
bucket”:

cat mytestbucket.tar | docker import - mytestbucket
/data/code/bin/buckets install mytestbucket

The buckets-script will query your mytestbucket container and read the AETitle from the /root/storage/info.json file.
The AETitle is used to create a MagickBox bucket directory in /data/streams/bucket<AETitle>. If successful the
installer will also start a worker process for your processing bucket. If you now send data to the system using your
AETitle to address your bucket the processing should start (see the mb tool). A log-file /data/logs/bucket<AETitle>.log
will contain the output of MagickBox when it tries to call your bucket. If your bucket produces some outputs they will
be displayed as the processing.log.

6.4 Advanced: Persistent memory for buckets

Buckets have a fixed environment, they receive input and output directories but otherwise the same files will be present
during each run of the bucket. Files that are created inside the bucket - but not stored in /input and /output directories
are deleted after the bucket stops. If your program requires space that is presistent between runs, like a database,
use the /root/storage/memory directory inside the bucket. Place initial versions of your files into this directory. Once
the bucket is installed and runs this directory is available inside the bucket as /memory/. Changes to files inside this
directory will be available the next time the bucket is started.

20 Chapter 6. Bucket development

CHAPTER 7

Classification of DICOM Files

This module is specific to DICOM file import via storescp. It is not available if DICOM files are send
using mb.

The DICOM import is build to support high-volume DICOM ingestion with advanced DICOM series classification. As
DICOM files arrive they are copied to a /data/scratch/archive/<Study Instance UID>/ directory for permanent storage.

7.1 Views/raw

Views are alternative directory structures that contain versions of the input data suitable for particular purposes such
as quality control and processing. Such directory structures (/data/scratch/views/raw) provide sub-directory structures
on the series level and extract DICOM tags from the data. Views are created in parallel with the data import using
a daemon process (processSingleFile.py). This allows for accelerated processing buckets with access to series level
information before a secondary DICOM parse operation.

The views/raw structure contains a folder named after the StudyInstanceUID which is unique for each study. In-
side this folder are folders for each series named using the SeriesInstanceUID. Together with the series directory a
<SeriesInstanceUID>.json contains the following DICOM tags derived from the imported series (series level json):

{
"ClassifyType": [

"GE",
"sag",
"T1"

],
"EchoTime": "2.984",
"InstanceNumber": "3",
"Manufacturer": "GE MEDICAL SYSTEMS",
"NumFiles": "166",
"PatientID": "P0979_03_001",
"PatientName": "P0979_03_001",
"Private0019_10BB": "1.000000",
"Private0043_1039": [

400,
0,
0,
0

],
"RepetitionTime": "7.38",
"SeriesDescription": "IRSPGR_PROMO",
"SeriesInstanceUID": "1.2.840.113619.2.283.6945.3146400.18515.1404745836.841",
"SeriesNumber": "3",

21

MagickBox Documentation, Release 0.0.1

"SliceSpacing": "1.2",
"SliceThickness": "1.2",
"StudyDate": "20140711",
"StudyDescription": "PLING",
"StudyInstanceUID": "1.2.840.113619.6.283.4.679947340.3258.1405103835.996"

}

The content of this structure is likely to change in the future. Most of the entries reflect DICOM tags on the series
level. The “NumFiles” tag is added to reflect the current number of files in the series directory. The series level
directories contain symbolic links to the data stored in the archive folder to limit the number of copy operations and
file duplications.

7.2 ClassifyType

The tag called “ClassifyType” is derived from rules that specify how a particular class of scans can be detected from
the availble DICOM tags. The test is executed for each incoming DICOM file in the series.

The rule file classifyRules.json stores the control structure for classification and has the following structure:

[
{ "type" : "GE",
"id" : "GEBYMANUFACTURER",
"description" : "Scanner is GE",
"rules" : [

{
"tag" : ["0x08", "0x70"],
"value": "^GE MEDICAL SYSTEMS"

}
]

},{ "type" : "axial",
"description": "An axial scan",
"rules" : [

{
"tag" : ["0x20","0x37"],
"value" : [1,0,0,0,1,0],
"operator": "approx",
"approxLevel": "0.0004"

}
]

},{ "type" : "axial",
"description": "An axial scan",
"rules" : [

{ "tag" : ["0x20","0x37"],
"value" : [1,0,0,0,1,0],
"operator": "approx",
"approxLevel": "0.0004"

}
]

},{ "type" : "coronal",
"description": "A coronal scan",
"rules" : [

{ "tag" : ["0x20","0x37"],
"value" : [1,0,0,0,0,-1],
"operator": "approx"

}
]

22 Chapter 7. Classification of DICOM Files

MagickBox Documentation, Release 0.0.1

},{ "type" : "T1",
"description" : "A T1 weighted image is classified if its from GE and is EFGRE3D",
"rules" : [

{
"rule" : "GEBYMANUFACTURER"

},{
"tag": ["0x19", "0x109e"],

"value": "EFGRE3D"
},{

"tag": ["NumFiles"],
"operator": ">",

"value": "100"
}

]
},
{ "type" : "T2",
"description" : "A T2 weighted image",
"rules" : [
{

"rule" : "GEBYMANUFACTURER"
},{

"tag": ["0x19", "0x109c"],
"operator": "regexp",
"value": "Cube"

}
]

},
{ "type" : "fMRI",
"description" : "fMRI detected by used b-value",
"rules" : [

{
"rule": "GEBYMANUFACTURER"

},{
"tag": ["0x43", "0x1039", "0"],
"operator": "==",
"value": "4000"

}
]

}
]

Each series type has a name “type” and a short description which is usually ignored and only used as a means to
document what the classification tries to implement. The rules for each type are a collection of statements that all have
to be true for a scan to be classified as “type”. The order of the rules is not important. Every successful classification
will add its type to the returned array.

Each rule can contain a reference to another rule (key “rule” with value “id”). This allows for an hierarchical classifi-
cation of rules. In the example above the rule for detecting if a scan was done on a scanner from GE is referenced in
types “T2”, “T1”, and “fMRI”. For debugging a call to “processSingleFile.py test” will list the resolved rules on the
command line.

Non-referencing rules contain at least the tags “tag” and “value”. If only these two tags are supplied the operation that
compares each incoming DICOM files tag value to the one supplied in the “value” field of the rule is assumed to be a
regular expression match (python search). The “tag” value can have the following structure:

“tag” [[<key from series level json>]] The tag can describe the number of DICOM slices in this series as “tag”: [
“NumFiles”].

“tag” [[<dicom group hex code>, <dicom tag hex code>]] The Manufacturer tag can be addressed as “tag” : [

7.2. ClassifyType 23

MagickBox Documentation, Release 0.0.1

“0x08”, “0x70”]

“tag” [[<dicom group hex code>, <dicom tag hex code>, <vector index>]] If a third argument is supplied the
returned tag is assumed to have a vector value and the specific index from that array is used. The b-value for GE
diffusion weighted images can be addressed this way as “tag” : [“0x43”, “0x1039”, “0”].

Instead of just using regular expressions tag values can also be interpreted as floating point values. This is forced by
the optional tag “operator”. The following operators are available:

“operator” [“==”] Tests for equal value of the tag of the current DICOM file in the series and the value in the rule.

“operator” [”!=”] True of the values are not the same (convertes values to floating point first).

“operator” [“<”] True if value in the DICOM file is smaller.

“operator” [“>”] True if value in the DICOM file is greater.

“operator” [“exist”] True if the tag exists (can be empty).

“operator” [“notexist”] True if the tag does not exist.

“operator” [“contains”] True if the value is in the list of values defined by the tag.

“operator” [“approx”] True if the numerical values of the tag are sufficiently close to the target values. How close
can be controlled by an “approxLevel” variable in the rule. The above example uses this to test if the Image
Orientation Patient tag that contains the direction cosines for the positive row axis are close enough to be called
either axial, sagittal or coronal. A series might contain more than one orientation (like a localizer scan). In this
case all three rules might apply as images for that series are classified.

“operator” [“regexp”] Default (non-numeric) regular expression match.

A single rule can be negated by adding the key “negate” with a value of “yes”.

A type can depend on more than one image in the series. For example oblique series are defined as series that are
neither coronal, sagittal nor axial. More than one image has to be viewed to be able to make this decission. In order to
force a constant update of a type add the key “check” with a value of “SeriesLevel” to the type. Here an example:

{ “type” : “oblique”, “description”: “Neither coronal, sagittal nor axial”, “check”: “SeriesLevel”, “rules”:
[

{ “tag”: [“ClassifyType”], “value”: “axial”, “operator”: “contains”, “negate”: “yes”

}, {

“tag”: [“ClassifyType”], “value”: “coronal”, “operator”: “contains”, “negate”:
“yes”

}, {

“tag”: [“ClassifyType”], “value”: “sagittal”, “operator”: “contains”, “negate”:
“yes”

}

]

}

Note: These tests are executed for each file that arrives for a series. If the tags addressed are not series level tags (the
same for all files in the series) the outcome of the classification will depend on the order in which files are received.

24 Chapter 7. Classification of DICOM Files

	System Architecture
	MasterTemplate
	Processing Streams

	Setup of MagickBox
	Setup of MagickBox without VM
	DICOM connectivity

	MagickBox command shell
	Setup
	Usage

	How to process a large number of subjects
	Routing DICOM
	Configuration
	Logging

	Bucket development
	Create
	Test
	Install
	Advanced: Persistent memory for buckets

	Classification of DICOM Files
	Views/raw
	ClassifyType

