

Maggy

[image: Downloads] [https://pepy.tech/project/maggy] [image: PypiStatus] [https://pypi.org/project/maggy] [image: PythonVersions] [https://pypi.org/project/maggy] [image: Docs] [https://maggy.readthedocs.io/en/latest/] [image: CodeStyle] [https://github.com/psf/black]

Maggy is a framework for efficient asynchronous optimization of expensive
black-box functions on top of Apache Spark. Compared to existing frameworks,
maggy is not bound to stage based optimization algorithms and therefore it is
able to make extensive use of early stopping in order to achieve efficient
resource utilization.

For a video describing Maggy, see this talk at the Spark/AI Summit [https://www.youtube.com/watch?v=0Hd1iYEL03w].

Right now, maggy supports asynchronous hyperparameter tuning of machine
learning and deep learning models, and ablation studies on neural network
layers as well as input features.

Moreover, it provides a developer API that allows advanced usage by
implementing custom optimization algorithms and early stopping criteria.

To accomodate asynchronous algorithms, support for communication between the
Driver and Executors via RPCs through Maggy was added. The Optimizer that guides
hyperparameter search is located on the Driver and it assigns trials to
Executors. Executors periodically send back to the Driver the current
performance of their trial, and the Optimizer can decide to early-stop any
ongoing trial and send the Executor a new trial instead.

Quick Start

To Install:

>>> pip install maggy

The programming model consists of wrapping the code containing the model training
inside a function. Inside that wrapper function provide all imports and
parts that make up your experiment.

There are three requirements for this wrapper function:

	The function should take the hyperparameters as arguments, plus one
additional parameter reporter which is needed for reporting the current
metric to the experiment driver.

	The function should return the metric that you want to optimize for. This
should coincide with the metric being reported in the Keras callback (see
next point).

	In order to leverage on the early stopping capabilities of maggy, you need
to make use of the maggy reporter API. By including the reporter in your
training loop, you are telling maggy which metric to report back to the
experiment driver for optimization and to check for global stopping. It is
as easy as adding reporter.broadcast(metric=YOUR_METRIC) for example at the
end of your epoch or batch training step and adding a reporter argument to
your function signature. If you are not writing your own training loop you
can use the pre-written Keras callbacks in the maggy.callbacks module.

Sample usage:

>>> # Define Searchspace
>>> from maggy import Searchspace
>>> # The searchspace can be instantiated with parameters
>>> sp = Searchspace(kernel=('INTEGER', [2, 8]), pool=('INTEGER', [2, 8]))
>>> # Or additional parameters can be added one by one
>>> sp.add('dropout', ('DOUBLE', [0.01, 0.99]))

>>> # Define training wrapper function:
>>> def mnist(kernel, pool, dropout, reporter):
>>> # This is your training iteration loop
>>> for i in range(number_iterations):
>>> ...
>>> # add the maggy reporter to report the metric to be optimized
>>> reporter.broadcast(metric=accuracy)
>>> ...
>>> # Return the same final metric
>>> return accuracy

>>> # Launch maggy experiment
>>> from maggy import experiment
>>> result = experiment.lagom(map_fun=mnist,
>>> searchspace=sp,
>>> optimizer='randomsearch',
>>> direction='max',
>>> num_trials=15,
>>> name='MNIST'
>>>)

lagom is a Swedish word meaning “just the right amount”. This is how maggy
uses your resources.

MNIST Example

For a full MNIST example with random search using Keras,
see the Jupyter Notebook in the examples folder.

Documentation

Read our blog post [https://www.logicalclocks.com/blog/scaling-machine-learning-and-deep-learning-with-pyspark-on-hopsworks] for more details.

API documentation is available here [https://maggy.readthedocs.io/en/latest/].

Contents:

	User API
	maggy.experiment module

	maggy.searchspace module

	maggy.callbacks module

	maggy.ablation module

	Developer API
	maggy.optimizer module

	maggy.ablation.ablator module

	Release notes

	LICENSE

Indices and tables

	Index

	Module Index

	Search Page

Maggy User API

maggy.experiment module

Experiment module used for running asynchronous optimization tasks.

The programming model is that you wrap the code containing the model
training inside a wrapper function.
Inside that wrapper function provide all imports and parts that make up your
experiment, see examples below. Whenever a function to run an experiment is
invoked it is also registered in the Experiments service along with the
provided information.

	
maggy.experiment.lagom(map_fun, name='no-name', experiment_type='optimization', searchspace=None, optimizer=None, direction='max', num_trials=1, ablation_study=None, ablator=None, optimization_key='metric', hb_interval=1, es_policy='median', es_interval=300, es_min=10, description='')

	Launches a maggy experiment, which depending on experiment_type can
either be a hyperparameter optimization or an ablation study experiment.
Given a search space, objective and a model training procedure map_fun
(black-box function), an experiment is the whole process of finding the
best hyperparameter combination in the search space, optimizing the
black-box function. Currently maggy supports random search and a median
stopping rule.

lagom is a Swedish word meaning “just the right amount”.

	Parameters

	
	map_fun (function) – User defined experiment containing the model training.

	name (str) – A user defined experiment identifier.

	experiment_type (str) – Type of Maggy experiment, either ‘optimization’
(default) or ‘ablation’.

	searchspace (Searchspace) – A maggy Searchspace object from which samples are
drawn.

	optimizer (str, AbstractOptimizer) – The optimizer is the part generating new trials.

	direction (str) – If set to ‘max’ the highest value returned will
correspond to the best solution, if set to ‘min’ the opposite is true.

	num_trials (int) – the number of trials to evaluate given the search space,
each containing a different hyperparameter combination

	ablation_study (AblationStudy) – Ablation study object. Can be None for optimization
experiment type.

	ablator (str, AbstractAblator) – Ablator to use for experiment type ‘ablation’.

	optimization_key (str, optional) – Name of the metric to be optimized

	hb_interval (int, optional) – The heartbeat interval in seconds from trial executor
to experiment driver, defaults to 1

	es_policy (str, optional) – The earlystopping policy, defaults to ‘median’

	es_interval (int, optional) – Frequency interval in seconds to check currently
running trials for early stopping, defaults to 300

	es_min (int, optional) – Minimum number of trials finalized before checking for
early stopping, defaults to 10

	description (str, optional) – A longer description of the experiment.

	Raises

	RuntimeError – An experiment is currently running.

	Returns

	A dictionary indicating the best trial and best hyperparameter
combination with it’s performance metric

	Return type

	dict

maggy.searchspace module

	
class maggy.Searchspace(**kwargs)

	Create an instance of Searchspace from keyword arguments.

A searchspace is essentially a set of key value pairs, defining the
hyperparameters with a name, type and a feasible interval. The keyword
arguments specify name-values pairs for the hyperparameters,
where values are tuples of the form (type, list). Type is a string with
one of the following values:

	DOUBLE

	INTEGER

	DISCRETE

	CATEGORICAL

And the list in the tuple specifies either two values only, the start
and end point of of the feasible interval for DOUBLE and INTEGER,
or the discrete possible values for the types DISCRETE and CATEGORICAL.

Sample usage:

>>> # Define Searchspace
>>> from maggy import Searchspace
>>> # The searchspace can be instantiated with parameters
>>> sp = Searchspace(kernel=('INTEGER', [2, 8]), pool=('INTEGER', [2, 8]))
>>> # Or additional parameters can be added one by one
>>> sp.add('dropout', ('DOUBLE', [0.01, 0.99]))

The Searchspace object can also be initialized from a python dictionary:

>>> sp_dict = sp.to_dict()
>>> sp_new = Searchspace(**sp_dict)

The parameter names are added as attributes of Searchspace object,
so they can be accessed directly with the dot notation
searchspace._name_.

	
add(name, value)

	Adds {name, value} pair to hyperparameters.

	Parameters

	
	name (str) – Name of the hyperparameter

	value (tuple) – A tuple of the parameter type and its feasible region

	Raises

	
	ValueError – Hyperparameter name is reserved

	ValueError – Hyperparameter feasible region in wrong format

	
get(name, default=None)

	Returns the value of name if it exists, else default.

	
get_random_parameter_values(num)

	Generate random parameter dictionaries, e.g. to be used for initializing an optimizer.

	Parameters

	num (int) – number of random parameter dictionaries to be generated.

	Raises

	ValueError – num is not an int.

	Returns

	a list containing parameter dictionaries

	Return type

	list

	
items()

	Returns a sorted iterable over all hyperparameters in the searchspace.

Allows to iterate over the hyperparameters in a searchspace. The parameters
are sorted in the order of which they were added to the searchspace by the user.

	Returns

	an iterable of the searchspace

	Type

	Searchspace

	
keys()

	Returns a sorted iterable list over the names of hyperparameters in
the searchspace.

	Returns

	names of hyperparameters as a list of strings

	Type

	list

	
names()

	Returns the dictionary with the names and types of all
hyperparameters.

	Returns

	Dictionary of hyperparameter names, with types as value

	Return type

	dict

	
to_dict()

	Return the hyperparameters as a Python dictionary.

	Returns

	A dictionary with hyperparameter names as keys. The values are
the hyperparameter values.

	Return type

	dict

	
values()

	Returns a sorted iterable list over the types and feasible intervals of
hyperparameters in the searchspace.

	Returns

	types and feasible interval of hyperparameters as tuple

	Type

	tuple

maggy.callbacks module

	
class maggy.callbacks.KerasBatchEnd(reporter, metric='loss')

	A Keras callback reporting a specified metric at the end of the batch
to the maggy experiment driver.

loss is always available as a metric, and optionally acc (if accuracy
monitoring is enabled, that is, accuracy is added to keras model metrics).
Validation metrics are not available for the BatchEnd callback. Validation
after every batch would be too expensive.
Default is training loss (loss).

Example usage:

>>> from maggy.callbacks import KerasBatchEnd
>>> callbacks = [KerasBatchEnd(reporter, metric='acc')]

	
class maggy.callbacks.KerasEpochEnd(reporter, metric='val_loss')

	A Keras callback reporting a specified metric at the end of an epoch
to the maggy experiment driver.

val_loss is always available as a metric, and optionally val_acc (if
accuracy monitoring is enabled, that is, accuracy is added to keras model
metrics). Training metrics are available under the names loss and acc.
Default is validation loss (val_loss).

Example usage:

>>> from maggy.callbacks import KerasBatchEnd
>>> callbacks = [KerasBatchEnd(reporter, metric='val_acc')]

maggy.ablation module

	
class maggy.ablation.AblationStudy(training_dataset_name, training_dataset_version, label_name, **kwargs)

	The AblationStudy object is the entry point to define an ablation
study with maggy. This object can subsequently be passed as an argument
when the experiment is launched with experiment.lagom().

Sample usage:

>>> from maggy.ablation import AblationStudy
>>> ablation_study = AblationStudy('titanic_train_dataset',
>>> label_name='survived')

The above code will create an AblationStudy instance with a default
dataset generator function, which uses the project feature store to
return a TFRecordDataset based on the feature ablation configuration
(for an example, look at ablator.LOCO.get_dataset_generator()).
If you want to provide your own dataset generator function,
define it before creating the AblationStudy instance and pass it to
the initializer. In the example below we assume the user has created
a function called create_tf_dataset() that returns a TFRecordDataset:

>>> ablation_study = AblationStudy('titanic_train_dataset',
 label_name='survived', dataset_generator=create_tf_dataset)

In case you want to perform feature ablation with your custom dataset
generator function, then of course your function should be able to return
specific datasets based on the feature ablation configuration.
For an example implementation of such logic, look at
ablator.LOCO.get_dataset_generator().

After creating your AblationStudy instance, you should define your study
configuration by including layers and features that you want to be ablated:

>>> ablation_study.features.include('pclass', 'fare')
>>> ablation_study.model.layers.include('my_dense_two',
>>> 'my_dense_three')

You can also add a layer group using a list:

>>> ablation_study.model.layers.include_groups(['my_dense_two',
>>> 'my_dense_four'])

Or add a layer group using a prefix:

>>> ablation_study.model.layers.include_groups(prefix='my_dense')

Next you should define a base model function using the layer and feature
names you previously specified:

>>> # you only need to add the `name` parameter to layer initializers
>>> def base_model_generator():
>>> model = tf.keras.Sequential()
>>> model.add(tf.keras.layers.Dense(64, activation='relu'))
>>> model.add(tf.keras.layers.Dense(..., name='my_dense_two', ...)
>>> model.add(tf.keras.layers.Dense(32, activation='relu'))
>>> model.add(tf.keras.layers.Dense(..., name='my_dense_sigmoid', ...)
>>> # output layer
>>> model.add(tf.keras.layers.Dense(1, activation='linear'))
>>> return model

Make sure to include the generator function in the study:

>>> ablation_study.model.set_base_model_generator(base_model_generator)

Last but not least you can define your actual training function:

>>> from maggy import experiment
​
>>> def training_function(dataset_function, model_function):
>>> import tensorflow as tf
>>> epochs = 5
>>> batch_size = 10
>>> tf_dataset = dataset_function(epochs, batch_size)
>>> model = model_function()
>>> model.compile(optimizer=tf.train.AdamOptimizer(0.001),
>>> loss='binary_crossentropy',
>>> metrics=['accuracy'])

>>> history = model.fit(tf_dataset, epochs=epochs, steps_per_epoch=30)
>>> return float(history.history['acc'][-1])

Lagom the experiment:

>>> result = experiment.lagom(map_fun=training_function,
>>> experiment_type='ablation',
>>> ablation_study=ablation_study,
>>> ablator='loco',
>>> name='Titanic-LOCO')

	
__init__(training_dataset_name, training_dataset_version, label_name, **kwargs)

	Initializes the ablation study.

	Parameters

	
	training_dataset_name (str) – Name of the training dataset in the
featurestore.

	training_dataset_version (int) – Version of the training dataset to be
used.

	label_name (str) – Name of the target prediction label.

	
to_dict()

	Returns the ablation study configuration as a Python dictionary.

	Returns

	A dictionary with ablation study configuration parameters as
keys (i.e. ‘training_dataset_name’, ‘included_features’, etc.)

	Return type

	dict

Maggy Developer API

As a developer you have the possibility to implement your custom optimizers
or ablators. For that you can implement an abstract method, which you can then
pass as an argument when launching the experiment. For examples, please look at
existing optimizers and ablators.

maggy.optimizer module

maggy.ablation.ablator module

	
class maggy.ablation.ablator.abstractablator.AbstractAblator(ablation_study, final_store)

	
	
finalize_experiment(trials)

	This method will be called before finishing the experiment. Developers can implement this method
e.g. for cleanup or extra logging.

	
get_dataset_generator(ablated_feature, dataset_type='tfrecord')

	Create and return a dataset generator function based on the ablation policy to be used in a trial.
The returned function will be executed on the executor per each trial.

	Parameters

	
	ablated_feature (str) – the name of the feature to be excluded from the training dataset.
Must match a feature name in the corresponding feature group in the feature store.

	dataset_type – type of the dataset. For now, we only support ‘tfrecord’.

	Returns

	A function that generates a TFRecordDataset

	Return type

	function

	
get_number_of_trials()

	If applicable, calculate and return the total number of trials of the ablation experiment.
Make sure to also include the base (reference) trial in the count.

	Returns

	total number of trials of the ablation study experiment

	Return type

	int

	
get_trial(ablation_trial=None)

	Return a Trial to be assigned to an executor, or None if there are no trials remaining in the experiment.
The trial should contain a dataset generator and a model generator.
Depending on the ablator policy, the trials could come from a list (buffer) of pre-made trials,
or generated on the fly.

	Return type

	Trial or None

	
initialize()

	Initialize the ablation study experiment by generating a number of trials. Depending on the ablation policy,
this method might generate all the trials (e.g. as in LOCO), or generate a number of trials to warm-start the
experiment. The trials should be added to trial_buffer in form of Trial objects.

Release 0.1

License

GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007.
See LICENSE [https://github.com/logicalclocks/maggy/blob/master/LICENSE].

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 maggy	

 	
 	
 maggy.experiment	

Index

 _
 | A
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | S
 | T
 | V

_

 	
 	__init__() (maggy.ablation.AblationStudy method)

A

 	
 	AblationStudy (class in maggy.ablation)

 	
 	AbstractAblator (class in maggy.ablation.ablator.abstractablator)

 	add() (maggy.Searchspace method)

F

 	
 	finalize_experiment() (maggy.ablation.ablator.abstractablator.AbstractAblator method)

G

 	
 	get() (maggy.Searchspace method)

 	get_dataset_generator() (maggy.ablation.ablator.abstractablator.AbstractAblator method)

 	
 	get_number_of_trials() (maggy.ablation.ablator.abstractablator.AbstractAblator method)

 	get_random_parameter_values() (maggy.Searchspace method)

 	get_trial() (maggy.ablation.ablator.abstractablator.AbstractAblator method)

I

 	
 	initialize() (maggy.ablation.ablator.abstractablator.AbstractAblator method)

 	
 	items() (maggy.Searchspace method)

K

 	
 	KerasBatchEnd (class in maggy.callbacks)

 	
 	KerasEpochEnd (class in maggy.callbacks)

 	keys() (maggy.Searchspace method)

L

 	
 	lagom() (in module maggy.experiment)

M

 	
 	maggy.experiment (module)

N

 	
 	names() (maggy.Searchspace method)

S

 	
 	Searchspace (class in maggy)

T

 	
 	to_dict() (maggy.ablation.AblationStudy method)

 	(maggy.Searchspace method)

V

 	
 	values() (maggy.Searchspace method)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Maggy

 		
 User API

 		
 maggy.experiment module

 		
 maggy.searchspace module

 		
 maggy.callbacks module

 		
 maggy.ablation module

 		
 Developer API

 		
 maggy.optimizer module

 		
 maggy.ablation.ablator module

 		
 Release notes

 		
 LICENSE

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

