

 Navigation

 	
 index

 	
 next |

 	lymph 0.15.0 documentation

Welcome to lymph’s documentation!

lymph is a framework for Python services. lymph intends to be the glue between
your services so you don’t get sticky fingers.

This is what a service looks like with lymph:

import lymph

class Greeting(lymph.interface):

 @lymph.rpc()
 def greet(self, name):
 '''
 Returns a greeting for the given name
 '''
 print(u'Saying to hi to %s' % name)
 self.emit(u'greeted', {'name': name})
 return u'Hi, %s' % name

Contents:

	Installation

	User guide

	Command Line Interface

	Topic guides
	Running services

	Configuration

	Tests

	Events

	RPC

	HTTP

	Serialization

	Versioning interfaces

	API reference
	Service API

	Core API

	Config API

	Web API

	Pattern API

	Components API

	Metrics API

	Testings API

	The Lymph RPC Protocol

	Glossary

	FAQ

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

Installation

Installing lymph itself (for Python 2.7 or 3.4) is as simple as:

pip install lymph

Yet, in order to make full use of lymph you’ll also need to install lymph’s dependencies:
ZooKeeper [http://zookeeper.apache.org] (for service discovery) and RabbitMQ [http://www.rabbitmq.com/] (for events) and have them
running.

If these are already set up, you can skip straight and continue the next
chapter.

Installing dependencies

The RabbitMQ server’s default configuration is enough for development and
testing. For detailed information on how to configure ZooKeeper refer to the
ZooKeeper [http://zookeeper.apache.org] webpage and the Getting Started Guide [http://zookeeper.apache.org/doc/trunk/zookeeperStarted.html]. However, it’s default
configuration should also be enough.

On Ubuntu

If you haven’t already install Python essentials:

$ sudo apt-get install build-essential python-dev python-pip

Install and start ZooKeeper using:

$ sudo apt-get install zookeeper zookeeperd
$ sudo service zookeeper start

ZooKeeper’s configuration file is located at /etc/zookeeper/conf/zoo.cfg.

Install and start the RabbitMQ server:

$ sudo apt-get install rabbitmq-server
$ sudo service rabbitmq-server start

On OSX

Install RabbitMQ and ZooKeeper:

$ brew install rabbitmq zookeeper

ZooKeeper’s configuration file is located at
/usr/local/etc/zookeeper/zoo.cfg.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

User guide

You can find an introduction to lymph in Max Brauer’s import lymph [http://import-lymph.link]
presentation. It attempts to get you up and running and covers most features of
lymph.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

Command Line Interface

Lymph’s cli lets you run, discover, inspect and interact with services. It is
built to be your toolbelt when developing and running services. The cli is
extensible. You can write custom lymph subcommands, e.g. lymph top [http://github.com/mouadino/lymph-top].

	lymph list

	lymph instance

	lymph discover

	lymph inspect

	lymph request

	lymph emit

	lymph subscribe

	lymph node

	lymph shell

	lymph config

Note

Many of lymph’s commands produce unicode output. Therefore, you’ll have to
set your locale (LC_ALL or LC_CTYPE) to UTF-8.

If you want to pipe lymph commands with Python 2, you might have to set
PYTHONIOENCODING to UTF-8 as well.

Check the FAQ.

This is an overview of lymph’s cli. We don’t document every command’s
arguments and parameters on purpose. Each is self-documenting:

$ lymph help <command> # or
$ lymph <command> --help

lymph list

Prints a list of all available commands with their description.

lymph instance

Runs a service instance.

lymph discover

Discovers all available services and their instances, e.g.:

lymph inspect

Prints the RPC interface of a service with signature and docstrings.

lymph request

Invokes an RPC method of a service and prints the response.

lymph emit

Emits an event in the event system.

lymph subscribe

Subscribes to an event type and prints every occurence.

lymph node

This is lymph’s development server. It can run any number of services with any
number of instances as well as any other dependency.

lymph shell

Starts an interactive Python shell for service instance, locally or remotely.

lymph config

Prints configuration for inspection

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

Topic guides

	Running services

	Configuration

	Tests

	Events

	RPC

	HTTP

	Serialization

	Versioning interfaces

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	Topic guides

Running services

Overview

There are two ways to start services with lymph. You can either start a lymph
service directly from the command line using lymph instance or define
all the services to start in a configuration file and start them all with
lymph’s development server lymph node.

lymph instance

This command runs a single service instance given a config file with interfaces

lymph instance --config=$PATH_TO_CONFIG_FILE

Writing configuration files for lymph instance

A configuration file of a lymph service requires the following sections:

	container

	interfaces

You need to define a separate configuration file for each service or instance setup. If you have many services
running, which would be the normal case in a productive lymph setup, the same information about container
would be present in each file. In order to avoid having to copy the same information into every
file and obtain a configuration mess, it is possible to set a default configuration file where lymph extracts the
necessary information. This is usually the .lymph.yml file, which is also needed by lymph node (the standard
way to start lymph services, see :doc: lymph node below).

The default configuration file is set using the LYMPH_NODE_CONFIG environmental variable and is usually set by

$ export LYMPH_NODE_CONFIG="/path/to/lymph/config/.lymph.yml"

	
interfaces

	

Each service needs to have its interfaces defined in the respective service configuration file. The interfaces
section defines which endpoints a service has (a service can have multiple endpoints) and the configuration of
each endpoint (you can have multiple endpoints to the same service interface class, with different configurations).

The interfaces section is made up of

	
interfaces.<name>

	Mapping from service name to instance configuration that will be passed to
the implementation’s lymph.Service.apply_config() method.

which gives a name to a specific interface (i.e. the namespace part when referencing a service). If the interface
has been named, it needs to be linked to a class that is a subclass of :class: lymph.Interface.

	
interfaces.<name>.class

	The class that implements this interface, e.g. a subclass of lymph.Interface.

After the interface class has been defined, any additional configuration can be passed on to the interface class by
defining any

	
interfaces.<name>.<param>

	The whole interfaces.<name> dict is available as configuration for the
interface class.

A simple example for an interface definition is:

interfaces:
 echo:
 class: echo:EchoService

and another example showing the use of additional interface options and the definition of multiple interfaces:

interfaces:
 echo_small_valley:
 class: echo:EchoService
 delay: 1

 echo_large_valley:
 class: echo:EchoService
 delay: 10

lymph node

This command will start instances of services as defined in a configuration file.
It will load as many instances as specified for each defined service. By default it will
read the .lymph.yml file, but through the --config option, you can specify another
configuration. You run this command by initiating:

$ lymph node

Configuring lymph node

	
instances.<name>

	

Besides the usual configuration sections for the container, a
section on instances needs to be added. In this section, each service is defined,
together with the lymph instance command to start it, and the number of processes
numprocesses each service should have.

	
instances.<name>.command:

	A command (does not necessarily have to be a lymph instance command) that will
be spawned by lymph node

	
instances.<name>.numprocesses:

	Number of times the defined command is spawned

An example of such an instances configuration block:

instances:
 echo:
 command: lymph instance --config=conf/echo.yml
 numprocesses: 10

 demo:
 command: lymph instance --config=conf/demo.yml

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	Topic guides

Configuration

Lymph needs to be configured so that it knows how and where to find its service
registry and its event system.

container:
 registry:
 class: lymph.discovery.zookeeper:ZookeeperServiceRegistry
 zkclient:
 class: kazoo.client:KazooClient
 hosts: 120.0.0.1:2181

 events:
 class: lymph.events.kombu:KombuEventSystem
 transport: amqp
 hostname: 127.0.0.1

You can find this sample configuration file in conf/sample-node.yml.

Environment Variables

Lymph config files support environment variable substitution for string values:

key: protocol://$(env.USER):$(env.PASSWORD)@host/path

You can also inject structured environment configuration from a YAML file,
e.g. lymph -c conf.yml --vars=vars.yml command:

vars.yml
key: value
struct:
 foo: bar

conf.yml
foo: $(var.key)
var: $(var.struct)
interpolation: prefix_$(var.key)_suffix

Dependencies

Lymph supports a way to inject dependencies from configuration file.

You start by defining a top level “dependencies” key that you want to inject
and share between different components, this should be in the format

dependencies:
 <name>:
 class: <class path>
 <extra class arguments>

Then you can reference a dependency anywhere in your configuration by
using the dep:<name> format, as shown in the example above.

Container Configuration

	
container.ip

	use this IP address. The --ip option for
lymph takes precedence. Default: 127.0.0.1.

	
container.port

	Use this port for the service endpoint. The --port
option for lymph takes precedence. If no port is configured, lymph
will pick a random port.

	
container.class

	the container implementation. You probably don’t have to change this.
Default: lymph.core.container:Container

	
container.log_endpoint

	the local ZeroMQ endpoint that should be used to publish logs via
the _zmqpub handler.

	
container.pool_size

	Size of the pool of Greenlets, default is unlimited.

Registry Configuration

	
container.registry.class

	

Defaults to lymph.discovery.zookeeper:ZookeeperServiceRegistry

ZooKeeper

To use ZooKeeper [http://zookeeper.apache.org/] for serivce discovery set class to lymph.discovery.zookeeper:ZookeeperServiceRegistry.

	
container.registry.zkclient

	

A reference to zookeeper client either as a dependency or a class.

Event Configuration

	
container.events.class

	

Kombu

To use the kombu backend set class to lymph.events.kombu:KombuEventSystem.
All other keys will be passed as keyword arguments to the kombu Connection [http://kombu.readthedocs.org/en/latest/userguide/connections.html#keyword-arguments].

Null

The null backend doesn’t transport any events. Set class to lymph.events.null.NullEventSystem if that is what you want.

Metrics Configuration

	
container.metrics.tags

	

A dictionary of tags to be sent with all monitoring data from this container, e.g.

container:
 metrics:
 tags:
 env: $(env.NAMESPACE)

Interface Configuration

	
interfaces.<name>

	Mapping the name to instance which will be used to send requests
and discover this interface.
This name is also configuration that will be passed to the implementation’s
lymph.Interface.apply_config() method.

	
interfaces.<name>.class

	The class that implements this interface, e.g. a subclass of lymph.Interface.

Components Configuration

Extra component can be defined under the components namespace e.g SerialEventHandler.

components:
 SerialEventHandler:
 zkclient: dep:kazoo

Logging Configuration

	
logging

	

Logging can be configured in standard dictConfig [https://docs.python.org/2/library/logging.config.html#configuration-dictionary-schema] format.
In addition to the setup provided via logging, one formatter and two
handlers are created. You can change them by providing different configuration
for the ids.

The formatter (_trace) includes the trace-id and is used for both built-in
handlers.

The _zmqpub handler publishes log messages on a ZeroMQ pub socket (see
container.log_endpoint).

The _console handler writes messages to either stdout or the file given by
--logfile. The level of the handler is set to
--loglevel.

Debugging Configuration

	
debug.backdoor_ip

	

Specify which ip address the backdoor terminal should listen too.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	Topic guides

Tests

You can test if your installation of lymph has been successful by running the
unittests. You’ll also have to set ZOOKEEPER_PATH to the directory that
contains your ZooKeeper binaries (e.g. /usr/share/java on Ubuntu).

You can then run the tests with either `tox`_ or nosetests directly.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	Topic guides

Events

Overview

Lymph uses events to communicate between various services. For this, RabbitMQ
is currently used to do the event passing. Services can emit events and
subscribe to the queue to consume events.

The way events are communicated is pluggable and can be easily exchanged at will.
The unittests for instance are using a local event system LocalEventSystem to
not rely on RabbitMQ.

Other event brokers

Lymph allows other event brokers to be easily incorporated. Lymph also
provides the following additional event broker services:

	Null (a black hole)

	Local (simple event broker that runs in the scope of the main lymph process)

	Kombu (interfaces to RabbitMQ as a broker using the kombu library)

The event broker service can be set in the .lymph.yml configuration file:

container:
 events:
 class: lymph.events.kombu:KombuEventSystem
 transport: amqp
 hostname: 127.0.0.1

See Event Configuration for details.

Subscribing to events

In order to have methods executed whenever a given event is emitted, you decorate
the function with the event decorator.

	
@event(*event_types)

	

	Parameters:	event_types – may contain wildcards (# matching zero or more words and
* matches one word), e.g. 'subject.*'

Marks the decorated interface method as an event handler.
The service container will automatically subscribe to given event_types.

import lymph

class Example(lymph.Interface):
 @lymph.event('task_done')
 def on_task_done(self, event):
 assert isinstance(event, lymph.core.events.Event)

A new queue will be created for every service name and event handler combination.

Dynamically subscribing to events

Subscribing to events using the event decorator only works at service instantiation time.
If you need to subscribe to events at runtime, you need to use the subscribe decorator:

	
@subscribe(*event_types, sequential=True)

	Behaves like lymph.event(), but can be used at runtime

class Example(lymph.Service):
 def on_start(self):
 @self.subscribe('dynamic_event_type')
 def on_event(event):
 assert isinstance(event, lymph.core.events.Event)

Emitting events

The lymph.Interface provides a method for emitting events.

	
lymph.Interface.emit(self, event_type, payload)

	

	Parameters:	
	event_type – name of the event

	payload – a dict of serializable data structures

A simple example of a class emitting a signal with a simple event would be:

class SomeClass(lymph.Interface):
 def emit_event(self):
 self.emit('simple_event', {'article': 'foo', 'quantity': 5})

Command line interface

To interact with the event system from the command line, the following
commands are available:

$ lymph subscribe

and

$ lymph emit

lymph subscribe

With this command, you can register to a specific event and have all events
printed out on stdout.

For the default example services, this might be:

$ lymph subscribe uppercase_transform_finished
uppercase_transform_finished: {'text': u'foo_282'}
uppercase_transform_finished: {'text': u'foo_283'}
uppercase_transform_finished: {'text': u'foo_284'}
…

This lists all the events sent to uppercase_transform_finished produced by
the demo loop which calls the echo service. Each line represents an individual
event, stating its name and its payload.

You can also subscribe to multiple events at once:

$ lymph subscribe event_a event_b
event_a: {u'data': u'nice'}
event_b: {u'information': u'data'}

lymph emit

With this command, you can manually emit a specific event from the command line.
You need to specify the name of the event and provide a JSON encoded body.

For the default example services, this might be:

$ lymph emit uppercase_transform_finished '{"text": "bar_foo_234"}'

This would emit an event with the name uppercase_transform_finished with the given
payload to any service that is listening to this event. We can inspect the events
sent through the system with the lymph subscribe command in another terminal:

$ lymph subscribe uppercase_transform_finished
…
uppercase_transform_finished: {'text': u'foo_2629'}
uppercase_transform_finished: {'text': u'foo_2630'}
uppercase_transform_finished: {u'text': u'bar_foo_234'}
uppercase_transform_finished: {'text': u'foo_2631'}
…

We can see that the event has been routed to the instance along with all the
other events from the demo loop.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	Topic guides

RPC

Overview

Synchronous communication with lymph services is realised through RPC.
RPC messages are sent via ØMQ. If a RPC call fails, it is the responsibility of
the calling code to deal with it.

Registering methods as RPC callable

Any class inheriting from lymph.Interface can receive RPC calls. By specifying the
name argument when initializing the class, the lymph service will be reachable through its
interface name name.

By default the service is registered under the name given when you configure
the service.

import lymph

class EchoService(lymph.Interface):
 pass

interfaces:
 echo:
 class: project.interfaces:EchoService

will be reachable with the service name echo. This is the name with which lymph knows that
the RPC messages should be sent to EchoService.

In order to make a method in a lymph interface class RPC callable, it is sufficient to
add the @lymph.rpc() (or @lymph.raw_rpc() for accessing the channel object) decorator in
front of it.

	
@rpc

	Marks the decorated interface method as an RPC method.

import lymph

class Example(lymph.Interface):
 @lymph.raw_rpc()
 def do_ack(self, channel, message):
 """
 HERE SOME FANCE HELP TEXT
 """
 assert isinstance(channel, lymph.core.channels.ReplyChannel)
 assert isinstance(message, lymph.core.messages.Message)
 channel.ack()

 @lymph.rpc()
 def echo(self, message):
 return message

If a docstring is specified after the RPC method definition, it will be used as a description
of the service and will be returned by lymph inspect.

Difference between lymph.rpc and lymph.raw_rpc

lymph.rpc

The lymph.rpc() decorator is easier to understand compared to lymph.raw_rpc()
since the former work as any Python function where what ever the RPC function return will be sent
to the caller, as for exceptions there is two cases depending on the raises argument of
lymph.rpc() :

	If the exception raised inside the RPC function is an instance of a class that is part of the
raises argument then the client will see a RemoteError.

	Else the result will be a NACK.

lymph.raw_rpc

When lymph.raw_rpc() is used the underlying method call has to have the following form:

def some_rpc_method(self, channel, **kwargs):
 …

The channel argument takes a lymph.ReplyChannel object which takes care of the communication
from and to the RPC caller. From within the responding method, you communicate through the channel
object with the calling party. The ReplyChannel object provides you with the following methods:

	
reply(body)

	

	Parameters:	body – reply

sends body as a reply back to the caller

import lymph

class EchoService(lymph.Interface):

 @lymph.raw_rpc()
 def echo(self, channel, text=None):
 channel.reply(text)

	
ack(unless_reply_sent=False)

	

	Parameters:	unless_reply_sent – only send the acknowledgment if a reply has already been sent

sends an acknowledgment to the caller.

	
nack(unless_reply_sent=False)

	

	Parameters:	unless_reply_sent – only send the non-acknowledgment if a reply has already been sent

sends a non-acknowledgment to the caller.

	
error(body)

	

	Parameters:	body – error

sends an error to the caller.

Sending RPC calls

In order to send RPC calls from within lymph services, you need to pass the call through
the proxy class. You can obtain the system’s proxy by calling the proxy method:

	
proxy(address)

	returns a proxy object that can be used to conveniently send requests to
another service.

echo = self.proxy('echo')
result = echo.upper(text='foo')
assert result == 'FOO'

This is equivalent to self.request('echo', 'echo.upper', text='foo').

The proxy object proxies any method that is called in the proxy class, into a corresponding
RPC call. It does not however make sure, that the RPC call actually exists. It will send the
call regardless of availability and timeout accordingly if no response is obtained.

Any value that is returned by the RPC call is also returned by the call to the corresponding
proxy method. In the example above, the service with the name echo provides the upper(text)
endpoint. By calling the corresponding proxy method in the proxy object, the payload
text='foo' is sent to the endpoint and its result returned and saved in the result
variable.

RPC calls are synchronous, i.e. program execution is halted until the RPC call returns an
answer or it times out. If you require asynchronous communication, please refer to
Events.

Deferred RPC calls

By default, RPC blocks until the response is received. A deferred RPC call mechanism
is available if you wish to consume the RPC response later, or simply ingore
it.

The call interface is similar to making a regular RPC call, with the addition of
adding .defer call after it.

In that case, the call will return a Future (the actual implementation is a
gevent AsyncResult which will block only when it’s .get method is called.

For instance:

echo = self.proxy('echo')
result_future = echo.upper.defer(text='foo')
do other stuff
result = result_future.get()
assert result == 'FOO'

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	Topic guides

HTTP

from lymph.web.interfaces import WebServiceInterface
from werkzeug.routing import Map, Rule
from werkzeug.wrappers import Response

class HttpHello(WebServiceInterface)
 url_map = Map([
 Rule('/hello/<string:name>/', endpoint='hello'),
])

 def hello(self, request, name):
 return Response('hello %s!' % name)

	
class WebServiceInterface

	
	
is_healthy()

	

Interface configuration

	
interfaces.<name>.healthcheck.enabled

	Boolean: whether to respond to requests to interfaces.<name>.healthcheck.endpoint.
Defaults to True.

	
interfaces.<name>.healthcheck.endpoint

	Respond with 200 to requests for this path as long as is_healthy() returns True, and 503 otherwise.
Defaults to "/_health/".

	
interfaces.<name>.port

	Listen on this port. Defaults to a random port.

	
interfaces.<name>.wsgi_pool_size

	

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	Topic guides

Serialization

Overview

Lymph uses msgpack to serialize events and rpc arguments.
In addition to the types supported directly by msgpack, the lymph serializer
also handles the following basic Python types:
set, datetime.datetime, datetime.date, datetime.time, uuid.UUID, and decimal.Decimal.

Object level serialization

Object level serialization can be defined by implementing _lymph_dump_ method in classes subject to serialization.

Object-level serialization can help to produce more concise code in certain situations, e.g.:

class Process(object):
 ...

 def _lymph_dump_(self):
 return {
 'pid': self.pid,
 'name': self.name,
 }

class Node(lymph.Interface):

 @lymph.rpc()
 def get_processes(self, service_type=None):
 procs = []
 for proc in self._processes:
 if not service_type or proc.service_type == service_type:
 procs.append(proc)
 return procs

 @lymph.rpc()
 def stop(self, service_type=None):
 for proc in self.get_processes(service_type):
 proc.stop()

In the example above by defining the _lymph_dump_ in our Process class, we were able to reuse the rpc
function get_processes.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	Topic guides

Versioning interfaces

interfaces:
 echo@1.5.0:
 class: echo:Echo

 echo@2.0.0:
 class: echo:Echo2

Requesting Specific Versions

from the command line:

$ lymph request echo.upper@1.2 '{"text": "foo"}'

from code:

proxy = lymph.proxy('echo', version='1.1')

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

API reference

Contents:

	Service API

	Core API

	Config API

	Web API

	Pattern API

	Components API

	Metrics API

	Testings API

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	API reference

Service API

import lymph

class Echo(lymph.Interface):

 @lymph.rpc()
 def echo(self, text=None):
 return text

 @lymph.rpc()
 def upper(self, text=None):
 self.emit('uppercase_transform_finished', {'text': text})
 return text.upper()

 @lymph.event('uppercase_transform_finished')
 def on_uppercase(self, text=None):
 print "done", text

	
class lymph.Interface

	
	
name

	The interface identifier that is used to register this service with the
coordinator service.
name is an instance attribute which is taken from the config of the
interface taken from the config of the interface.

	
on_start()

	Called when the service is started

	
on_stop()

	Called when the service is stopped

	
apply_config(config)

	

	Parameters:	config – dict

Called with instance specific configuration that is usually provided by a
config file (see Metrics Configuration).

	
request(address, method, body)

	

	Parameters:	
	address – the address where the request is sent to; either a ZeroMQ endpoint or a service name

	method – the remote method that will be called

	body – JSON serializable dict of parameters for the remote method

	
proxy(address)

	returns a proxy object that can be used to conveniently send requests to
another service.

echo = self.proxy('echo')
result = echo.upper(text='foo')
assert result == 'FOO'

This is equivalent to self.request('echo', 'echo.upper', text='foo').

	
emit(event_type, payload, delay=0)

	

	Parameters:	
	event_type – str

	payload – a dict of JSON serializable data structures

	delay – delay delivery of this event by delay seconds

	
@subscribe(*event_types, sequential=True)

	Behaves like lymph.event(), but can be used at runtime

class Example(lymph.Service):
 def on_start(self):
 @self.subscribe('dynamic_event_type')
 def on_event(event):
 assert isinstance(event, lymph.core.events.Event)

	
@lymph.raw_rpc

	Marks the decorated interface method as an RPC method. Using this decorator
the RPC function are expected to accept a ReplyChannel instance
as a first argument.

import lymph

class Example(lymph.Interface):
 @lymph.raw_rpc()
 def do_something(self, channel, message):
 assert isinstance(channel, lymph.core.channels.ReplyChannel)
 assert isinstance(message, lymph.core.messages.Message)
 channel.ack()

	
@lymph.rpc

	Marks the decorated interface method as an RPC method. The difference between
this decorator and raw_rpc() is that the RPC functions must use
return and raise like any normal Python function instead of using channel.reply
and channel.error.

	Parameters:	raises – tuple of exception classes that the RPC function is expected to raise.

import lymph

class Example(lymph.Interface):
 @lymph.rpc()
 def do_something(self, message):
 return message

	
@lymph.event(*event_types, sequential=False)

	

	Parameters:	
	event_types – may contain wildcards, e.g. 'subject.*'

	sequential – force sequential event consumption

	broadcast – receive every event in all instances

Marks the decorated interface method as an event handler.
The service container will automatically subscribe to given event_types.
If sequential=True, events will be not be consumed in parallel, but one by one.
If broadcast=True, every instance of the service will receive the event.

import lymph

class Example(lymph.Interface):
 @lymph.event('task_done')
 def on_task_done(self, event):
 assert isinstance(event, lymph.core.events.Event)

	
@lymph.task

	

	Parameters:	
	sequential – force sequential task execution per instance

	broadcast – execute the task in all instances

Marks the decorated interface method as a task handler.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	API reference

Core API

	
class lymph.core.container.ServiceContainer

	
	
classmethod from_config(config, **kwargs)

	

	
start()

	

	
stop()

	

	
send_message(address, msg)

	

	Parameters:	
	address – the address for this message; either a ZeroMQ endpoint a service name

	msg – the lymph.core.messages.Message object that will be sent

	Returns:	lymph.core.channels.ReplyChannel

	
lookup(address)

	

	Parameters:	address – an lymph address

	Returns:	lymph.core.services.Service or lymph.core.services.ServiceInstance

	
class lymph.core.channels.ReplyChannel

	
	
reply(body)

	

	Parameters:	body – a JSON serializable data structure

	
ack()

	acknowledges the request message

	
class lymph.core.channels.RequestChannel

	
	
get(timeout=1)

	

	Returns:	lymph.core.messages.Message

returns the next reply message from this channel. Blocks until the reply
is available. Raises Timeout after timeout seconds.

	
class lymph.core.messages.Message

	
	
id

	

	
type

	

	
subject

	

	
body

	

	
packed_body

	

	
class lymph.core.events.Event

	
	
type

	the event type / name

	
body

	dictionary with the payload of the message

	
source

	id of the event source service

	
__getitem__(name)

	gets an event parameter from the body

	
class lymph.core.services.Service

	Normally created by ServiceContainer.lookup().
Service objects represent lymph services.

	
__iter__()

	Yields all known instances of this service.

	
__len__()

	Returns the number of known instances of this service.

	
class lymph.core.services.ServiceInstance

	Describes a single service instance.
Normally created by ServiceContainer.lookup()

	
identity

	The identity string of this service instance

	
endpoint

	The rpc endpoint for this

	
class lymph.core.connections.Connection

	You can attain a connection to an lymph service instance directly from lymph.core.container.ServiceContainer.connect(), or
from the higher-level API in lymph.core.services.
For ZeroMQ endpoint addresses the following to statements are roughly equivalent:

container.connect(address) # only works for tcp://… addresses
container.lookup(address).connect() # will also work for service names

	
class lymph.core.interfaces.Proxy(container, address, namespace=None, timeout=1)

	
	
__getattr__(self, name)

	Returns a callable that will execute the RPC method with the given name.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	API reference

Config API

	
class lymph.config.ConfigView(config, prefix)

	A ConfigView allows access to a subtree of a Configuration object.
It implements the mapping protocol. Dotted path keys are translated into
nested dictionary lookups, i.e. cv.get('a.b') is (roughly) equivalent to
cv.get('a').get('b').

If a value returned by ConfigView methods is a dict, it will be
wrapped in a ConfigView itself. This – and getting dicts from a
Configuration object – are the preferred way to create new ConfigViews.

	
root

	A reference to the root Configuration instance.

	
class lymph.config.Configuration(values=None)

	

	Parameters:	values – an optional initial mapping

Configuration implements the same interface as ConfigView in addition
to the methods described here.

	
load(file, sections=None)

	Reads yaml configuration from a file-like object. If sections is not
None, only the keys given are imported

	
load_file(path, sections=None)

	Reads yaml configuration from the file at path.

	
get_raw(key, default)

	Like get(), but doesn’t wrap dict values in ConfigView.

	
create_instance(key, default_class=None, **kwargs)

	

	Parameters:	
	key – dotted config path (e.g. "container.rpc")

	default_class – class object or fully qualified name of a class

	kwargs – extra keyword arguments to be passed to the factory

Creates an object from the config dict at key. The instance is
created by a factory that is specified by its fully qualified name in
a class key of the config dict.

If the factory has a from_config() method it is called with a ConfigView
of key. Otherwise, the factory is called directly with the config values as keyword arguments.

Extra keyword arguments to create_instance() are passed through to from_config() or mixed
into the arguments if the factory is a plain callable.

If the config doesn’t have a class key the instance is create by default_class, which can be
either a fully qualifed name or a factory object.

Given the following config file

foo:
 class: pack.age:SomeClass
 extra_arg: 42

you can create an instance of SomeClass

in pack/age.py
class SomeClass(object):
 @classmethod
 def from_config(cls, config, **kwargs):
 assert config['extra_arg'] == 42
 assert kwargs['bar'] is True
 return cls(...)

in any module
config = Configuration()
config.load(...)
config.create_instance('foo', bar=True)

	
get_instance(key, default_class, **kwargs)

	Like create_instance(), but only creates a single instance for each
key.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	API reference

Web API

	
class lymph.web.WebServiceInterface

	
	
application

	WSGI application instance that this interface is running

	
url_map

	A werkzeug.routing.Map [http://werkzeug.pocoo.org/docs/0.10/routing/#maps-rules-and-adapters] instance that is used to map requests to
request handlers. Typically given as a class attribute.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	API reference

Pattern API

	
@lymph.patterns.serial_events.serial_event(*event_types, partition_count=12, key=None)

	

	Parameters:	
	event_types – event types that should be partitioned

	partition_count – number of queues that should be used to partition the events

	key – a function that maps Events to string keys.
This function should have two arguments in its signature: the instance of
current Interface and instance of the handled
Event object.

This event handler redistributes events into partition_count queues.
These queues are then partitioned over all service instances and consumed sequentially,
i.e. at most one event per queue at a time.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	API reference

Components API

Components are objects that depend on a running service container. They are
embedded in Componentized objects.
Since Componentized objects themselves are components, they form a tree of
Component instances with the container as the root. An example
of a Component is lymph.core.interfaces.Interface.

	
class lymph.core.components.Component(error_hook=None, pool=None, metrics=None)

	
	
error_hook

	A Hook object that propagates exceptions for this component.
Defaults to the error_hook of the parent component.

	
pool

	A pool that holds greenlets related to the component.
Defaults to the pool of the parent component.

	
metrics

	An Aggregate of metrics for this component.
Defaults to the metrics of the parent component.

	
on_start()

	Called when the container is started.

	
on_stop()

	Called when the container is stopped.

	
spawn(func, *args, **kwargs)

	Spawns a new greenlet in the greenlet pool of this component.
If func exits with an exception, it is reported to the error_hook.

	
class lymph.core.components.Componentized

	A collection of components; itself a component.

	
add_component(component)

	

	Parameters:	component – Component

Adds component.

	
on_start()

	Calls on_start() on all added components.

	
on_stop()

	Calls on_stop() on all added components.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	API reference

Metrics API

To follow the metrics protocol objects must be iterable repeatedly and yield
(name, value, tags)-triples, where name is a string, value is a float or int,
and tags is a dict with string keys and values.

	
class lymph.core.monitoring.metrics.Metric(name, tags=None)

	An abstract base class for single series metrics, i.e. metric objects that
only yield a single triple.

	
__iter__()

	[abstract] Yields metric values as a tuple in the form
(name, value, tags).

	
class lymph.core.monitoring.metrics.Gauge(name, value=0, tags=None)

	A gauge is a metric that represents a single numerical value that can
arbitrarily go up and down.

	
set(value)

	

	
class lymph.core.monitoring.metrics.Callable(name, func, tags=None)

	Like a Gauge metric, but its value is determined by a callable.

	
class lymph.core.monitoring.metrics.Counter(name, tags=None)

	A counter is a cumulative metric that represents a single numerical
value that only ever goes up. A counter is typically used to count
requests served, tasks completed, errors occurred, etc.

	
__iadd__(value)

	Increment counter value.

	
class lymph.core.monitoring.metrics.TaggedCounter(name, tags=None)

	A tagged counter is a container metric that represents multiple
counters per tags. A tagged counter is typically used to track a group
of counters as one e.g. request served per function name, errors ocurred
per exception name, etc.

	
incr(_by=1, **tags)

	Increment given counter type by _by.

	
class lymph.core.monitoring.metrics.Aggregate(metrics=(), tags=None)

	

	Parameters:	
	metrics – iterable of metric objects

	tags – dict of tags to add to all metrics.

Aggregates a collection of metrics into a single metrics object.

	
add(metric)

	

	Parameters:	metric – metric object

Adds the given metric to collection.

	
add_tags(**tags)

	

	Parameters:	tags – string-valued dict

Adds the given tags for all metrics.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

 	API reference

Testings API

	
class lymph.testing.RpcMockTestCase

	Base mixin test class that provice a highlevel interface for mocking remote rpc
calls. By inheriting this class, test cases can supply mock return values for
rpc functions.

Note

In case an rpc function is not mocked the actual RPC call will be made to the service.

	
rpc_mock_calls

	A List of the called rpc functions.

	
setup_rpc_mocks(rpc_functions)

	Setup RPC mocks by passing all mocked RPC functions as a dictionary in the form
{'<service_name>.<function_name>': <return_value>}, in case
<return_value> is an exception, call will raise the exception.

class SomeTest(RpcMockTestCase):

 def setUp(self):
 super().setUp()
 self.setup_rpc_mocks({
 'upper.upper': 'HELLO WORLD',
 'upper.echo': TypeError('...')
 ...
 })

	
update_rpc_mock(func_name, return_value)

	Update a mock of an already mocked RPC function.

class SomeTest(RpcMockTestCase):

 def setUp(self):
 super().setUp()
 self.setup_rpc_mocks({
 'upper.upper': 'HELLO WORLD',
 'upper.echo': 'hello world',
 })

 def test_something(self):
 self.update_rpc_mock('upper.upper', 'A NEW VALUE')
 ...

	
delete_rpc_mock(func_name)

	Delete a mock of an already mocked RPC function.

	Raises:	KeyError – In case the functions wasn’t mocked previously.

class SomeTest(RpcMockTestCase):

 def setUp(self):
 super().setUp()
 self.setup_rpc_mocks({
 'upper.upper': 'HELLO WORLD',
 'upper.echo': 'hello world',
 })

 def test_really_something(self):
 self.delete_rpc_mock('upper.upper')
 ...

	
assert_rpc_calls(*expected_calls)

	This method is a convenient way of asserting that rpc function calls were
made in a particular way:

class SomeTest(RpcMockTestCase):

 def setUp(self):
 super().setUp()
 self.setup_rpc_mocks({
 'upper.upper': 'HELLO WORLD',
 'upper.echo': 'hello world',
 })

 def test_something(self):
 ...

 self.assert_rpc_calls(
 mock.call('upper.upper', text='hello world')
)

mock.call(..) can contain PyHamcrest [https://pypi.python.org/pypi/PyHamcrest] matchers for better and less brittle
tests.

	
assert_any_rpc_calls(*expected_calls)

	At the opposite of assert_rpc_calls where you have to specify
all mocked calls that were done, this method accept a list of mocked calls and
assert that each one of them was done. The calls should be specified in the same
order as they are made.

Note

This method do it’s best to guess which function user is looking for and in
case of a mismatch it try to generate a useful message for the user.

	
class lymph.testing.EventMockTestCase

	Base mixin test class that provides a highlevel interface for mocking events emitted.

	
events

	A List of the emitted events.

	
assert_events_emitted(*expected_emitted)

	This method is a convenient way of asserting that events were emitted:

class SomeTest(EventMockTestCase):

 def test_something(self):
 ...

 self.assert_events_emitted(
 mock.call('upper.uppercase_transform_finished', {'text': 'hello world'})
)

	
class lymph.testing.RPCServiceTestCase

	Test class for testing a unique RPC interface.

	
service_class

	Interface class to test, this attribute is abstract and must be supplied by
child class.

	
service_config

	Configuration to pass to service when calling apply_config().

	
client

	Shortcut for getting default lymph.Proxy instance for the service under test.

	
get_proxy(**kwargs)

	Return a lymph.Proxy instance of the service under test.

	
request(*args, **kwargs)

	Low level method to send a request to service under tests return ReplyChannel
instance.

	
emit(*args, **kwargs)

	Emit an event.

	
class lymph.testing.WebServiceTestCase

	Test class for testing a unique Web interface.

	
client

	Return a Werkzeug test client associated to web interface under test.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

The Lymph RPC Protocol

Message format:

	Index
	Name
	Content

	0
	ID
	a random uuid

	1
	Type
	REQ, REP, ACK, NACK, or ERROR

	2
	Subject
	method name for “REQ” messages, else:
message id of the corresponding request

	3
	Headers
	msgpack encoded header dict

	4
	Body
	msgpack encoded body

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

Glossary

	service interface

	A collection of rpc methods and event listeners that are exposed by a service container.
Interfaces are implemented as subclasses of lymph.Interface.

	service container

	A service container manages rpc and event connections, service discovery, logging, and configuration
for one or more service interfaces. There is one container per service instance.

Containers are ServiceContainer objects.

	service instance

	A single process that runs a service container.
It is usually created from the commandline with lymph instance.
Each instance is assigned a unique identifier called instances identity.

Instances are described by ServiceInstance objects.

	service

	A set of all service instances that exposes a common service interface is called a service.
Though uncommon, instances may be part of more than one service.

Services are described by Service objects.

	node

	A process monitor that runs service instances. You’d typically run one per machine.
A node is started from the commandline with lymph node.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lymph 0.15.0 documentation

FAQ

	Why does lymph crash with UnicodeDecodeError: ‘ascii’ codec can’t encode character …?

Why does lymph crash with UnicodeDecodeError: ‘ascii’ codec can’t encode character …?

Since many lymph commands produce unicode output, you have to set your locale
to UTF-8, e.g. with

$ export LC_ALL=en_US.UTF-8

If you want to pipe lymph commands with Python 2, you might also have to set
PYTHONIOENCODING

$ export PYTHONIOENCODING=UTF-8

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	lymph 0.15.0 documentation

Contributing

We try to follow C4 (Collective Code Construction Contract) [http://rfc.zeromq.org/spec:16] for lymph development.
Issues are tracked on github [https://github.com/deliveryhero/lymph/issues].
We accept code and documentation contributions via pull requests.

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	lymph 0.15.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	

 	__getattr__() (lymph.core.interfaces.Proxy method)

 	__getitem__() (lymph.core.events.Event method)

 	__iadd__() (lymph.core.monitoring.metrics.Counter method)

 	

 	__iter__() (lymph.core.monitoring.metrics.Metric method)

 	

 	(lymph.core.services.Service method)

 	__len__() (lymph.core.services.Service method)

A

 	

 	ack()

 	

 	(lymph.core.channels.ReplyChannel method)

 	add() (lymph.core.monitoring.metrics.Aggregate method)

 	add_component() (lymph.core.components.Componentized method)

 	add_tags() (lymph.core.monitoring.metrics.Aggregate method)

 	Aggregate (class in lymph.core.monitoring.metrics)

 	

 	application (lymph.web.WebServiceInterface attribute)

 	apply_config() (lymph.Interface method)

 	assert_any_rpc_calls() (lymph.testing.RpcMockTestCase method)

 	assert_events_emitted() (lymph.testing.EventMockTestCase method)

 	assert_rpc_calls() (lymph.testing.RpcMockTestCase method)

B

 	

 	body (lymph.core.events.Event attribute)

 	

 	(lymph.core.messages.Message attribute)

C

 	

 	Callable (class in lymph.core.monitoring.metrics)

 	client (lymph.testing.RPCServiceTestCase attribute)

 	

 	(lymph.testing.WebServiceTestCase attribute)

 	Component (class in lymph.core.components)

 	Componentized (class in lymph.core.components)

 	Configuration (class in lymph.config)

 	

 	ConfigView (class in lymph.config)

 	Connection (class in lymph.core.connections)

 	Counter (class in lymph.core.monitoring.metrics)

 	create_instance() (lymph.config.Configuration method)

D

 	

 	delete_rpc_mock() (lymph.testing.RpcMockTestCase method)

E

 	

 	emit() (lymph.Interface method)

 	

 	(lymph.testing.RPCServiceTestCase method)

 	endpoint (lymph.core.services.ServiceInstance attribute)

 	error()

 	error_hook (lymph.core.components.Component attribute)

 	

 	Event (class in lymph.core.events)

 	event() (built-in function)

 	

 	(in module lymph)

 	EventMockTestCase (class in lymph.testing)

 	events (lymph.testing.EventMockTestCase attribute)

F

 	

 	from_config() (lymph.core.container.ServiceContainer class method)

G

 	

 	Gauge (class in lymph.core.monitoring.metrics)

 	get() (lymph.core.channels.RequestChannel method)

 	get_instance() (lymph.config.Configuration method)

 	

 	get_proxy() (lymph.testing.RPCServiceTestCase method)

 	get_raw() (lymph.config.Configuration method)

I

 	

 	id (lymph.core.messages.Message attribute)

 	identity (lymph.core.services.ServiceInstance attribute)

 	incr() (lymph.core.monitoring.metrics.TaggedCounter method)

 	

 	Interface (class in lymph)

 	Interface.subscribe() (in module lymph)

 	is_healthy() (WebServiceInterface method)

L

 	

 	load() (lymph.config.Configuration method)

 	load_file() (lymph.config.Configuration method)

 	

 	lookup() (lymph.core.container.ServiceContainer method)

M

 	

 	Message (class in lymph.core.messages)

 	Metric (class in lymph.core.monitoring.metrics)

 	

 	metrics (lymph.core.components.Component attribute)

N

 	

 	nack()

 	name (lymph.Interface attribute)

 	

 	node

O

 	

 	on_start() (lymph.core.components.Component method)

 	

 	(lymph.Interface method)

 	(lymph.core.components.Componentized method)

 	

 	on_stop() (lymph.core.components.Component method)

 	

 	(lymph.Interface method)

 	(lymph.core.components.Componentized method)

P

 	

 	packed_body (lymph.core.messages.Message attribute)

 	pool (lymph.core.components.Component attribute)

 	

 	Proxy (class in lymph.core.interfaces)

 	proxy()

 	

 	(lymph.Interface method)

R

 	

 	raw_rpc() (in module lymph)

 	reply()

 	

 	(lymph.core.channels.ReplyChannel method)

 	ReplyChannel (class in lymph.core.channels)

 	request() (lymph.Interface method)

 	

 	(lymph.testing.RPCServiceTestCase method)

 	RequestChannel (class in lymph.core.channels)

 	

 	root (lymph.config.ConfigView attribute)

 	rpc() (built-in function)

 	

 	(in module lymph)

 	rpc_mock_calls (lymph.testing.RpcMockTestCase attribute)

 	RpcMockTestCase (class in lymph.testing)

 	RPCServiceTestCase (class in lymph.testing)

S

 	

 	send_message() (lymph.core.container.ServiceContainer method)

 	serial_event() (in module lymph.patterns.serial_events)

 	service

 	Service (class in lymph.core.services)

 	service container

 	service instance

 	service interface

 	service_class (lymph.testing.RPCServiceTestCase attribute)

 	service_config (lymph.testing.RPCServiceTestCase attribute)

 	ServiceContainer (class in lymph.core.container)

 	

 	ServiceInstance (class in lymph.core.services)

 	set() (lymph.core.monitoring.metrics.Gauge method)

 	setup_rpc_mocks() (lymph.testing.RpcMockTestCase method)

 	source (lymph.core.events.Event attribute)

 	spawn() (lymph.core.components.Component method)

 	start() (lymph.core.container.ServiceContainer method)

 	stop() (lymph.core.container.ServiceContainer method)

 	subject (lymph.core.messages.Message attribute)

 	subscribe() (built-in function)

T

 	

 	TaggedCounter (class in lymph.core.monitoring.metrics)

 	task() (in module lymph)

 	

 	type (lymph.core.events.Event attribute)

 	

 	(lymph.core.messages.Message attribute)

U

 	

 	update_rpc_mock() (lymph.testing.RpcMockTestCase method)

 	

 	url_map (lymph.web.WebServiceInterface attribute)

W

 	

 	WebServiceInterface (built-in class)

 	

 	(class in lymph.web)

 	

 	WebServiceTestCase (class in lymph.testing)

 Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

 _static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

topic_guides/tasks.html

 Navigation

 		
 index

 		lymph 0.15.0 documentation »

Tasks

import lymph
import requests

class BackgroundPush(lymph.Interface):
 @lymph.task()
 def push_to_3rd_party(self, data):
 requests.post("http://3rd-party.example.com/push", data)

 @lymph.rpc()
 def push(self, data):
 self.push_to_3rd_party.apply(data=data)

Running worker instances:

$ lymph worker -c config.yml

These instances will register as {interface_name}.worker and thus not respond
to RPC requests sent to {interface_name}.

 © Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

_static/comment-close.png

_static/down.png

search.html

 Navigation

 		
 index

 		lymph 0.15.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

_static/comment.png

internals/index.html

 Navigation

 		
 index

 		lymph 0.15.0 documentation »

Internals

Contents:

 © Copyright 2013–2015, Delivery Hero Holding GmbH.
 Created using Sphinx 1.3.4.

_static/plus.png

_static/down-pressed.png

