LXDock Documentation
Release 0.1.1

Virgil Dupras, Morgan Aubert

Mar 09, 2017

Contents

1 Getting started

Ixdockhalt
Ixdockhelp oL
Ixdockinit

Ixdockshell

Ixdockup Lo

CONLAINEIS . . v & v v v e v e e e e e e e e e
hostnames

NAME © . v v v vt e e e e e
privileged oo
protocol

1.1
1.2 Building LXDock on Linux
1.3 Command line completion
1.4 Your first LXDock file
1.5
2 Usage
2.1 Multiple containers
2.2 Provisioning
2.3 Shared folders
3 Command-line reference
3.1 Ixdock config
3.2 Ixdock destroy
33
34
3.5
3.6 Ixdock provision
3.7
3.8 Ixdock status
39
4 LXDock file reference
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8 provisioning
4.9
4.10
4.11
4.12

Problems?

DN AW W Ww

e N

17

.......................... 17

Glossary

Contributing to LXDock
6.1 Contributingcode L e e
6.2 Usingtheissuetracker e e

Release notes
7.1 LXDock 0.1

Thanks

Indices and tables

23

25
25
26

27
27

29

31

LXDock Documentation, Release 0.1.1

Contents 1

LXDock Documentation, Release 0.1.1

2 Contents

CHAPTER 1

Getting started

Requirements

Python 3.4+
LXD 2.0+

* getfacl/setfacl if you plan to use shared folders

* any provisioning tool you wish to use with LXDock

Building LXDock on Linux

LXDock should build very easily on Linux provided you have LXD available on your system.

Prerequisite: install LXD

You may want to skip this section if you already have a working installation of LXD on your system.

For Debian and Ubuntu, the following command will ensure that LXD is installed:

$ sudo apt—-get install 1xd

Note: If you’re using an old version of Ubuntu you should first add the LXD’s apt repository and install the 1xd
package as follows:

$ sudo add-apt-repository -y ppa:ubuntu-lxc/lxd-stable
$ sudo apt—-get update
$ sudo apt—-get install 1xd

https://www.python.org
https://www.ubuntu.com/cloud/lxd

LXDock Documentation, Release 0.1.1

You should now be able to configure your LXD installation using:

$ newgrp 1lxd # ensure your current user can use LXD
$ sudo 1lxd init

Note: The 1xd init command will ask you to choose the settings to apply to your LXD installation in an interactive
way (storage backend, network configuration, etc). But if you just want to go fast you can try the following commands:

newgrp 1lxd

sudo lxd init --auto

1xc network create 1lxdbr0O ipvé6.address=none ipv4.address=10.0.3.1/24 ipv4.nat=true
lxc network attach-profile 1lxdbr0O default ethO

v » v »n

You can now check if your LXD installation is working using:

$ 1lxc launch ubuntu: first-machine && lxc exec first-machine bash

Note: Youcanuse 1xc stop first-machine to stop the previously created container.

Install LXDock

You should now be able to install LXDock using:

$ pip3 install lxdock

Note: Don’t have pip3 installed on your system? Most distros have a specific package for it, it’s only a matter of
installing it. For example, on Debian and Ubuntu, it’s python3-pip. Otherwise, Stackoverflow can help you.

Command line completion

LXDock can provide completion for commands and container names.

Bash

If you use Bash, you have to make sure that bash completion is installed (which should be the case for most Linux in-
stallations). In order to get completion for LXDock, you should place the contrib/completion/bash/1lxdock
file at /etc/bash.completion.d/1xdock (or at any other place where your distribution keeps completion
files):

$ sudo cp contrib/completion/bash/lxdock /etc/bash.completion.d/lxdock

Make sure to restart your shell before trying to use LXDock’s bash completion.

4 Chapter 1. Getting started

http://stackoverflow.com/a/6587528

LXDock Documentation, Release 0.1.1

ZSH

Not yet! But feel free to contribute (please refer to Contributing to LXDock)!

Your first LXDock file

Create a file called . 1xdock.yml (or 1xdock.yml) in your project directory and paste the following:

name: myproject

containers:
- name: testO1l
image: ubuntu/xenial

- name: test02
image: archlinux

This LXDock file defines a project (myproject) and two containers, test01 and test 02. These containers will
be constructed using respectively the ubuntu/xenial and the archlinux images (which will be pulled from an
image server - https://images.linuxcontainers.org by default).

Now from your project directory, start up your containers using the following command:

$ lxdock up

Bringing container "testO0l" up

Bringing container "test02" up

==> test0l: Unable to find container "test0l" for directory "[PATH_TO_YOUR_PROJECT]"
==> test0l: Creating new container "myproject-test01-11943450" from image ubuntu/
—xenial

==> test0l: Starting container "testOl"...

==> test0l: No IP yet, waiting 10 seconds...

==> test0l: Container "testOl" is up! IP: [CONTAINER_IP]

==> test0l: Doing bare bone setup on the machine...

==> test0l: Adding ssh-rsa [SSH_KEY] to machine's authorized keys

==> test0l: Provisioning container "testOl"...

==> test02: Unable to find container "test02" for directory "[PATH_TO_YOUR_PROJECT]"
==> test02: Creating new container "myproject-test02-11943450" from image archlinux
==> test02: Starting container "testO02"...

==> test02: No IP yet, waiting 10 seconds...

==> test02: Container "test02" is up! IP: [CONTAINER_IP]

==> test02: Doing bare bone setup on the machine...

==> test02: Adding ssh-rsa [SSH_KEY] to machine's authorized keys

==> test02: Provisioning container "test02"...

Congrats! You're in!

Problems?

If you’re having problems trying to run your container, try running them in privileged mode. Many older distributions
have an init system that doesn’t work well with unprivileged containers (debian/jessie notably). Some host-side
problems can also be worked around by running privileged containers.

1.4. Your first LXDock file 5

https://images.linuxcontainers.org

LXDock Documentation, Release 0.1.1

6 Chapter 1. Getting started

CHAPTER 2

Usage

Here is a list of simple guides targeting specific use cases that are mostly to be encountered when using LXDock.

Multiple containers

You can define multiple containers in your LXDock file. All you have to do is to use the containers section and
define your containers below it.

image: ubuntu/xenial
mode: pull

containers:
- name: web
hostnames:
- myproject.local

- name: ci
image: debian/jessie
privileged: true
hostnames:
- ci.local

If you define some global values (eg. images, mode or provision) outside of the scope of the containers
block, these values will be used when creating each container unless you re-define them in the container’s configuration
scope.

Provisioning

LXDock supports many provisioning tools in order to allow you to easily provision containers created using LXD.
Using provisioning tools such as Ansible with LXDock will allow you to alter the configuration, install software,
deploy applications and more on the containers. Using the built-in provisioning capabilities of LXDock will allow you

LXDock Documentation, Release 0.1.1

to run these provisioning operations as part of the 1xdock up wokflow. To be more precise, the provisioning tools
associated with your LXDock configuration are executed in the following situations:

* when you run 1xdock up the first time; that is when the container does not exist yet

e when you run 1xdock provision. Note that you can run this command as many time as you want
Currently, LXDock provides a built-in support for the following provisioning tools:

* Ansible

* Your favorite provisioning tool is not listed here?!! Feel free to contribute!

The provisioning tools you choose to use can be configured in your LXDock file using the provisioning option.
For example, we could choose to provision our containers using an Ansible playbook as follows:

name: myproject
image: ubuntu/xenial

provisioning:
- type: ansible
playbook: deploy/site.yml

Note that you can use many provisioning tools. The order in which provisioning tools are defined in your LXdock file
defines the order in which they are executed.

Shared folders

A common need when using a tool such as LXDock is to make some folders on your system available to your con-
tainers. LXC/LXD provides a feature called “Ixc mounts” - LXDock uses it internally in order to provide support for
“shared folders”.

You can use the shares option in order to define which folders should be made available to your containers. For
example:

name: myproject
image: ubuntu/xenial

shares:
- source: /path/to/my/workspace/project/
dest: /myshare

Of course you can associate many shared folders with your containers. In the previous example, the content of the
/path/to/my/workspace/project/ on the host will be made available to the container under the /myshare
folder.

The problem with shared folder permissions

Shared folders in LXDock use 1xc mounts. This is simple and fast, but there are problems with permissions: shared
folders means shared permissions. Changing permissions in the container means changing them in the host as well,
and vice versa. That leaves us with a problem that is tricky to solve gracefully. Things become more complicated
when our workflow has our container create files in that shared folder. What permissions do we give these files?

LXDock tries to answer this by using ACLs. To ensure that files created by the container are accessible to you back
on the host (and vice versa), every new share has a default ACL giving the current user full access to the source folder.
An ACL is also added for the root user of the container in order to allow him to access the shared folders on the guest
side with read/write permissions.

8 Chapter 2. Usage

LXDock Documentation, Release 0.1.1

You should note that users created by your provisioning tools (eg. using Ansible) won’t be able to access your shares
on the guest side. This is because LXDock has no knowledge of the users who should have access to your shares.
Moreover, your users/groups, when the container is initially created, don’t exist yet! That is why it does nothing. What
is suggested is that you take care of it in your own provisioning by setting up some ACLs. You can also make use
of the users option in order to force LXDock to create some users. The users created this way will be handled by
LXDock and will have read/write access to the shared folders:

name: myproject
image: ubuntu/xenial

shares:
- source: /path/to/my/workspace/project/
dest: /myshare

users:
- name: testO01l
- name: test02
home: /opt/test02

2.3. Shared folders 9

LXDock Documentation, Release 0.1.1

10 Chapter 2. Usage

CHAPTER 3

Command-line reference

Most of your interaction with LXDock will be done using the 1xdock command. This command provides many
subcommands: up, halt, destroy, etc. These subcommands are described in the following pages but you can eas-
ily get help using the help subcommand. 1xdock help will display help information for the 1xdock command
while 1xdock help [subcommand] will show the help for a specifc subcommand. For example:

$ lxdock help up
usage: lxdock up [-h] [name [name ...]]

Create, start and provision all the containers of the project according to
your LXDock file. If container names are specified, only the related containers
are created, started and provisioned.

positional arguments:
name Container name.

optional arguments:
-h, —--help show this help message and exit

Ixdock config

Command: 1xdock config

This command can be used to validate and print the LXDock config file of the project.

Options

* ——containers - prints only container names, one per line

11

LXDock Documentation, Release 0.1.1

Examples
$ lxdock config # prints project's LXDock file
$ lxdock config —--containers # prints project's container names

Ixdock destroy

Command: 1xdock destroy [name [name ...]]

This command can be used to destroy containers. If the containers to be destroyed are still running they will first be
stopped.

By default this command will try to destroy all the containers of the current project but you can limit this operation
to some specific containers by specifying their names. Keep in mind that a confirmation will be prompted to the user
when using the destroy command.

Options

e [name [name ...]] -zero,one or more container names

e ——force or —f£ - this option allows to destroy containers without confirmation

Examples

$ 1xdock destroy # destroys all the containers of the project

$ lxdock destroy mycontainer # destroys the "mycontainer" container

$ 1xdock destroy web ci # destroys the "web" and "ci" containers

$ 1xdock destroy —--force web # destroys the "web" container without confirmation

Ixdock halt

Command: 1xdock halt [name [name ...]]
This command can be used to halt running containers.

By default this command will try to halt all the containers of the current project but you can limit this operation to
some specific containers by specifying their names.

Options
e [name [name ...]] -zero,one or more container names
Examples
$ 1xdock halt # halts all the containers of the project
$ 1xdock halt mycontainer # halts the "mycontainer" container
$ 1lxdock halt web ci # halts the "web" and "ci" containers

12 Chapter 3. Command-line reference

LXDock Documentation, Release 0.1.1

Ixdock help

Command: 1xdock help [subcommand]
This command can be used to show help information.

By default this command will show the global help information for the 1xdock cli but you can also get help informa-
tion for a specific subcommand.

Options

* [subcommand] - a subcommand name (eg. up, halt, ...

Examples
$ lxdock help # shows the global help information
$ 1xdock help destroy # shows help information for the "destroy" subcommand

Ixdock init

Command: 1xdock init

This command can be used to generate a LXDock file containing highlights regarding some useful options.

Options

* ——image - this option allows to use a specific container image in the generated configuration
e ——project - this option allows to define the name of the project that will appear in the LXDock file

e ——force or —£ - this option allows to overwrite an exsting LXDock file if any

Examples

$ 1xdock init # generates a basic LXDock file

$ 1xdock init --image debian/jessie # generates a LXDock file defining a debian/
— jessie container

$ 1xdock init --project myproject # generates a basic LXDock file defining a
— "myproject" project

$ 1lxdock init --force # overwrite an existing LXDock file if,,
—applicable

Ixdock provision

Command: 1xdock provision [name [name ...]]

This command can be used to provision your containers.

3.4. Ixdock help 13

LXDock Documentation, Release 0.1.1

By default it will install bare bones packages (openssh, python) into your container if the underlying distribution is
supported by LXDock. That said, the provision command can also trigger the execution of provisioning tools that
you could’ve configured in your LXDock file (using the provisioning block).

Options
e [name [name ...]] -zero,one or more container names
Examples
$ 1xdock provision # provisions all the containers of the project
$ lxdock provision mycontainer # provisions the "mycontainer" container
$ 1xdock provision web ci # provisions the "web" and "ci" containers

Ixdock shell

Command: 1xdock shell [arguments] [name]
This command can be used to open an interactive shell inside one of your containers.

By default, that shell logins as root unless your LXDock config specifies another user in its shell: option. In all
cases, the ——user command line overrides everything.

Options
e [name] - acontainer name
e —u, —--user <username> - user to login as
Examples
$ 1xdock shell mycontainer # opens a shell into the "mycontainer" container
$ 1xdock shell -u root # opens a shell as root, regardless of our config

Ixdock status

Command: 1xdock status [name [name ...]]
This command can be used to show the statuses of the containers of your project.

By default this command will display the statuses of all the containers of your project but you can limit this opera-
tion to some specific containers by specifying their names. The statuses that are returned by this command can be
not-created, stopped or running.

Options

e [name [name ...]] -zero,one or more container names

14 Chapter 3. Command-line reference

LXDock Documentation, Release 0.1.1

Examples

$ lxdock status # shows the statuses of all the containers of the,
—project

$ 1xdock status mycontainer # shows the status of the "mycontainer" container

$ lxdock status web ci # shows the statuses of the "web" and "ci" containers

Ixdock up

Command: 1xdock up [name [name ...]]
This command can be used to start the containers of your project.

By default this command will try to start all the containers of your project but you can limit this operation to some
specific containers by specifying their names. It should be noted that containers will be created (and provisioned) if
they don’t exist yet.

Options
e [name [name ...]] -zero,one or more container names
Examples
$ 1xdock up # starts the containers of the project
$ lxdock up mycontainer # starts the "mycontainer" container
$ 1xdock up web ci # starts the "web" and "ci" containers

3.9. Ixdock up 15

LXDock Documentation, Release 0.1.1

16 Chapter 3. Command-line reference

CHAPTER 4

LXDock file reference

LXDock files allow you to defines which containers should be created for your projects. LXDock files are YML
files and should define basic information allowing LXDock to properly create your containers (eg. container names,
images, ...). By default LXDock will try to use a file located at . / . 1xdock.yml.

Note: LXDock supports the following names for LXDock files: . 1xdock.yml, 1xdock.yml, . 1xdock.yaml
and 1xdock.yaml.

A container definition contains parameters that will be used when creating each container of a specific project. It should
be noted that most of the options that you can define in your LXDock file can be applied “globally” or in the context
of a specific container. For example you can define a global image option telling to use the ubuntu/xenial for
all your containers and decide to use the debian/jessie image for a specific container:

name: myproject
image: ubuntu/xenial

containers:
- name: testO01l
- name: test02
- name: test03
image: debian/jessie

This section contains a list of all configuration options supported by LXDock files.

containers

The containers block allows you to define the containers of your project. It should be a list of containers, as
follows:

name: myproject
image: ubuntu/xenial

17

http://yaml.org/

LXDock Documentation, Release 0.1.1

containers:
- name: testO1l
— name: test02

hosthames

The hostnames option allows you to define which hostnames should be configured for your containers. These
hostnames will be added to your /etc/hosts file, thus allowing you to easily access your applications or services.

name: myproject
image: ubuntu/xenial

containers:
- name: testO0l
hostnames:
- myapp.local
- myapp.test
- name: test02

image

The image option should contain the alias of the image you want to use to build your containers. LXDock will
try to pull images from the default LXD’s image server. So you can get a list of supported aliases by visiting https:
/limages.linuxcontainers.org/ or by listing the aliases of the “images:” default remote:

$ lxc image alias list images:

There are many scenarios to consider when you have to choose the value of the image option. If you choose to set
your image option to ubuntu/xenial this means that the container will use the Ubuntu’s Xenial version with
the same architecture as your host machine (amd64 in most cases). It should be noted that the image value can
also contain a container alias that includes the targetted architecture (eg. debian/jessie/amd64 or ubuntu/
xenial/armhf).

Here is an example:

name: myproject
image: ubuntu/xenial

You should note that you can also use “local” container aliases. This is not the most common scenario but you can
manage your own image aliases and decide to use them with LXDock. You’ll need to use the mode: local option
if you decide to do this (the default mode is pull). For example you could create an image associated with the
old-ubuntu alias using:

$ 1xc image copy ubuntu:12.04 local: --alias old-ubuntu

And then use it in your LXDock file as follows:

name: myproject
image: old-ubuntu
mode: local

18 Chapter 4. LXDock file reference

https://images.linuxcontainers.org/
https://images.linuxcontainers.org/

LXDock Documentation, Release 0.1.1

mode

The mode option allows you to specify which mode to use in order to retrieve the images that will be used to build your
containers. Two values are allowed here: pull (which is the default mode for LXDock) and 1ocal. In pull mode
container images will be pulled from an image server (https://images.linuxcontainers.org/ by default). The local
mode allows you to use local container images (it can be useful if you decide to manage your own image aliases and
want to use them with LXDock).

name

This option can define the name of your project or the name of a container. In either cases, the name option is
mandatory.

name: myproject
image: ubuntu/xenial

containers:
- name: container0Ol
- name: container0l

privileged

You should use the privileged option if you want to created privileged containers. Containers created by LXDock
are unprivileged by default. Such containers are safe by design because the root user in the containers doesn’t map to
the host’s root user: it maps to an unprivileged user outside the container.

Here is an example on how to set up a privileged container in your LXDock file:

name: myproject
image: ubuntu/xenial

containers:
- name: web
privileged: yes

Note: Please refer to Glossary for more details on these notions.

protocol

The protocol option defines which protocol to use when creating containers. By default LXDock uses the
simplestreams protocol (as the 1xc command do) but you can change this to use the 1xd protocol if you want.
The simplestreams protocol is an image server description format, using JSON to describe a list of images and
allowing to get image information and import images. The 1xd protocol refers to the REST API that is used between
LXD clients and LXD daemons.

4.4. mode 19

https://images.linuxcontainers.org/

LXDock Documentation, Release 0.1.1

provisioning

The provisioning option allows you to define how to provision your containers as part of the 1xdock up
workflow. This provisioning can also be executed when running 1xdock provision.

The provisioning option should define a list of provisioning tools to execute. For example, it can be an Ansible
playbook to run:

name: myproject
image: ubuntu/xenial

provisioning:
- type: ansible
playbook: deploy/site.yml

server

You can use this option to define which image server should be used to retrieve container images. By default we are
using https://images.linuxcontainers.org/.

shares

The shares option lets you define which folders on your host should be made available to your containers (internally
this feature uses 1xc mounts). The shares option should define a list of shared items. Each shared item should define
a source (a path on your host system) and a dest (a destination path on your container filesystem). For example:

name: myproject
image: ubuntu/xenial

shares:
- source: /path/to/my/workspace/project/
dest: /myshare

shell

The shell option allows you to define the user to use when doing a 1xdock shell. This allows you to have a
shell for a specific user/home directory when doing 1xdock shell:

name: myproject
image: ubuntu/xenial

shell:
user: myuser
home: /opt/myproject

20 Chapter 4. LXDock file reference

https://images.linuxcontainers.org/

LXDock Documentation, Release 0.1.1

users

The users option allows you to define users that should be created by LXDock after creating a container. This can
be useful because the users created this way will automatically have read/write permissions on shared folders. The
users option should contain a list of users; each with a name and optionally a custom home directory:

name: myproject
image: ubuntu/xenial

users:
- name: test01l
- name: test02
home: /opt/test02

4.12. users 21

LXDock Documentation, Release 0.1.1

22

Chapter 4. LXDock file reference

CHAPTER B

Glossary

This is a comprehensive list of the terms used when discussing the functionalities and the configuration options of
LXDock.

Container Or Linux containers. Whenever we use the term “container”, we are referring to LXD containers. LXD
focuses on system containers / infrastructure containers and thus provides an elegant solution to the problem of
how to reliably run software in multiple computing environments (eg. for development or tests execution).

Image Animage (or container image) is necessary to build a container. Basically container images embed a snapshot
of a full filesystem and some configuration-related tools. All containers are built from “local” images; but
images can also be pulled from a remote image server (the default LXD’s image server is at https://images.
linuxcontainers.org/). This a good option because users don’t have to manage their own images but they have to
trust the image server they are using!

LXC LXC stands for “Linux containers”. It is a technology that allows to virtualize software (which can be an entire
operating system) at the operating system level, within the Linux kernel.

LXD LXD can be seen as an extension of LXC. It’s a container system that makes use of LXC. It provides many
tools built around LXC such as a REST API to interact with your containers, an intuitive command line tool, a
container image system, ...

Privileged container Privileged containers are containers where the root user (in the container) is mapped to the
host’s root user. This is not really “root-safe”” and could lead to potential security flawns. That said it should be
noted that privileged containers come with some protection mechanisms in order to protect the host. You can
refer to LXC’s documentation for more details on this topic.

Unprivileged container Unprivileged containers are containers where the root user (in the container) is mapped to
an unprivileged container on the host. So the user that corresponds to the container’s root user only has advanced
rights and permissions on the resources related to the container it is associated to.

23

https://images.linuxcontainers.org/
https://images.linuxcontainers.org/
https://linuxcontainers.org/fr/lxc/security/

LXDock Documentation, Release 0.1.1

24

Chapter 5. Glossary

CHAPTER O

Contributing to LXDock

Here are some simple rules & tips to help you contribute to LXDock. You can contribute in many ways!

Contributing code

The preferred way to contribute to LXDock is to submit pull requests to the project’s Github repository. Here are some
general tips regarding pull requests.

Warning: Keep in mind that you should propose new features on the project’s issue tracker before starting
working on your ideas!

Development environment

You should first fork the LXDock’s repository and make sure that LXD is properly installed on your system. Then you
can get a working copy of the project using the following commands (eg. using Python 3.6):

$ git clone git@github.com:<username>/lxdock.git
$ cd lxdock

$ python3.6 -m venv ./env && . ./env/bin/activate
$ make install

Coding style

Please make sure that your code is compliant with the PEPS style guide. You can ignore the “Maximum Line Length”
requirement but the length of your lines should not exceed 100 characters. Remember that your code will be checked
using flake8 and isort. You can use the following commands to perform these validations:

$ make lint
S make isort

25

https://github.com/lxdock/lxdock
https://github.com/lxdock/lxdock/issues
https://github.com/lxdock/lxdock
https://www.ubuntu.com/cloud/lxd
https://www.python.org/dev/peps/pep-0008/
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/isort/4.2.5

LXDock Documentation, Release 0.1.1

Or:

$ tox —e lint
S tox —-e isort

Tests

You should not submit pull requests without providing tests. LXDock relies on pytest: py.test is used instead of unittest
for its test runner but also for its syntax. So you should write your tests using pytest instead of unittest and you should
not use the built-in TestCase.

You can run the whole test suite using the following command:

’$ py.test

Code coverage should not decrease with pull requests! You can easily get the code coverage of the project using the
following command:

’$ make coverage

Using the issue tracker

You should use the project’s issue tracker if you’ve found a bug or if you want to propose a new feature. Don’t forget
to include as many details as possible in your tickets (eg. tracebacks if this is appropriate).

26 Chapter 6. Contributing to LXDock

http://pytest.org/latest/
http://pytest.org/latest/
https://github.com/lxdock/lxdock/issues

CHAPTER /

Release notes

Here are listed the release notes for each version of LXDock.

LXDock 0.1

LXDock 0.1.1 release notes (2017-03-09)

Requirements and compatibility

Python 3.4, 3.5 and 3.6. LXD 2.0+.

Fixes

* Fixed wrong container names in Bash completion (#38)

LXDock 0.1 release notes (2017-03-09)
Requirements and compatibility

Python 3.4, 3.5 and 3.6. LXD 2.0+.

New features

This is the initial release of LXDock!

27

https://github.com/lxdock/lxdock/issues/38

LXDock Documentation, Release 0.1.1

28

Chapter 7. Release notes

CHAPTER 8

Thanks

We would like to thank Savoir-faire Linux for allowing us to work on this side project! Developers at Savoir-faire
Linux use LXDock on a daily basis to manage local infrastructure containers related to DevOps projects.

29

https://www.savoirfairelinux.com//

LXDock Documentation, Release 0.1.1

30

Chapter 8. Thanks

CHAPTER 9

Indices and tables

* genindex
* modindex

e search

31

LXDock Documentation, Release 0.1.1

32

Chapter 9. Indices and tables

Index

C

Container, 23

Image, 23

L

LXC, 23
LXD, 23

P

Privileged container, 23

U

Unprivileged container, 23

33

	Getting started
	Requirements
	Building LXDock on Linux
	Command line completion
	Your first LXDock file
	Problems?

	Usage
	Multiple containers
	Provisioning
	Shared folders

	Command-line reference
	lxdock config
	lxdock destroy
	lxdock halt
	lxdock help
	lxdock init
	lxdock provision
	lxdock shell
	lxdock status
	lxdock up

	LXDock file reference
	containers
	hostnames
	image
	mode
	name
	privileged
	protocol
	provisioning
	server
	shares
	shell
	users

	Glossary
	Contributing to LXDock
	Contributing code
	Using the issue tracker

	Release notes
	LXDock 0.1

	Thanks
	Indices and tables

