

 Navigation

 	
 modules

 	
 next |

 	lutes 1.0.0a1 documentation

Lutes

Pronounced as the ancient French city “Lutèce”, Lutes is a micro component
entity system engine.

Component Entity System

Component entity system architecture is often used in game development.

It allows great flexibility by using composition over inheritence. It is based on three core elements:

	Entity

	An entity is a mere ID that represent an object in our world

	Component

	A component is a structure holding the object data for an aspect of the world.
Several components can be associated to an entity.

	System

	A system contain the logic for an aspect of the world

Lutes adds a fourth element: the manager. The manager is the glue that ties components, entities and systems together.

You can learn more on component entity system architecture on this wiki [http://entity-systems.wikidot.com/].

What lutes gives you

In its current state, lutes gives you a simplistic structure with basic elements you can inherit from.

Lutes is an experiment but should be functionnal: please see how green are the badges below.

[image: https://travis-ci.org/greizgh/lutes.svg?branch=master]
 [https://travis-ci.org/greizgh/lutes][image: https://coveralls.io/repos/greizgh/lutes/badge.svg?branch=master]
 [https://coveralls.io/r/greizgh/lutes?branch=master][image: https://readthedocs.org/projects/lutes/badge/?version=latest]
 [https://readthedocs.org/projects/lutes/?badge=latest]

Technical details

	Lutes internals
	Manager

	System

	Component

	Errors

 Copyright 2015, Greizgh.
 Created using Sphinx 1.2.2.

 Navigation

 	
 modules

 	
 next |

 	
 previous |

 	lutes 1.0.0a1 documentation

Lutes internals

Manager

	
class lutes.Manager

	Manager handles entities and their components.

	
add_component(entity, component)

	Add a component to an entity

	
add_system(system)

	Add system to the world

	
create_entity()

	Create an entity in the world and return its identifier.

	Return type:	entity

	
dispatch_event(event, data)

	Dispatch an event to all subscribers

	Parameters:	
	event – event name as string

	data – data that will be passed to subscribers

	
get_component(entity, component)

	Get an entity’s component by its type
Returns None if no component of given type was found

	Return type:	component or None

	
has_component(entity, component)

	Check that given entity has component

	
init()

	Initialize systems

	
remove_component(entity, component)

	Remove a component from an entity

	
remove_entity(entity)

	Remove an entity from the world

	
remove_system(system)

	Remove a system from the world

	
subscribe(event, callback)

	Subscribe a callback to an event

	Parameters:	
	event – event name as string

	callback – callable

	
update(delta)

	Update every system

	Parameters:	delta – time elpased since last update

System

	
class lutes.System(priority=99)

	A system handles a set of components.
It is responsible for updating them.

	
entities = None

	Entities handled by the system

	
handled_components = None

	Components the system needs to update entites

	
init()

	Initialize the system

	
priority = None

	System priority, lower is updated first

	
update(delta)

	Update entities

	Parameters:	delta – time elapsed since last update

Component

	
class lutes.Component(entity=None)

	A component is a data bag attached to an entity

	
entity = None

	Entity the component relates to

 Copyright 2015, Greizgh.
 Created using Sphinx 1.2.2.

 Navigation

 	
 modules

 	
 previous |

 	lutes 1.0.0a1 documentation

Errors

	
exception lutes.errors.InvalidEntityError(entity)

	Exception raised when trying to process an invalid entity

	
exception lutes.errors.LutesError

	Root lutes exception, use it to catch lutes related exceptions

 Copyright 2015, Greizgh.
 Created using Sphinx 1.2.2.

 Navigation

 	
 modules

 	lutes 1.0.0a1 documentation

 Python Module Index

 l

 			

 		
 l	

 	[image: -]
 	
 lutes	

 	
 	
 lutes.errors	

 Copyright 2015, Greizgh.
 Created using Sphinx 1.2.2.

 search.html

 Navigation

 		
 modules

 		lutes 1.0.0a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Greizgh.
 Created using Sphinx 1.2.2.

_static/up.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/minus.png

_static/comment.png

