

Ludit

Contents:

	Quick start

	System overview

	Software installations

	Client types

	Server audio source setup

	Audio processing

	RPI setup

Introduction

Ludit is an audioplayer made for an wireless audio system using Twitse [https://github.com/bjerrep/twitse/] for time synchronisation. Ludit consists of a central wired server and seperate wireless stereo speakers where the server can act as e.g. a bluetooth A2DP headset for whatever music players that might run on whatever devices. Ludit does not have a music player app by itself.

Ludit requires the involved computers to be in hardware time sync since Ludit does not know how to correct audio with regard to crystal drift. The Twitse project is at least one way to keep computers in full hardware time sync over a WLAN.

Ludit is intended to get the best out of size constained loudspeakers in everyday setups. It is not too concerned about hifi but happily allows a heavy dose of electronic bass lift to get smaller loudspeakers play an acceptable bass on e.g. 3” or 4” bass drivers in ‘small’ (closed) enclosures. The price to pay is that Ludit speakers in such a setup are not really suited for playing insanely loud since the bass lift burns away quite some power used to battle the small enclosure without giving a equivivalent high sound pressure. But its nice to get the bass drum back. Obviously Ludit can just as well play through speakers that need no bass lift at all.

The following image shows one of two speakers made for the kitchen. It is very much in Ludits dna to play on two way systems where an electronic crossover can use right and left channel on a soundcard for tweeter and woofer. The carrier board underneath the raspberry pi is part of the twitse project although it sports a PCM5102A audio dac.

[image: _images/kitchen_speaker.jpg]
​ :alt: kitchen_speaker.jpg
​ :width: 300px

Links

The Raspberry Pi: Audio out through I2S. Analysis of the native I2S from a raspberry pi which happens to be rather jitterish as it struggles to produce a 44.1 kHz samplerate. Be aware when using syncroneous DACs:

http://www.dimdim.gr/2014/12/the-rasberry-pi-audio-out-through-i2s/

Quick start

Probably the fastest and or simplest way to get Ludit playing is on a x86 PC. Most notably it skips the fancy audio sources and simply plays noise generated locally with gstreamer. Since everything will run on a single PC only one client is started as a second client might be unable to open Alsa. Regarding audio this means that only a single channel is playing (if two clients are running on the same default Alsa device this would have given a mono playback). Once the server and a client are running it will be possible to play with the audio settings such as crossover and equalizer via a webpage.

Note that since everything is running on a single computer there is no time drift to worry about (not that it would ever be an issue for a quick test run)

3 terminals will be needed so Terminator will come in handy in case you don’t know it already. It will look like the following image, from top to bottom with the server, a client and a gstreamer pipeline.

[image: _images/quick_start_terminals.png]
A number of requirements are listed as ‘Common installs’ on the Software installations page. From the ‘Server installs’ simple-websocket-server is also needed.

Server

Enter ./src. The first thing to do is to make a configuration file.

./run_server.py --newcfg > ludit.cfg

Have a look at the file, probably there is a group called ‘kitchen’ with two speakers caller ‘left’ and ‘right’. These names will be needed for launching the clients. Now start the server:

./run_server.py --cfg ludit.cfg

Note that if the server and client(s) are running on different computers then only one NIC should be up on each.

Client

In a seperate terminal enter ./src and launch a client:

./run_client.py --id kitchen:left

Client and server should now have connected automatically (they discover each other via multicast).

Audio

In the third and last terminal launch the following gstreamer pipeline. Note that the volume is turned way down to prevent audio shock. Increase it to actually hear anything:

gst-launch-1.0 audiotestsrc wave=pink-noise volume=0.01 is-live=true ! audioconvert ! audio/x-raw, channels=2 ! faac ! aacparse ! avmux_adts ! tcpclientsink host=<hostname or ip> port=4665

On the PC audio output the woofer signal will be in one channel and the tweeter signal in the other. It will sound horrible. The audiotestsrc source can be replaced with a gstreamer source playing a local file or streaming web radio if the noise gets too much.

Web

Finally go to ./web and make a copy of ludit_local.js.template called ludit_local.js and fill in the correct ip or hostname. Then open index.html in a webbrowser and the first two tabs should be operational as they connect directly to the Ludit server.

[image: _images/quick_start_web.png]

System overview

Ludit is both the name of the audio player project on github but it is also more generally used to encompass the entire audio player system.
The current complete Ludit audio system as it looks today is shown in the following image. The two main components are the server and the client dealing with routing and playing audio. There is a web page which connects to the server and is used for e.g. audio adjustments and selecting which groups are playing and which is not.

[image: _images/ludit_system_diagram.png]

Server:

Pending…

Client:

The client shown in the yellowish square to the right in the image is a mono player so there will be two of these in a stereo group. Stuff running on the raspberry pi is shown to the left of the vertical line, and stuff on the right is located on the carrier board called Luhab which is part of the Twitse project. Besides a DAC + VCTCXO for controlling the clock to the raspberry pi the Luhab carrier also features a PCM5102A audio DAC.

Web:

Pending…

Software installations

The package lists below are at least a starting point for installing the Ludit dependencies. On a computer never used for development before the lists will most likely not be exhaustive. Hopefully things will later crash and fail in a way that indicates what could be missing.

​Common installs

These installs are common for both server and clients

Arch:

python-pip libfdk-aac faad2 faac kate git subversion openssh rsync gstreamer gst-python gst-plugins-good gst-plugins-bad gst-plugins-ugly gst-libav python-pybluez python-websockets

On a fresh install this will end up as nearly 1GB of storage used.

Ubuntu:

gstreamer1.0-libav gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly python-gst-1.0 ubuntu-restricted-extras aac-enc libfdk-aac-dev autoconf libtool libasound2 libasound2-dev bluez libbluetooth-dev glib-2.0-dev libgtk2.0-dev libsbc-dev libsbc1 python3-pip python3-websockets

Others

connectable installable via pip:

pip3 install connectable --upgrade

Client software installs

The client attempts to interact with gpio on a raspberrypi, to keep it from complaining on a raspberrypi install rpi-gpio python bindings. If rpi-gpio are unavailable (which they will always be on a non-rpi) then gpio will just be disabled.

Server software installs

simple-websocket-server can be installed via pip:

sudo pip install git+https://github.com/dpallot/simple-websocket-server.git

Known problems

	Bluez exception using python 3.10 (seen on arch)

	
	SystemError: PY_SSIZE_T_CLEAN macro must be defined for ‘#’ formats

	UnicodeDecodeError: ‘utf-8’ codec can’t decode byte 0xff in position 4: invalid start byte

Install pybluez from Blaok fork (after uninstalling whatever pybluez might already be installed):

$ git clone https://github.com/Blaok/pybluez.git && cd pybluez
python setup.py install

Client types

There are two types of clients, single channel and stereo.

Single channel

Single channel clients are straightforward and simple. They come in pair of twos in order to play a stereo signal. They will play either the left or right channel and thus each client will need to know which channel to pick. A server group for two single channel clients could look like this:

Server configuration:

"devices": [
 {
 "channel": "left",
 "name": "leftdevicename"
 },
 {
 "channel": "right",
 "name": "rightdevicename"
 }
],
 "name": "groupname"

This is a part of the default json configuration that the server will print out with –newcfg.

The two clients in a group like this will call in with their names and the server will inform them about which channel to play. The straight forward way for each standard single channel client to identify itself is to supply a ‘–id group:name’ on the command line which will use default settings for everything else. Alternatively they can specify a client configuration file instead in case the defaults won’t do, see client configuration.

Stereo

It is possible to make a stereo speaker as well. The usecase will be a speaker that both runs as a low latency soundbar for a tv as well as being a normal streaming playing group. Channel will now be ‘stereo’.

Server configuration:

"devices": [
 {
 "channel": "stereo",
 "name": "devicename"
 }
],
 "name": "groupname"

As for the single channel a stereo client can be started with –id or by specifying a local configuration file with –cfg.

Client configuration

This is a template configuration for a client printed by a client with –newcfg:

"alsa": {
 "devices": [
 "hw:0",
 "hw:1"
]
},
"device": "devicename",
"group": "groupname",
"multicast": {
 "ip": "225.168.1.102",
 "port": "45655"
},
"version": "0.3"

The “alsa” part is optional, it can be used to override the system default alsa device if needed. The only case where it is required to be present and contain exactly two entries is for a stereo device using two separate soundcards. For a single channel device or a stereo device using e.g. a 5.1 surround soundcard it should only contain a single ‘devices’ entry if the default should be overwritten.

Server audio source setup

The currently supported audio sources are

	spotifyd - Spotify over LAN/Wifi

	bluealsa - A2DP bluetooth sink

	gstreamer - Used for testing

	alsa - Alsa input on the server

	realtime - Local client in soundbar mode

Audio source: spotifyd

Spotifyd enables Ludit as an ‘Spotify Connect’ audio player in e.g. the Spotify list called ‘Connect to device’ seen by selecting ‘Devices Available’ during playing.
There are ready made binaries for RPI, on x86 follow the upstream spotifyd [https://github.com/Spotifyd/spotifyd] instructions.

PCM audio from spotifyd is recorded with an Alsa loopback device. Install ./config/modules-load.d/raspberrypi.conf from the repository in /etc/modules.d on the server. This will make the snd-aloop kernel module load at boot which setups the loopback device. Check that the loopback device is device 1 and the onboard bcm2835 is device 0.

aplay -l:

card 0: ALSA [bcm2835 ALSA], device 0: bcm2835 ALSA [bcm2835 ALSA]
 Subdevices: 7/7
 Subdevice #0: subdevice #0
 Subdevice #1: subdevice #1
 .. etc
card 0: ALSA [bcm2835 ALSA], device 1: bcm2835 ALSA [bcm2835 IEC958/HDMI]
 Subdevices: 1/1
 Subdevice #0: subdevice #0
card 1: Loopback [Loopback], device 0: Loopback PCM [Loopback PCM]
 Subdevices: 8/8
 Subdevice #0: subdevice #0
 Subdevice #1: subdevice #1
 Subdevice #2: subdevice #2
 .. etc
card 1: Loopback [Loopback], device 1: Loopback PCM [Loopback PCM]
 Subdevices: 8/8
 Subdevice #0: subdevice #0
 Subdevice #1: subdevice #1
 Subdevice #2: subdevice #2
 .. etc

For starting spotifyd manually have a look at the systemd file in ./systemd/ludit_spotifyd.service.template. It shows how to create a /tmp/spotifyd fifo and an example spotifyd launch line.

Audio source: BlueALSA

Use the fork here [https://github.com/bjerrep/bluez-alsa/]. Building instructions can be found on upstream [https://github.com/Arkq/bluez-alsa].

Get bluetooth running as the first thing, including pairing and trusting the source devices.

For starting bluealsa manually have a look at the systemd file in ./systemd/bluealsa.service.template (in the bluealsa fork repository !). Like for spotifyd it shows how to create a /tmp/audio fifo and a typical spotifyd launch line.

If anonymous users should be able to play over bluetooth without any trusting or pairing then use a bluetooth autoconnect script like this one: (not tried this specific one but it looks nice)
https://gist.github.com/oleq/24e09112b07464acbda1#file-a2dp-autoconnect

Audio source: Mopidy

It would be kind of rude not to add Mopidy as an audio source since Mopidy uses gstreamer and exposes its playing pipeline directly in its configurationfile. Mopidy plays just about everything but for Ludit integration it has only been tested with a standard MPD client. So the state of the Mopidy audio source in this project will realisticly be something like ‘under development’.

The Mopidy playing pipeline in ~/.config/mopidy/mopidy.conf should be changed to:

output = audioconvert ! audio/x-raw, channels=2 ! faac ! aacparse ! avmux_adts ! tcpclientsink host=<server> port=4666 sync=true

Mopidy sends general play state events on a websocket that Ludit needs to subscribe to. There are 4 configuration values in the Ludit configurationfile that needs to get adjusted:

mopidy_ws_enabled': 'true'
mopidy_ws_address': ip where Mopidy is running
mopidy_ws_port': the http port in the Mopidy configuration file
mopidy_gst_port': the tcpclientsink port in the Mopidy playing pipeline above

While developing Mopidy refused the webconnection from the Ludit server. A quick hack is to edit ‘handlers.py’ in the Mopidy sources. Edit the check_origin function to end with

#if parsed_origin and parsed_origin not in allowed_origins:
logger.warn(‘HTTP request denied for Origin “%s”’, origin)
return False
return True

For reference see https://github.com/mopidy/mopidy/pull/1712/commits/6e9ed9e8a9d4734671756ceeebf2059657ea2ab5. What the real fix is remains to be figured out.

Audio source : gstreamer

There can be any number of gstreamer inputs configured in the server configuration file. The “gstreamer” value is a list of inputs to be initialized and it is located under “sources”. The only constraint is that all enabled gstreamer inputs need to have an unique port assigned.

An example of a single PCM input listening on port 4777:

"gstreamer": [
 {
 "enabled": "true",
 "format": "pcm",
 "port": "4777",
 "samplerate": "48000"
 }
],

From any LAN computer it is now possible to test if the above works with the following gstreamer pipeline:

gst-launch-1.0 audiotestsrc volume=0.01 ! audioconvert ! audio/x-raw, channels=2 ! /
audioresample ! audio/x-raw, format=S16LE, rate=48000 ! tcpclientsink host=<server IP> port=4777

The Quick start also uses a gstreamer input for testing out.

Audio source : alsa

Listens to an alsa input device on the server and uses a noise gate to automatically start and stop playing whenever there is a signal. This source is experimental.

Tip: To quickly check that there is indeed audio present on a given device (when nothing works), then arecord can act as a commandline vu meter:

arecord -f cd -d 0 -D hw:0 -vv /dev/null

Audio source : realtime

This is a rather convoluted audio source. The aim is to allow a client to run with minimal latency from a local input source and play it back locally as well. As such it is running against the spirit of Ludit as it for a start isn’t really a Ludit audio source as it doesn’t run on the server. It only plays locally on a single client and it is not broadcast over the network to other clients. The only usecase would be a stereo or a soundbar that should be able to both operate as a normal Ludit client with audio streamed from the server, but also play audio from a local video source in realtime. And even then it only makes sense if the audio processing in Ludit is truly needed due to e.g. preserve the workings of the crossover filter and/or any equalization filters. For playing a local realtime stereo signal the client should be configured as a stereo device which requires it to have two stereo alsa devices for 4 channel playback matching two two-way crossovers.

If a client is running in realtime mode its idle state is to listen for local audio and start playing if there is any. If the server starts streaming this will always have priority over the local audio and the local audio will only be able to resume when the server stops streaming. This is the simplest possible setup since it does not require the server to even know that there is a realtime client present.

If a client should run in realtime mode it has to be started with a local configuration file. The server can’t help with setting up a realtime client.

As for what the latency actually is then its okay for watching video. Purists requiring near zero latency (or better..) will most likely have left reading about Ludit by now anyway.

The automatic starting and stopping of local audio is done the same way as for the normal alsa audio source described above.

Audio processing

Mono pipeline

The following image is generated by gstreamer from a running single channel pipeline (source in client/pipeline.py)

[image: _images/ludit_client_pipeline.png]
Sorry for the awfull single line layout.

RPI setup

config.txt

Below is a starting point for a /boot/config.txt matching a Raspberry Pi 3 B+. Most importantly is enabling turbo mode to prevent the cpu from changing its frequency dynamically. This will have a negative effect on Twitse time measurements.

Next the RPI’s are overclocked. They are not exactly speed kings and they can use a little boost. Common sense would dictate that overclocking must have a positive effect on the Twitse time measurements but this haven’t really been verified.

/boot/config.txt:

See /boot/overlays/README for all available options

gpu_mem=16

dtparam=i2c1=on # client only
dtparam=i2c_arm=on # client only
dtparam=spi=on # client only
dtoverlay=hifiberry-dac # client only

force_turbo=1
arm_freq=1200
core_freq=500
sdram_freq=500
over_voltage=2
over_voltage_sdram=2

initramfs initramfs-linux.img followkernel

/boot/cmdline.txt

Disable the ‘audit’ kernel logs:
audit=0

Watch for processes writing to disk:
iotop -o -b -d 10

(This is from an Arch installation)
​

Index

 _images/quick_start_terminals.png
[Clausenuc srcl$./run_server.py --cfg ludit.cfg
2019-61-23 01,457 TNF (server) loaded configuration ludit.cfg
2019-01-23 01,458

2019-01-23 01,455

2019-01-23 01,458 INF (sourcetcp.

) Launching pipeline Listening at 192.168.1.127:4666
be19.01.23 01,459 INF (server) starting server at 192.168.1.127

be19.01.23 01,460 TNF (server) launching playsequencer

2019-01-23 01,460 INF (group) [Kitchen] group is configuring

2019-01-23 01,452 TNF (group) [stereo] group is configuring

2019-01-23 01,462 INF (playsequen) playsequencer ready with the groups kitchen, stereo
be19.01.23 01,462 TNF (ulticast) starting multicast socket at 225.168.1.102:45655
be19.01.23 01,463 INF (websocket) starting websocket on 192.168.1.127:45658
be19.01.23 07,677 INF (server_soc) >>> client comnected from ('192.168.1.127", 37484
2019-01-23 07,077 INF (device) [kitchen:left] sending configuration

2019-01-23 07,078 TNF (group) connected to kitchen:left

2019-01-23 07,078 TNF (playsequen) group kitchen connected

2019-01-23 10,065 INF (inputnux) inputmux starts playing source "tcp

2019-61-23 20,409 TNF (playsequen) ------ playing

[Clousenuc sTclS «/run client-py —-14 kitchenert
015 01 2 222207, C17 GRI (gpio) daport RPLLGPIO error: o module naned ‘RS rumning without harduare support
2015 01 23 23128:07.076 TF (ckient) storting cLient Kitchentiert

2019.01'23 23:26:07.676 INF (ilticost) starting multicast socket at 225.168.1.102:45655

015 01 2 23:28.07,077 TF (client.) server found, comnecting to 192, 168.1.127:41561

015 01 23 23128:07,077 T (cLient_soc) commected o server at 192.166.1.127 41561

2015.61 23 22,29,07.076 I (player) processing setup -Kitchen-, Chamnel LEFT

2019.01 73 23:76:19,066 INF (player) Setting codec o “anc.sats

2015.61 23 22,29:19.066 I (player) Launching pipetine <

015 01 23 23128:20,405 T (pleyer) monitor: iniviet pufering complete, sending buffered

015 01 23 23128:20,410 T (pleyer Piaying -

2015 01 23 23128:20,412 TF (pleyer) ine SeCup took 9.298 us in 1 tries

015,61 23 22,28:20/413 I (player) playing Wil stark in 0.497162456 sec

2015 01 2 23128:20,415 TF (pleyer) Ploying time 11496 sec, burfered 249856 bytes. Skew 0.008757

015 01 23 23:28:24,421 TUF (pleyer) loying tine 3,502 sec, buffered 223200 bytes. Skew 0008747

2015 01 23 23128:26.427 T0F (player) Ploying Cime 5,509 sec, burfered 237568 bytes. Skew 0.008077

[clausgnuc src]s gst-launch-1.0 audiotestsrc wave=pink-noise volune=D.0L is-Livetrue ! auioconvert ! audio/x-raw, channell
5=2 1 faac ! aacparse | avmux adts ! tcpclientsink host=192.168.1.127 port=4666

Setting pipeline to PAUSED -

Pipeline is Live and does not need PREROLL

setting pipeline to PLAYING

ew clock: GstSystenClock

_images/quick_start_web.png
sance:

Crossover raquency

Fiterorder

2 .

Lowigh balance:

Band 12042

Band2: 59z

Band 3 119k

 Ensbled

Stereo

Enabied

=]

_images/ludit_client_pipeline.png
Legend

-1 vmdrpendmﬁ, [0] null, [-] ready, [=] paused, [>] playing
e el |

Pad-Flags: [bllocked, [fllushing, [bllocking, [E10S: upper-case is set
Pad Task: [T] has started task,] has paused task

GstbecodeBin
‘decodebing

]
parent=(GstPipeline) pipelined

audio/mpeg
Franed:

nmpeguersior
strean-fornat

caps=video/x-raw(ANY); audio/x-raw(ANY); text/x-raw(ANY); subpicture/x-dvd; subpictur.

audio/mpeg
Franed:
npeguersion
Tevel
profile:

rate
channels

audio/x-raw

format:

Tayout
rate
channels

channel-mask:

F32LE
interleaved
44100

2

strean-format:

audio/x-raw

format:

Tayout
rate
channels

channel -mask:

F32LE
interleaved

44100

2
3x0000000000000003

audio/x-raw

format:

Tayout
rate
channels

channel -mask:

F32LE
interleaved

44100

2
3x0000000000000003

audio/x-raw

channel -mask:

: F3LE

interleaved
44100

2
3x0000000000000003

audio/x-raw

format:

Tayout
rate
channels

channel -mask:

F32LE
interleaved

44100

2
3x0000000000000003

<GstPipeline>

pipelined
>

audio/x-raw

audio/x-raw

audio/x-raw format: F32LE fornat: F32LE audio/x-raw
F32LE layout: interleaved layout: interleaved : F32LE
interleaved Fate: 44100 Tate: 44100 interleaved
44100 channels: 1 channels: 1 a0
audio/x-raw 1

format: F32LE

Tayout: interleaved
rate: 44100
Budio/x-raw
channels: 1 J—
interleaved
44100

audio/x-raw

audio/x-raw audio/x-raw

fornat: F32LE
Tayout: interleaved
rate: 44100

channels: 1

format: F32LE
Tayout: interleaved interleaved
rate: 44100 4100

channels: 1 channels: 1

: F3LE

audio/x-raw

format:

Tayout
rate

channels:

F32LE
interleaved
44100

1

: 0x0000000000OOOOOD

audio/x-raw

: F3LE
interleaved
44100

channel -mask: 3

audio/x-raw

tayout:

rate
format
channels

channel -mask:

audio/x-raw audio/x-raw audio/x-raw

interleaved layout: interleaved interleaved Tayout
24100 rate: 44100 24100 rate!
S3LE fornat: S32LE S3LE fornat
2 channels: 2 2 channels
0x0000000000000003 channel-mask: 0x0000000000000003 channel-mask: 0x0000000000000003 channel-mask

: interleaved
44100

S32LE
2

: 0x0000000000OOO03

_images/ludit_system_diagram.png
Server
Wired Raspberry Pi

Jtmp/audio fifo
BlueALSA

—_—
AAC

Jtmp/spotifyd fifo

>

e

e [_

Monitor

Loopback
ALsA

gstreamer AAC

Audio
———

Control

-

Websocket

Clients
Wireless Raspberry Pi

19.2MHz

t

Web page

Power Amp

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_images/kitchen_speaker.jpg

_static/down.png

nav.xhtml

 Table of Contents

 		
 Ludit

 		
 Quick start

 		
 System overview

 		
 Software installations

 		
 Client types

 		
 Server audio source setup

 		
 Audio processing

 		
 RPI setup

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

