

Welcome to LuaUnit’s documentation!

Introduction

LuaUnit is a popular unit-testing framework for Lua, with an interface typical
of xUnit libraries (Python unittest, Junit, NUnit, …). It supports
several output formats (Text, TAP, JUnit, …) to be used directly or work with Continuous Integration platforms
(Jenkins, Hudson, …).

For simplicity, LuaUnit is contained into a single-file and has no external dependency. To start using it,
just add the file luaunit.lua to your project. A LuaRocks package [https://luarocks.org/modules/bluebird75/luaunit] is also available.

Tutorial and reference documentation is available on Read-the-docs [http://luaunit.readthedocs.org/en/latest/] .

LuaUnit also provides some dedicated support to scientific computing. See the section Scientific computing and LuaUnit

LuaUnit may also be used as an assertion library. In that case, you will call the assertion functions, which generate errors
when the assertion fails. The error includes a detailed analysis of the failed assertion, like when executing a test suite.

LuaUnit provides another generic usage function: prettystr() which converts any value to a nicely
formatted string. It supports in particular tables, nested table and even recursive tables.

More details

LuaUnit provides a wide range of assertions and goes into great efforts to provide the most useful output. For example
since version 3.3 , comparing lists will provide a detailed difference analysis:

-- lua test code. Can you spot the difference ?
function TestListCompare:test1()
 local A = { 121221, 122211, 121221, 122211, 121221, 122212, 121212, 122112, 122121, 121212, 122121 }
 local B = { 121221, 122211, 121221, 122211, 121221, 122212, 121212, 122112, 121221, 121212, 122121 }
 lu.assertEquals(A, B)
end

$ lua test_some_lists_comparison.lua

TestListCompare.test1 ... FAIL
test/some_lists_comparisons.lua:22: expected:

List difference analysis:
* lists A (actual) and B (expected) have the same size
* lists A and B start differing at index 9
* lists A and B are equal again from index 10
* Common parts:
 = A[1], B[1]: 121221
 = A[2], B[2]: 122211
 = A[3], B[3]: 121221
 = A[4], B[4]: 122211
 = A[5], B[5]: 121221
 = A[6], B[6]: 122212
 = A[7], B[7]: 121212
 = A[8], B[8]: 122112
* Differing parts:
 - A[9]: 122121
 + B[9]: 121221
* Common parts at the end of the lists
 = A[10], B[10]: 121212
 = A[11], B[11]: 122121

The command-line options provide a flexible interface to select tests by name or patterns, control output
format, set verbosity and more. See Using the command-line .

LuaUnit is very well tested: code coverage is 99.5% . The test suite is run on every version of Lua (Lua 5.1 to 5.3, LuaJIT 2.0 and 2.1 beta)
and on many OS (Windows Seven, Windows Server 2012, MacOs X and Ubuntu). You can check the continuous build results on Travis-CI [https://travis-ci.org/bluebird75/luaunit] and AppVeyor [https://ci.appveyor.com/project/bluebird75/luaunit/history] .

LuaUnit is maintained on GitHub: https://github.com/bluebird75/luaunit . We gladly accept feature requests and even better Pull Requests.

LuaUnit is released under the BSD license.

Installation

LuaUnit is packed into a single-file. To make start using it, just add the file to your project.

Several installation methods are available.

LuaRocks

LuaUnit v3.3 is available as a LuaRocks package [https://luarocks.org/modules/bluebird75/luaunit] .

GitHub

The simplest way to install LuaUnit is to fetch the GitHub version:

git clone git@github.com:bluebird75/luaunit.git

Then copy the file luaunit.lua into your project or the Lua libs directory.

The version in development on GitHub is always stable and can be used safely.

On Linux, you can also install it into your Lua directories

sudo python doit.py install

If that fail, edit the function install() in the file doit.py to adjust
the Lua version and installation directory. It uses, by default, Linux paths that depend on the version.

Upgrade note

Important note when upgrading to version 3.1 and above : there is a break of backward compatibility in version 3.1, assertions functions are no longer exported directly to the global namespace. See Enabling global or module-level functions on how to adjust or restore previous behavior.

LuaUnit development

See Developing luaunit

Version and Changelog

This documentation describes the functionality of LuaUnit v3.2 .

New in version 3.3 - 6. Mar 2018

	
	General

	
	when comparing lists with assertEquals(), failure message provides an advanced comparison of the lists

	assertErrorMsgEquals() can check for error raised as tables

	tests may be finished early with fail(), failIf(), success() or successIf()

	improve printing of recursive tables

	improvements and fixes to JUnit and TAP output

	stricter assertTrue() and assertFalse(): they only succeed with boolean values

	add assertEvalToTrue() and assertEvalToFalse() with previous assertTrue()/assertFalse() behavior of coercing to boolean before asserting

	all assertion functions accept an optional extra message, to be printed along the failure

	
	New command-line arguments:

	
	can now shuffle tests with --shuffle or -s

	possibility to repeat tests (for example to trigger a JIT), with --repeat NUM or -r NUM

	more flexible test selection with inclusion (--pattern / -p) or exclusion (--exclude / -x) or combination of both

	
	Scientific computing dedicated support (see documentation):

	
	provide the machine epsilon in EPS

	new functions: assertNan(), assertInf(), assertPlusInf(), assertMinusInf(), assertPlusZero(), assertMinusZero() and
their negative version

	in assertAlmostEquals(), margin no longer provides a default value of 1E-11, the machine epsilon is used instead

	
	Platform and continuous integration support:

	
	validate LuaUnit on MacOs platform (thank to Travis CI)

	validate LuaUnit with 32 bits numbers (floats) and 64 bits numbers (double)

	add test coverage measurements thank to coveralls.io . Status: 99.76% of the code is verified.

	use cache for AppVeyor and Travis builds

	support for luarocks doc command

	General doc improvements (detailed description of all output, more cross-linking between sections)

New in version 3.2 - 12. Jul 2016

	Add command-line option to stop on first error or failure. See Other options

	Distinguish between failures (failed assertion) and errors

	Support for new versions: Lua 5.3 and LuaJIT (2.0, 2.1 beta)

	Validation of all lua versions on Travis CI and AppVeyor

	Add compatibility layer with forked luaunit v2.x

	Added documentation about development process. See Developing luaUnit

	Improved support for table containing keys of type table. See Annex B: Comparing tables with keys of type table

	Small bug fixes, several internal improvements

	Availability of a Luarock package. See https://luarocks.org/modules/bluebird75/luaunit .

New in version 3.1 - 10. Mar 2015

	luaunit no longer pollutes global namespace, unless defining EXPORT_ASSERT_TO_GLOBALS to true. See Enabling global or module-level functions

	fixes and validation of JUnit XML generation

	strip luaunit internal information from stacktrace

	general improvements of test results with duration and other details

	improve printing for tables, with an option to always print table id. See Annex A: More on table printing

	fix printing of recursive tables

Important note when upgrading to version 3.1 : assertions functions are
no longer exported directly to the global namespace. See Enabling global or module-level functions

New in version 3.0 - 9. Oct 2014

Because LuaUnit was forked and released as some 2.x version, version number
is now jumping to 3.0 .

	full documentation available in text, html and pdf at http://luaunit.read-the-docs.org

	new output format: JUnit, compatible with Bamboo and other CI platforms. See Output formats

	much better table assertions

	new assertions for strings, with patterns and case insensitivity: assertStrContains,
assertNotStrContains, assertNotStrIContains, assertStrIContains, assertStrMatches

	new assertions for floats: assertAlmostEquals, assertNotAlmostEquals

	type assertions: assertIsString, assertIsNumber, …

	error assertions: assertErrorMsgEquals, assertErrorMsgContains, assertErrorMsgMatches

	improved error messages for several assertions

	command-line options to select test, control output type and verbosity

New in version 1.5 - 8. Nov 2012

	compatibility with Lua 5.1 and 5.2

	better object model internally

	a lot more of internal tests

	several internal bug fixes

	make it easy to customize the test output

	running test functions no longer requires a wrapper

	several level of verbosity

New in version 1.4 - 26. Jul 2012

	switch from X11 to more popular BSD license

	add TAP output format for integration into Jenkins. See Output formats

	official repository now on GitHub

New in version 1.3 - 30. Oct 2007

	port to lua 5.1

	iterate over the test classes, methods and functions in the alphabetical order

	change the default order of expected, actual in assertEquals. See Equality assertions

Version 1.2 - 13. Jun 2005

	first public release

Version 1.1

	move global variables to internal variables

	assertion order is configurable between expected/actual or actual/expected. See Equality assertions

	new assertion to check that a function call returns an error

	display the calling stack when an error is spotted

	two verbosity level, like in python unittest

Getting started with LuaUnit

This section will guide you through a step by step usage of LuaUnit . The full source code
of the example below is available in the : Annex C: Source code of example or in the file my_test_suite.lua
in the doc directory.

Setting up your test script

To get started, create your file my_test_suite.lua .

The script should import LuaUnit:

lu = require('luaunit')

The last line executes your script with LuaUnit and exit with the
proper error code:

os.exit(lu.LuaUnit.run())

Now, run your file with:

lua my_test_suite.lua

It prints something like:

Ran 0 tests in 0.000 seconds, 0 successes, 0 failures
OK

Now, your testing framework is in place, you can start writing tests.

Writing tests

LuaUnit scans all variables that start with test or Test.
If they are functions, or if they are tables that contain
functions that start with test or Test, they are run as part of the test suite.

So just write a function whose name starts with test. Inside test functions, use the assertions functions provided by LuaUnit, such
as assertEquals().

Let’s see that in practice.

Suppose you want to test the following add function:

function add(v1,v2)
 -- add positive numbers
 -- return 0 if any of the numbers are 0
 -- error if any of the two numbers are negative
 if v1 < 0 or v2 < 0 then
 error('Can only add positive or null numbers, received '..v1..' and '..v2)
 end
 if v1 == 0 or v2 == 0 then
 return 0
 end
 return v1+v2
end

You write the following tests:

function testAddPositive()
 lu.assertEquals(add(1,1),2)
end

function testAddZero()
 lu.assertEquals(add(1,0),0)
 lu.assertEquals(add(0,5),0)
 lu.assertEquals(add(0,0),0)
end

assertEquals() is the most commonly used assertion function. It
verifies that both argument are equals, in the order actual value, expected value.

Rerun your test script (-v is to activate a more verbose output):

$ lua my_test_suite.lua -v

It now prints:

Started on 02/19/17 22:15:53
 TestAdd.testAddPositive ... Ok
 TestAdd.testAddZero ... Ok
===
Ran 2 tests in 0.003 seconds, 2 successes, 0 failures
OK

You always have:

	the date at which the test suite was started

	the group to which the function belongs (usually, the name of the function table, and <TestFunctions> for all direct test functions)

	the name of the function being executed

	a report at the end, with number of executed test, number of non selected tests if any, number of failures, number of errors (if any) and duration.

The difference between failures and errors are:

	luaunit assertion functions generate failures

	any unexpected error during execution generates an error

	failures or errors during setup() or teardown() always generate errors

If we continue with our example, we also want to test that when the function receives negative numbers, it generates an error. Use
assertError() or even better, assertErrorMsgContains() to also validate the content
of the error message. There are other types or error checking functions, see Error assertions . Here
we use assertErrorMsgContains() . First argument is the expected message, then the function to call
and the optional arguments:

function testAddError()
 lu.assertErrorMsgContains('Can only add positive or null numbers, received 2 and -3', add, 2, -3)
end

Now, suppose we also have the following function to test:

function adder(v)
 -- return a function that adds v to its argument using add
 function closure(x) return x+v end
 return closure
end

We want to test the type of the value returned by adder and its behavior. LuaUnit
provides assertion for type testing (see Type assertions). In this case, we use
assertIsFunction():

function testAdder()
 f = adder(3)
 lu.assertIsFunction(f)
 lu.assertEquals(f(2), 5)
end

Grouping tests, setup/teardown functionality

When the number of tests starts to grow, you usually organise them
into separate groups. You can do that with LuaUnit by putting them
inside a table (whose name must start with Test or test).

For example, assume we have a second function to test:

function div(v1,v2)
 -- divide positive numbers
 -- return 0 if any of the numbers are 0
 -- error if any of the two numbers are negative
 if v1 < 0 or v2 < 0 then
 error('Can only divide positive or null numbers, received '..v1..' and '..v2)
 end
 if v1 == 0 or v2 == 0 then
 return 0
 end
 return v1/v2
end

We move the tests related to the function add into their own table:

TestAdd = {}
 function TestAdd:testAddPositive()
 lu.assertEquals(add(1,1),2)
 end

 function TestAdd:testAddZero()
 lu.assertEquals(add(1,0),0)
 lu.assertEquals(add(0,5),0)
 lu.assertEquals(add(0,0),0)
 end

 function TestAdd:testAddError()
 lu.assertErrorMsgContains('Can only add positive or null numbers, received 2 and -3', add, 2, -3)
 end

 function TestAdd:testAdder()
 f = adder(3)
 lu.assertIsFunction(f)
 lu.assertEquals(f(2), 5)
 end
-- end of table TestAdd

Then we create a second set of tests for div:

TestDiv = {}
 function TestDiv:testDivPositive()
 lu.assertEquals(div(4,2),2)
 end

 function TestDiv:testDivZero()
 lu.assertEquals(div(4,0),0)
 lu.assertEquals(div(0,5),0)
 lu.assertEquals(div(0,0),0)
 end

 function TestDiv:testDivError()
 lu.assertErrorMsgContains('Can only divide positive or null numbers, received 2 and -3', div, 2, -3)
 end
-- end of table TestDiv

Execution of the test suite now looks like this:

Started on 02/19/17 22:15:53
 TestAdd.testAddError ... Ok
 TestAdd.testAddPositive ... Ok
 TestAdd.testAddZero ... Ok
 TestAdd.testAdder ... Ok
 TestDiv.testDivError ... Ok
 TestDiv.testDivPositive ... Ok
 TestDiv.testDivZero ... Ok
===
Ran 7 tests in 0.006 seconds, 7 successes, 0 failures
OK

When tests are defined in tables, you can optionally define two special
functions, setUp() and tearDown(), which will be executed
respectively before and after every test.

These function may be used to create specific resources for the
test being executed and cleanup the test environment.

For a practical example, imagine that we have a log() function
that writes strings to a log file on disk. The file is created
upon first usage of the function, and the filename is defined
by calling the function initLog().

The tests for these functions would take advantage of the setup/teardown
functionality to prepare a log filename shared
by all tests, make sure that all tests start with a non existing
log file name, and delete the log filename after every test:

TestLogger = {}
 function TestLogger:setUp()
 -- define the fname to use for logging
 self.fname = 'mytmplog.log'
 -- make sure the file does not already exists
 os.remove(self.fname)
 end

 function TestLogger:testLoggerCreatesFile()
 initLog(self.fname)
 log('toto')
 -- make sure that our log file was created
 f = io.open(self.fname, 'r')
 lu.assertNotNil(f)
 f:close()
 end

 function TestLogger:tearDown()
 -- cleanup our log file after all tests
 os.remove(self.fname)
 end

Note

Errors generated during execution of setUp() or tearDown()
functions are considered test failures.

Note

For compatibility with luaunit v2 and other lua unit-test frameworks,
setUp() and tearDown() may also be named setup(), SetUp(), Setup() and teardown(), TearDown(), Teardown().

Using the command-line

You can control the LuaUnit execution from the command-line:

Output format

Choose the test output format with -o or --output. Available formats are:

	text: the default output format

	nil: no output at all

	tap: TAP format

	junit: output junit xml

Example of non-verbose text format:

$ lua doc/my_test_suite.lua
.......
Ran 7 tests in 0.003 seconds, 7 successes, 0 failures
OK

Example of TAP format:

$ lua doc/my_test_suite.lua -o TAP
1..7
Started on 02/19/17 22:15:53
Starting class: TestAdd
ok 1 TestAdd.testAddError
ok 2 TestAdd.testAddPositive
ok 3 TestAdd.testAddZero
ok 4 TestAdd.testAdder
Starting class: TestDiv
ok 5 TestDiv.testDivError
ok 6 TestDiv.testDivPositive
ok 7 TestDiv.testDivZero
Ran 7 tests in 0.007 seconds, 7 successes, 0 failures

For a more detailed overview of all formats and their verbosity see the section Output formats .

List of tests to run

You can list some test names on the command-line to run only those tests.
The name must be the exact match of either the test table, the test function or the test table
and the test method. The option may be repeated.

Example:

-- Run all TestAdd table tests and one test of TestDiv table.
$ lua doc/my_test_suite.lua TestAdd TestDiv.testDivError -v
Started on 02/19/17 22:15:53
 TestAdd.testAddError ... Ok
 TestAdd.testAddPositive ... Ok
 TestAdd.testAddZero ... Ok
 TestAdd.testAdder ... Ok
 TestDiv.testDivError ... Ok
===
Ran 5 tests in 0.003 seconds, 5 successes, 0 failures
OK

Including / excluding tests

The most flexible approach for selecting tests to use the include and exclude functionality.
With --pattern or -p, you can provide a lua pattern and only the tests that contain
the pattern will actually be run.

Example:

-- Run all tests of zero testing and error testing
-- by using the magic character .
$ lua my_test_suite.lua -v -p Err.r -p Z.ro

For our test suite, it gives the following output:

Started on 02/19/17 22:15:53
 TestAdd.testAddError ... Ok
 TestAdd.testAddZero ... Ok
 TestDiv.testDivError ... Ok
 TestDiv.testDivZero ... Ok
===
Ran 4 tests in 0.003 seconds, 4 successes, 0 failures, 3 non-selected
OK

The number of tests ignored by the selection is printed, along
with the test result. The pattern can be any lua pattern. Be sure to exclude all magic
characters with % (like -+?*) and protect your pattern from the shell
interpretation by putting it in quotes.

You can also exclude tests that match some patterns:

Example:

-- Run all tests except zero testing and except error testing
$ lua my_test_suite.lua -v -x Error -x Zero

For our test suite, it gives the following output:

Started on 02/19/17 22:29:45
 TestAdd.testAddPositive ... Ok
 TestAdd.testAdder ... Ok
 TestDiv.testDivPositive ... Ok
===
Ran 3 tests in 0.003 seconds, 3 successes, 0 failures, 4 non-selected
OK

You can also combine test selection and test exclusion. See Flexible test selection

Conclusion

You now know enough of LuaUnit to start writing your test suite. Check
the reference documentation for a complete list of
assertions, command-line options and specific behavior.

Reference documentation

Enabling global or module-level functions

Versions of LuaUnit before version 3.1 would export all assertions functions to the global namespace. A typical
lua test file would look like this:

require('luaunit')

TestToto = {} --class

 function TestToto:test1_withFailure()
 local a = 1
 assertEquals(a , 1)
 -- will fail
 assertEquals(a , 2)
 end

[...]

However, this is an obsolete practice in Lua. It is now recommended to keep all functions inside the module. Starting
from version 3.1 LuaUnit follows this practice and the code should be adapted to look like this:

-- the imported module must be stored
lu = require('luaunit')

TestToto = {} --class

 function TestToto:test1_withFailure()
 local a = 1
 lu.assertEquals(a , 1)
 -- will fail
 lu.assertEquals(a , 2)
 end

[...]

If you prefer the old way, LuaUnit can continue to export assertions functions if you set the following
global variable prior to importing LuaUnit:

-- this works
EXPORT_ASSERT_TO_GLOBALS = true
require('luaunit')

TestToto = {} --class

 function TestToto:test1_withFailure()
 local a = 1
 assertEquals(a , 1)
 -- will fail
 assertEquals(a , 2)
 end

[...]

LuaUnit.run() function

Return value

Run your test suite with the following line:

os.exit(lu.LauaUnit.run())

The run() function returns the number of failures of the test suite. This is
good for an exit code, 0 meaning success.

Arguments

If no arguments are supplied, it parses the command-line arguments of the script
and interpret them. If arguments are supplied to the function, they are parsed
instead of the command-line. It uses the same syntax.

Example:

-- execute tests matching the 'withXY' pattern
os.exit(lu.LuaUnit.run('--pattern', 'withXY'))

Choice of tests

If test names were supplied, only those
tests are executed. When test names are supplied as arguments, they don’t have
to start with test, they are run anyway.

If no test names were supplied, a general test collection process starts
under the following rules:

	all variable starting with test or Test are scanned.

	if the variable is a function it is collected for testing

	if the variable is a table:

	all keys starting with test or Test are collected (provided that they are functions)

	keys with name setUp and tearDown are also collected

If one or more pattern were supplied, the test are then filtered according the
pattern(s). Only the test that match the pattern(s) are actually executed.

setup and teardown

The function setUp() is executed before each test if it exists in the table.
The function tearDown() is executed after every test if it exists in the table.

Note

tearDown() is always executed if it exists, even if there was a failure in the test or in the setUp() function.
Failures in setUp() or tearDown() are considered as a general test failures.

LuaUnit.runSuite() function

If you want to keep the flexibility of the command-line parsing, but want to force
some parameters, like the output format, you must use a slightly different syntax:

runner = lu.LuaUnit.new()
runner:setOutputType("tap")
os.exit(runner:runSuite())

runSuite() behaves like run() except that it must be started
with a LuaUnit instance as first argument, and it will use the LuaUnit
instance settings.

Command-line options

Usage: lua <your_test_suite.lua> [options] [testname1 [testname2] …]

Test names

When no test names are supplied, all tests are collected.

The syntax for supplying test names can be either: name of the function, name of the table
or [name of the table].[name of the function]. Only the supplied tests will be executed.

Selecting tests with –pattern and –exclude is usually more flexible. See Flexible test selection

Options

	--output, -o FORMAT

	Set output format to FORMAT. Possible values: text, tap, junit, nil . See Output formats

	--name, -n FILENAME

	For junit format only, mandatory name of xml file. Ignored for other formats.

	--pattern, -p PATTERN

	Execute all test names matching the Lua PATTERN. May be repeated to include severals patterns. See Flexible test selection

	--exclude, -x PATTERN

	Exclude all test names matching the Lua PATTERN. May be repeated to exclude severals patterns. See Flexible test selection

	--repeat, -r NUM

	Repeat all tests NUM times, e.g. to trigger the JIT. See Other options

	--shuffle, -s

	Shuffle tests before running them. See Other options

	--error, -e

	Stop on first error. See Other options

	--failure, -f

	Stop on first failure or error. See Other options

	--verbose, -v

	Increase verbosity

	--quiet, -q

	Set verbosity to minimum

	--help, -h

	Print help

	--version

	Version information of LuaUnit

Output formats

Choose the output format with the syntax -o FORMAT or --output FORMAT.

Formats available:

	text: the default output format of LuaUnit

	tap: output compatible with the Test Anything Protocol [http://testanything.org/]

	junit: output compatible with the JUnit XML format (used by many CI
platforms). The XML is written to the file provided with the --name or -n option.

	nil: no output at all

To demonstrate the different output formats, we will take the example of the Getting started with LuaUnit
section and add the following two failing cases:

TestWithFailures = {}
 -- two failing tests

 function TestWithFailures:testFail1()
 local a="toto"
 local b="titi"
 lu.assertEquals(a, b) --oops, two values are not equal
 end

 function TestWithFailures:testFail2()
 local a=1
 local b='toto'
 local c = a + b --oops, can not add string and numbers
 return c
 end

Text format

By default, LuaUnit uses the output format TEXT, with minimum verbosity:

$ lua my_test_suite.lua
.......FE
Failed tests:

1) TestWithFailures.testFail1
doc\my_test_suite_with_failures.lua:79: expected: "titi"
actual: "toto"
stack traceback:
 doc\my_test_suite_with_failures.lua:79: in function 'TestWithFailures.testFail1'

2) TestWithFailures.testFail2
doc\my_test_suite_with_failures.lua:85: attempt to perform arithmetic on local 'b' (a string value)
stack traceback:
 [C]: in function 'xpcall'

Ran 9 tests in 0.001 seconds, 7 successes, 1 failure, 1 error

This format is heavily inspired by python unit-test library. One character is printed
for every test executed, a dot for a successful test, a F for a test with failure and
a E for a test with an error.

At the end of the test suite execution, the details of the failures or errors are given, with an
informative message and a full stack trace.

The last line sums up the number of test executed, successful, failed, in error and not selected if any.
When all tests are successful, a line with just OK is added:

$ lua doc\my_test_suite.lua
.......
Ran 7 tests in 0.002 seconds, 7 successes, 0 failures
OK

The text format is also available as a more verbose version, by adding the --verbose flag:

$ lua doc\my_test_suite_with_failures.lua --verbose
Started on 02/20/17 21:47:21
 TestAdd.testAddError ... Ok
 TestAdd.testAddPositive ... Ok
 TestAdd.testAddZero ... Ok
 TestAdd.testAdder ... Ok
 TestDiv.testDivError ... Ok
 TestDiv.testDivPositive ... Ok
 TestDiv.testDivZero ... Ok
 TestWithFailures.testFail1 ... FAIL
doc\my_test_suite_with_failures.lua:79: expected: "titi"
actual: "toto"
 TestWithFailures.testFail2 ... ERROR
doc\my_test_suite_with_failures.lua:85: attempt to perform arithmetic on local 'b' (a string value)
===
Failed tests:

1) TestWithFailures.testFail1
doc\my_test_suite_with_failures.lua:79: expected: "titi"
actual: "toto"
stack traceback:
 doc\my_test_suite_with_failures.lua:79: in function 'TestWithFailures.testFail1'

2) TestWithFailures.testFail2
doc\my_test_suite_with_failures.lua:85: attempt to perform arithmetic on local 'b' (a string value)
stack traceback:
 [C]: in function 'xpcall'

Ran 9 tests in 0.008 seconds, 7 successes, 1 failure, 1 error

In this format, you get:

	a first line with date-time at which the test was started

	one line per test executed

	the test line is ended by Ok, FAIL, or ERROR in case the test is not successful

	a summary of the failed tests with all details, like in the compact version.

This format is usually interesting if some tests print debug output, to match the output to the test.

JUNIT format

The Junit XML format was introduced by the Java testing framework JUnit [http://junit.org/junit4/] and has been then used by many continuous
integration platform as an interoperability format between test suites and the platform.

To output in the JUnit XML format, you use the format junit with --output junit and specify the XML filename with --name <filename> . On
the standard output, LuaUnit will print information about the test progress in a simple format.

Let’s see with a simple example:

$ lua my_test_suite_with_failures.lua -o junit -n toto.xml
XML output to toto.xml
Started on 02/24/17 09:54:59
Starting class: TestAdd
Starting test: TestAdd.testAddError
Starting test: TestAdd.testAddPositive
Starting test: TestAdd.testAddZero
Starting test: TestAdd.testAdder
Starting class: TestDiv
Starting test: TestDiv.testDivError
Starting test: TestDiv.testDivPositive
Starting test: TestDiv.testDivZero
Starting class: TestWithFailures
Starting test: TestWithFailures.testFail1
Failure: doc/my_test_suite_with_failures.lua:79: expected: "titi"
actual: "toto"
Starting test: TestWithFailures.testFail2
Error: doc/my_test_suite_with_failures.lua:85: attempt to perform arithmetic on local 'b' (a string value)
Ran 9 tests in 0.007 seconds, 7 successes, 1 failure, 1 error

On the standard output, you will see the date-time, the name of the XML file, one line for each test started, a summary
of the failure or errors when they occurs and the usual one line summary of the test execution: number of tests run, successful, failed,
in error and number of non selected tests if any.

The XML file generated by this execution is the following:

<?xml version="1.0" encoding="UTF-8" ?>
<testsuites>
 <testsuite name="LuaUnit" id="00001" package="" hostname="localhost" tests="9" timestamp="2017-02-24T09:54:59" time="0.007" errors="1" failures="1">
 <properties>
 <property name="Lua Version" value="Lua 5.2"/>
 <property name="LuaUnit Version" value="3.2"/>
 </properties>
 <testcase classname="TestAdd" name="TestAdd.testAddError" time="0.001">
 </testcase>
 <testcase classname="TestAdd" name="TestAdd.testAddPositive" time="0.001">
 </testcase>
 <testcase classname="TestAdd" name="TestAdd.testAddZero" time="0.000">
 </testcase>
 <testcase classname="TestAdd" name="TestAdd.testAdder" time="0.000">
 </testcase>
 <testcase classname="TestDiv" name="TestDiv.testDivError" time="0.000">
 </testcase>
 <testcase classname="TestDiv" name="TestDiv.testDivPositive" time="0.000">
 </testcase>
 <testcase classname="TestDiv" name="TestDiv.testDivZero" time="0.001">
 </testcase>
 <testcase classname="TestWithFailures" name="TestWithFailures.testFail1" time="0.000">
 <failure type="doc/my_test_suite_with_failures.lua:79: expected: "titi"
actual: "toto"">
 <![CDATA[stack traceback:
 doc/my_test_suite_with_failures.lua:79: in function 'TestWithFailures.testFail1']]></failure>
 </testcase>
 <testcase classname="TestWithFailures" name="TestWithFailures.testFail2" time="0.000">
 <error type="doc/my_test_suite_with_failures.lua:85: attempt to perform arithmetic on local 'b' (a string value)">
 <![CDATA[stack traceback:
 [C]: in function 'xpcall']]></error>
 </testcase>
 <system-out/>
 <system-err/>
 </testsuite>
</testsuites>

As you can see, the XML file is quite rich in terms of information. The verbosity level has no effect on junit output, all verbosity give the same output.

Slight inconsistencies exist in the exact XML format in the different continuous integration suites. LuaUnit provides a compatible output which
is validated against Jenkins/Hudson schema [https://github.com/bluebird75/luaunit/blob/LUAUNIT_V3_2_1/junitxml/junit-jenkins.xsd]
and Ant/Maven schema [https://github.com/bluebird75/luaunit/blob/LUAUNIT_V3_2_1/junitxml/junit-apache-ant.xsd] . If you ever find an problem in the XML formats, please report a bug to us, more testing is always welcome.

TAP format

The TAP format [https://testanything.org/] for test results has been around since 1988. LuaUnit produces TAP reports compatible with version 12 of
the specification.

Example with minimal verbosiy:

$ lua my_test_suite_with_failures.lua -o tap --quiet
1..9
Started on 02/24/17 22:09:31
Starting class: TestAdd
ok 1 TestAdd.testAddError
ok 2 TestAdd.testAddPositive
ok 3 TestAdd.testAddZero
ok 4 TestAdd.testAdder
Starting class: TestDiv
ok 5 TestDiv.testDivError
ok 6 TestDiv.testDivPositive
ok 7 TestDiv.testDivZero
Starting class: TestWithFailures
not ok 8 TestWithFailures.testFail1
not ok 9 TestWithFailures.testFail2
Ran 9 tests in 0.003 seconds, 7 successes, 1 failure, 1 error

With minimal verbosity, you have one line for each test run, with the status of the test, and one comment line
when starting the test suite, when starting a new class or when finishing the test.

Example with default verbosiy:

$ lua my_test_suite_with_failures.lua -o tap
1..9
Started on 02/24/17 22:09:31
Starting class: TestAdd
ok 1 TestAdd.testAddError
ok 2 TestAdd.testAddPositive
ok 3 TestAdd.testAddZero
ok 4 TestAdd.testAdder
Starting class: TestDiv
ok 5 TestDiv.testDivError
ok 6 TestDiv.testDivPositive
ok 7 TestDiv.testDivZero
Starting class: TestWithFailures
not ok 8 TestWithFailures.testFail1
 doc/my_test_suite_with_failures.lua:79: expected: "titi"
 actual: "toto"
not ok 9 TestWithFailures.testFail2
 doc/my_test_suite_with_failures.lua:85: attempt to perform arithmetic on local 'b' (a string value)
Ran 9 tests in 0.005 seconds, 7 successes, 1 failure, 1 error

In the default mode, the failure or error message is displayed in the failing test diagnostic part.

Example with full verbosiy:

$ lua my_test_suite_with_failures.lua -o tap --verbose
1..9
Started on 02/24/17 22:09:31
Starting class: TestAdd
ok 1 TestAdd.testAddError
ok 2 TestAdd.testAddPositive
ok 3 TestAdd.testAddZero
ok 4 TestAdd.testAdder
Starting class: TestDiv
ok 5 TestDiv.testDivError
ok 6 TestDiv.testDivPositive
ok 7 TestDiv.testDivZero
Starting class: TestWithFailures
not ok 8 TestWithFailures.testFail1
 doc/my_test_suite_with_failures.lua:79: expected: "titi"
 actual: "toto"
 stack traceback:
 doc/my_test_suite_with_failures.lua:79: in function 'TestWithFailures.testFail1'
not ok 9 TestWithFailures.testFail2
 doc/my_test_suite_with_failures.lua:85: attempt to perform arithmetic on local 'b' (a string value)
 stack traceback:
 [C]: in function 'xpcall'
Ran 9 tests in 0.007 seconds, 7 successes, 1 failure, 1 error

With maximum verbosity, the stack trace is also displayed in the test diagnostic.

NIL format

With the nil format output, absolutely nothing is displayed while running the tests. Only the
exit code of the command can tell whether the test was successful or not:

$ lua my_test_suite_with_failures.lua -o nil --verbose
$

This mode is used by LuaUnit for its internal validation.

Other options

Stopping on first error or failure

If --failure or -f is passed as an option, LuaUnit will stop on the first failure or error and display the test results.

If --error or -e is passed as an option, LuaUnit will stop on the first error (but continue on failures).

Randomize test order

If --shuffle or -s is passed as an option, LuaUnit will execute tests in random order. The randomisation works on all test functions
and methods. As a consequence test methods of a given class may be splitted into multiple location, generating several test class creation and destruction.

Repeat test

When using luajit, the just-in-time compiler will kick in only after a given function has been executed a sufficient number of times. To make sure
that the JIT is not introducing any bug, LuaUnit provides a way to repeat a test may times, with --repeat or -r followed by a number.

Flexible test selection

LuaUnit provides very flexible way to select which tests to execute. We will illustrate this with several examples.

In the examples, we use a test suite composed of the following test funcions:

-- class: TestAdd
TestAdd.testAddError
TestAdd.testAddPositive
TestAdd.testAddZero
TestAdd.testAdder

-- class: TestDiv
TestDiv.testDivError
TestDiv.testDivPositive
TestDiv.testDivZero

With --pattern or -p, you can provide a lua pattern and only the tests that contain
the pattern will actually be run.

Example:

-- Run all tests of zero testing and error testing
-- by using the magic character .
$ lua mytest_suite.lua -v -p Err.r -p Z.ro
Started on 02/19/17 22:29:45
 TestAdd.testAddError ... Ok
 TestAdd.testAddZero ... Ok
 TestDiv.testDivError ... Ok
 TestDiv.testDivZero ... Ok
===
Ran 4 tests in 0.004 seconds, 4 successes, 0 failures, 3 non-selected
OK

The number of tests ignored by the selection is printed, along
with the test result. The tests TestAdd.testAdder testAdd.testPositive and
testDiv.testDivPositive have been correctly ignored.

The pattern can be any lua pattern. Be sure to exclude all magic
characters with % (like -+?*) and protect your pattern from the shell
interpretation by putting it in quotes.

With --exclude or -x, you can provide a lua pattern of tests which should
be excluded from execution.

Example:

-- Run all tests except zero testing and except error testing
$ lua mytest_suite.lua -v -x Error -x Zero
Started on 02/19/17 22:29:45
 TestAdd.testAddPositive ... Ok
 TestAdd.testAdder ... Ok
 TestDiv.testDivPositive ... Ok
===
Ran 3 tests in 0.003 seconds, 3 successes, 0 failures, 4 non-selected
OK

You can also combine test selection and test exclusion. The rules are the following:

	if the first argument encountered is a inclusion pattern, the list of tests start empty

	if the first argument encountered is an exclusion pattern, the list of tests start with all tests of the suite

	each subsequent inclusion pattern will add new tests to the list

	each subsequent exclusion pattern will remove test from the list

	the final list is the list of tests executed

In pure logic term, inclusion is the equivalent of or match(pattern) and exclusion is and not match(pattern) .

Let’s look at some practical examples:

-- Add all tests which include the word Add
-- except the test Adder
-- and also include the Zero tests
$ lua my_test_suite.lua -v --pattern Add --exclude Adder --pattern Zero
Started on 02/19/17 22:29:45
 TestAdd.testAddError ... Ok
 TestAdd.testAddPositive ... Ok
 TestAdd.testAddZero ... Ok
 TestDiv.testDivZero ... Ok
===
Ran 4 tests in 0.003 seconds, 4 successes, 0 failures, 3 non-selected
OK

Assertions functions

We will now list all assertion functions. For every functions, the failure
message tries to be as informative as possible, by displaying the expectation and value that caused the failure. It
relies on the prettystr() for printing nicely formatted values.

All function accept an optional extra message which if provided, is printed along with the failure message.

Note

see Annex A: More on table printing and Annex B: Comparing tables with keys of type table for more dealing with recursive tables and tables containing keys of type table.

Equality assertions

All equality assertions functions take two arguments, in the order
actual value then expected value. Some people are more familiar
with the order expected value then actual value. It is possible to configure
LuaUnit to use the opposite order for all equality assertions, by setting up a module
variable:

lu.ORDER_ACTUAL_EXPECTED=false

The order only matters for the message that is displayed in case of failures. It does
not influence the test itself.

	
assertEquals(actual, expected[, extra_msg])

	Alias: assert_equals()

Assert that two values are equal.

For tables, the comparison is a deep comparison :

	number of elements must be the same

	tables must contain the same keys

	each key must contain the same values. The values
are also compared recursively with deep comparison.

If provided, extra_msg is a string which will be printed along with the failure message.

LuaUnit provides other table-related assertions, see Table assertions .

	
assertNotEquals(actual, expected[, extra_msg])

	Alias: assert_not_equals()

Assert that two values are different. The assertion
fails if the two values are identical. Like the previous function, it uses table deep comparison.

If provided, extra_msg is a string which will be printed along with the failure message.

Value assertions

LuaUnit contains several flavours of true/false assertions, to be used in different contexts.
Usually, when asserting for true or false, you want strict assertions (nil should not
assert to false); assertTrue() and assertFalse() are the functions for this purpose. In some cases though,
you want Lua coercion rules to apply (e.g. value 1 or string “hello” yields true) and the right functions to use
are assertEvalToTrue() and assertEvalToFalse(). Finally, you have the assertNotTrue() and assertNotFalse() to verify
that a value is anything but the boolean true or false.

The below table sums it up:

True assertion family

	Input Value

	assertTrue()

	assertEvalToTrue()

	assertNotTrue()

	true

	OK

	OK

	OK

	false

	Fail

	Fail

	Fail

	nil

	Fail

	Fail

	OK

	0

	Fail

	OK

	OK

	1

	Fail

	OK

	OK

	“hello”

	Fail

	OK

	OK

False assertion family

	Input Value

	assertNotFalse()

	assertFalse()

	assertEvalToFalse()

	true

	Fail

	Fail

	Fail

	false

	OK

	OK

	OK

	nil

	Fail

	OK

	OK

	0

	Fail

	Fail

	Fail

	1

	Fail

	Fail

	Fail

	“hello”

	Fail

	Fail

	Fail

	
assertEvalToTrue(value[, extra_msg])

	Alias: assert_eval_to_true()

Assert that a given value evals to true. Lua coercion rules are applied
so that values like 0, "", 1.17 succeed in this assertion. If provided,
extra_msg is a string which will be printed along with the failure message.

See assertTrue() for a strict assertion to boolean true.

	
assertEvalToFalse(value[, extra_msg])

	Alias: assert_eval_to_false()

Assert that a given value eval to false. Lua coercion rules are applied
so that nil and false succeed in this assertion. If provided, extra_msg
is a string which will be printed along with the failure message.

See assertFalse() for a strict assertion to boolean false.

	
assertTrue(value[, extra_msg])

	Alias: assert_true()

Assert that a given value is strictly true. Lua coercion rules do not apply
so that values like 0, "", 1.17 fail in this assertion. If provided,
extra_msg is a string which will be printed along with the failure message.

See assertEvalToTrue() for an assertion to true where Lua coercion rules apply.

	
assertFalse(value[, extra_msg])

	Alias: assert_false()

Assert that a given value is strictly false. Lua coercion rules do not apply
so that nil fails in this assertion. If provided, extra_msg is a string
which will be printed along with the failure message.

See assertEvalToFalse() for an assertion to false where Lua coertion fules apply.

	
assertNil(value[, extra_msg])

	Aliases: assert_nil(), assertIsNil(), assert_is_nil()

Assert that a given value is nil . If provided, extra_msg is
a string which will be printed along with the failure message.

	
assertNotNil(value[, extra_msg])

	Aliases: assert_not_nil(), assertNotIsNil(), assert_not_is_nil()

Assert that a given value is not nil . Lua coercion rules are applied
so that values like 0, "", false all validate the assertion.
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertIs(actual, expected[, extra_msg])

	Alias: assert_is()

Assert that two variables are identical. For string, numbers, boolean and for nil,
this gives the same result as assertEquals() . For the other types, identity
means that the two variables refer to the same object.
If provided, extra_msg is a string which will be printed along with the failure message.

Example :

s1='toto'
s2='to'..'to'
t1={1,2}
t2={1,2}
v1=nil
v2=false

lu.assertIs(s1,s1) -- ok
lu.assertIs(s1,s2) -- ok
lu.assertIs(t1,t1) -- ok
lu.assertIs(t1,t2) -- fail
lu.assertIs(v1,v2) -- fail

	
assertNotIs(actual, expected[, extra_msg])

	Alias: assert_not_is()

Assert that two variables are not identical, in the sense that they do not
refer to the same value. If provided, extra_msg is a string which will be printed along with the failure message.

See assertIs() for more details.

String assertions

Assertions related to string and patterns.

	
assertStrContains(str, sub[, isPattern[, extra_msg]])

	Alias: assert_str_contains()

Assert that the string str contains the substring or pattern sub.
If provided, extra_msg is a string which will be printed along with the failure message.

By default, substring is searched in the string. If isPattern
is provided and is true, sub is treated as a pattern which
is searched inside the string str .

	
assertStrIContains(str, sub[, extra_msg])

	Alias: assert_str_icontains()

Assert that the string str contains the given substring sub, irrespective of the case.
If provided, extra_msg is a string which will be printed along with the failure message.

Note that unlike assertStrcontains(), you can not search for a pattern.

	
assertNotStrContains(str, sub[, isPattern[, extra_msg]])

	Alias: assert_not_str_contains()

Assert that the string str does not contain the substring or pattern sub.
If provided, extra_msg is a string which will be printed along with the failure message.

By default, the substring is searched in the string. If isPattern
is provided and is true, sub is treated as a pattern which
is searched inside the string str .

	
assertNotStrIContains(str, sub[, extra_msg])

	Alias: assert_not_str_icontains()

Assert that the string str does not contain the substring sub, irrespective of the case.
If provided, extra_msg is a string which will be printed along with the failure message.

Note that unlike assertNotStrcontains(), you can not search for a pattern.

	
assertStrMatches(str, pattern[, start[, final[, extra_msg]]])

	Alias: assert_str_matches()

Assert that the string str matches the full pattern pattern.

If start and final are not provided or are nil, the pattern must match the full string, from start to end. The
function allows to specify the expected start and end position of the pattern in the string. If provided,
extra_msg is a string which will be printed along with the failure message.

Error assertions

Error related assertions, to verify error generation and error messages.

	
assertError(func, ...)

	Alias: assert_error()

Assert that calling functions func with the arguments yields an error. If the
function does not yield an error, the assertion fails.

Note that the error message itself is not checked, which means that this function
does not distinguish between the legitimate error that you expect and another error
that might be triggered by mistake.

The next functions provide a better approach to error testing, by checking
explicitly the error message content.

Note

When testing LuaUnit, switching from assertError() to assertErrorMsgEquals()
revealed quite a few bugs!

	
assertErrorMsgEquals(expectedMsg, func, ...)

	Alias: assert_error_msg_equals()

Assert that calling function func will generate exactly the given error message. If the
function does not yield an error, or if the error message is not identical, the assertion fails.

Be careful when using this function that error messages usually contain the file name and
line number information of where the error was generated. This is usually inconvenient. To
ignore the filename and line number information, you can either use a pattern with assertErrorMsgMatches()
or simply check for the message content with assertErrorMsgContains() .

	
assertErrorMsgContains(partialMsg, func, ...)

	Alias: assert_error_msg_contains()

Assert that calling function func will generate an error message containing partialMsg . If the
function does not yield an error, or if the expected message is not contained in the error message, the
assertion fails.

	
assertErrorMsgMatches(expectedPattern, func, ...)

	Alias: assert_error_msg_matches()

Assert that calling function func will generate an error message matching expectedPattern . If the
function does not yield an error, or if the error message does not match the provided patternm the
assertion fails.

Note that matching is done from the start to the end of the error message. Be sure to escape magic all magic
characters with % (like -+.?*) .

Type assertions

The following functions all perform type checking on their argument. If the
received value is not of the right type, the failure message will contain
the expected type, the received type and the received value to help you
identify better the problem.

	
assertIsNumber(value[, extra_msg])

	Aliases: assertNumber(), assert_is_number(), assert_number()

Assert that the argument is a number (integer or float).
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertIsString(value[, extra_msg])

	Aliases: assertString(), assert_is_string(), assert_string()

Assert that the argument is a string.
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertIsTable(value[, extra_msg])

	Aliases: assertTable(), assert_is_table(), assert_table()

Assert that the argument is a table.
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertIsBoolean(value[, extra_msg])

	Aliases: assertBoolean(), assert_is_boolean(), assert_boolean()

Assert that the argument is a boolean.
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertIsNil(value[, extra_msg])

	Aliases: assertNil(), assert_is_nil(), assert_nil()

Assert that the argument is nil.
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertIsFunction(value[, extra_msg])

	Aliases: assertFunction(), assert_is_function(), assert_function()

Assert that the argument is a function.
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertIsUserdata(value[, extra_msg])

	Aliases: assertUserdata(), assert_is_userdata(), assert_userdata()

Assert that the argument is a userdata.
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertIsCoroutine(value[, extra_msg])

	Aliases: assertCoroutine(), assert_is_coroutine(), assert_coroutine()

Assert that the argument is a coroutine (an object with type thread).
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertIsThread(value[, extra_msg])

	Aliases: assertIsThread(), assertThread(), assert_is_thread(), assert_thread()

Same function as :func:assertIsCoroutine . Since Lua coroutines have the type thread, it’s not
clear which name is the clearer, so we provide syntax for both names.
If provided, extra_msg is a string which will be printed along with the failure message.

Table assertions

	
assertItemsEquals(actual, expected[, extra_msg])

	Alias: assert_items_equals()

Assert that two tables contain the same items, irrespective of their keys.
If provided, extra_msg is a string which will be printed along with the failure message.

This function is practical for example if you want to compare two lists but
where items are not in the same order:

lu.assertItemsEquals({1,2,3}, {3,2,1}) -- assertion succeeds

The comparison is not recursive on the items: if any of the items are tables,
they are compared using table equality (like as in assertEquals()), where
the key matters.

lu.assertItemsEquals({1,{2,3},4}, {4,{3,2,},1}) -- assertion fails because {2,3} ~= {3,2}

Ending test

LuaUnit allows to force test ending, either positevely or negatively, with the following functions.

	
fail(message)

	Stops the ongoing test and mark it as failed with the given message.

	
failIf(cond, message)

	If the condition cond evaluates to true, stops the ongoing test and mark it as failed with the given message.
Else, continue the test execution normally.

	
success()

	Stops the ongoing test and mark it as successful.

	
successIf(cond)

	If the condition cond evaluates to true, stops the ongoing test and mark it as successful.
Else, continue the test execution normally.

Scientific computing and LuaUnit

LuaUnit is used by the CERN for the MAD-NG program, the forefront of computational physics in the field of particle accelerator design and simulation (See MAD [http://mad.web.cern.ch/mad/]). Thank to the feedback of a scientific computing developer, LuaUnit has been enhanced with some facilities for scientific applications (see all assertions functions below).

The floating point library used by Lua is the one provided by the C compiler which built Lua. It is usually compliant with IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] . As such,
it can yields results such as plus infinity, minus infinity or Not a Number (NaN). The precision of any calculation performed in Lua is
related to the smallest representable floating point value (typically called EPS): 2^-52 for 64 bits floats (type double in the C language) and 2^-23 for 32 bits float
(type float in C).

Note

Lua may be compiled with numbers represented either as 32 bits floats or 64 bits double (as defined by the macro LUA_FLOAT_TYPE in luaconf.h). LuaUnit has been validated in both these configurations and in particuluar, the epsilon value EPS is adjusted accordingly.

For more information about performing calculations on computers, please read the reference paper What Every Computer Scientist Should Know About Floating-Point Arithmetic [https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html]

If your calculation shall be portable to multiple OS or compilers, you may get different calculation errors depending on the OS/compiler. It is therefore important to verify them on every target.

Note

If you need to deal with value minus zero, be very careful because Lua versions are inconsistent on how they treat the syntax -0 : it creates either
a plus zero or a minus zero . Multiplying or dividing 0 by -1 also yields inconsistent results. The reliable way to create the -0
value is : minusZero = -1 / (1/0)

EPS constant

The machine epsilon, to be used with assertAlmostEquals() .

This is either:

	2^-52 or ~2.22E-16 (with lua number defined as double)

	2^-23 or ~1.19E-07 (with lua number defined as float)

	
assertNan(value[, extra_msg])

	Alias: assert_nan()

Assert that a given number is a NaN (Not a Number), according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] .
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertNotNan(value[, extra_msg])

	Alias: assert_not_nan()

Assert that a given number is NOT a NaN (Not a Number), according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] .
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertPlusInf(value[, extra_msg])

	Alias: assert_plus_inf()

Assert that a given number is plus infinity, according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] .
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertMinusInf(value[, extra_msg])

	Alias: assert_minus_inf()

Assert that a given number is minus infinity, according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] .
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertInf(value[, extra_msg])

	Alias: assert_inf()

Assert that a given number is infinity (either positive or negative), according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] .
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertNotPlusInf(value[, extra_msg])

	Alias: assert_not_plus_inf()

Assert that a given number is NOT plus infinity, according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] .
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertNotMinusInf(value[, extra_msg])

	Alias: assert_not_minus_inf()

Assert that a given number is NOT minus infinity, according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] .
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertNotInf(value[, extra_msg])

	Alias: assert_not_inf()

Assert that a given number is neither infinity nor minus infinity, according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] .
If provided, extra_msg is a string which will be printed along with the failure message.

	
assertPlusZero(value[, extra_msg])

	Alias: assert_plus_zero()

Assert that a given number is +0, according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] . The
verification is done by dividing by the provided number and verifying that it yields
infinity . If provided, extra_msg is a string which will be printed along with the failure message.

Be careful when dealing with +0 and -0, see note above.

	
assertMinusZero(value[, extra_msg])

	Alias: assert_minus_zero()

Assert that a given number is -0, according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] . The
verification is done by dividing by the provided number and verifying that it yields
minus infinity . If provided, extra_msg is a string which will be printed along with the failure message.

Be careful when dealing with +0 and -0, see MinusZero

	
assertNotPlusZero(value[, extra_msg])

	Alias: assert_not_plus_zero()

Assert that a given number is NOT +0, according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] .
If provided, extra_msg is a string which will be printed along with the failure message.

Be careful when dealing with +0 and -0, see MinusZero

	
assertNotMinusZero(value[, extra_msg])

	Alias: assert_not_minus_zero()

Assert that a given number is NOT -0, according to the definition of IEEE-754 [https://en.wikipedia.org/wiki/IEEE_754] .
If provided, extra_msg is a string which will be printed along with the failure message.

Be careful when dealing with +0 and -0, see MinusZero

	
assertAlmostEquals(actual, expected[, margin=EPS[, extra_msg]])

	Alias: assert_almost_equals()

Assert that two floating point numbers are equal by the defined margin.
If margin is not provided, the machine epsilon EPS is used.
If provided, extra_msg is a string which will be printed along with the failure message.

Be careful that depending on the calculation, it might make more sense to measure
the absolute error or the relative error (see below):

	
assertNotAlmostEquals(actual, expected[, margin=EPS[, extra_msg]])

	Alias: assert_not_almost_equals()

Assert that two floating point numbers are not equal by the defined margin.
If margin is not provided, the machine epsilon EPS is used.
If provided, extra_msg is a string which will be printed along with the failure message.

Be careful that depending on the calculation, it might make more sense to measure
the absolute error or the relative error (see below).

Example of absolute versus relative error

-- convert pi/6 radian to 30 degree
pi_div_6_deg_calculated = math.deg(math.pi/6)
pi_div_6_deg_expected = 30

-- convert pi/3 radian to 60 degree
pi_div_3_deg_calculated = math.deg(math.pi/3)
pi_div_3_deg_expected = 60

-- check absolute error: it is not constant
print((pi_div_6_deg_expected - pi_div_6_deg_calculated) / lu.EPS) -- prints: 16
print((pi_div_3_deg_expected - pi_div_3_deg_calculated) / lu.EPS) -- prints: 32

-- Better use relative error:
print(((pi_div_6_deg_expected - pi_div_6_deg_calculated) / pi_div_6_deg_expected) / lu.EPS) -- prints: 0.53333
print(((pi_div_3_deg_expected - pi_div_3_deg_calculated) / pi_div_3_deg_expected) / lu.EPS) -- prints: 0.53333

-- relative error is constant. Assertion can take the form of:
assertAlmostEquals((pi_div_6_deg_expected - pi_div_6_deg_calculated) / pi_div_6_deg_expected, lu.EPS)
assertAlmostEquals((pi_div_3_deg_expected - pi_div_3_deg_calculated) / pi_div_3_deg_expected, lu.EPS)

Pretty printing

	
prettystr(value)

	Converts value to a nicely formatted string, whatever the type of the value.
It supports in particular tables, nested table and even recursive tables.

You can use it in your code to replace calls to tostring() .

Example of prettystr()

> lu = require('luaunit')
> t1 = {1,2,3}
> t1['toto'] = 'titi'
> t1.f = function () end
> t1.fa = (1 == 0)
> t1.tr = (1 == 1)
> print(lu.prettystr(t1))
{1, 2, 3, f=function: 00635d68, fa=false, toto="titi", tr=true}

Developing LuaUnit

Development ecosystem

LuaUnit is developed on GitHub [https://github.com/bluebird75/luaunit].

Bugs or feature requests should be reported using GitHub issues [https://github.com/bluebird75/luaunit/issues].

LuaUnit is released under the BSD license.

This documentation is available at Read-the-docs [http://luaunit.readthedocs.org/en/latest/].

Contributing

You may contribute to LuaUnit by reporting bugs or wishes, or by contributing code directly with a pull request.

Some issues on GitHub are marked with label enhancement. Feel also free to pick up such tasks and implement them.

Changes should be proposed as Pull Requests on GitHub.

Thank to our continuous integration setup with Travis-Ci and AppVeyor, all unit-tests and functional tests are run on Linux, Windows and MacOs, with all versions of Lua. So
any Pull Request will show immediately if anything is going unexpected.

Unit-tests

All proposed changes should pass all unit-tests and if needed, add more unit-tests to cover the bug or the new functionality. Usage is pretty simple:

$ lua run_unit_tests.lua
..
...............................
Ran 111 tests in 0.120 seconds
OK

Functional tests

Functional tests also exist to validate LuaUnit. Their management is slightly more complicated.

The main goal of functional tests is to validate that LuaUnit output has not been altered. Since LuaUnit supports some standard compliant output (TAP, junitxml), this is very important (and it has been broken in the past)

Functional tests perform the following actions:

	Run the 2 suites: example_with_luaunit.lua, test_with_err_fail_pass.lua (with various options to have successe, failure and/or errors)

	Run every suite with all output format, all verbosity

	Validate the XML output with jenkins/hudson and junit schema

	Compare the results with the previous output (archived in test/ref), with some tricks to make the comparison possible :

	adjustment of the file separator to use the same output on Windows and Unix

	date and test duration is zeroed so that it does not impact the comparison

	adjust the stack trace format which has changed between Lua 5.1, 5.2 and 5.3

	Run some legacy suites or tricky output to manage and verify output: test_with_xml.lua, , compat_luaunit_v2x.lua, legacy_example_with_luaunit.lua

For functional tests to run, diff must be available on the command line. xmllint is needed to perform the xml validation but
this step is skipped if xmllint can not be found.

When functional tests work well, it looks like this:

$ lua run_functional_tests.lua
...............
Ran 15 tests in 9.676 seconds
OK

When functional test fail, a diff of the comparison between the reference output and the current output is displayed (it can be quite
long). The list of faulty files is summed-up at the end.

Modifying reference files for functional tests

The script run_functional_tests.lua supports a –update option, with an optional argument.

	–update without argument overwrites all reference output with the current output. Use only if you know what you are doing, this is usually a very bad idea!

	The following argument overwrite a specific subset of reference files, select the one that fits your change:

	TestXml: XML output of test_with_xml

	ExampleXml: XML output of example_with_luaunit

	ExampleTap: TAP output of example_with_luaunit

	ExampleText: text output of example_with_luaunit

	ExampleNil: nil output of example_with_luaunit

	ErrFailPassText: text output of test_with_err_fail_pass

	ErrFailPassTap: TAP output of test_with_err_fail_pass

	ErrFailPassXml: XML output of test_with_err_fail_pass

	StopOnError: errFailPassTextStopOnError-1.txt, -2.txt, -3.txt, -4.txt

For example to record a change in the test_with_err_fail_pass output

$ lua run_functional_tests.lua --update ErrFailPassXml ErrFailPassTap ErrFailPassText

>>>>>>> Generating test/ref/errFailPassXmlDefault.txt
>>>>>>> Generating test/ref/errFailPassXmlDefault-success.txt
>>>>>>> Generating test/ref/errFailPassXmlDefault-failures.txt
>>>>>>> Generating test/ref/errFailPassXmlQuiet.txt
>>>>>>> Generating test/ref/errFailPassXmlQuiet-success.txt
>>>>>>> Generating test/ref/errFailPassXmlQuiet-failures.txt
>>>>>>> Generating test/ref/errFailPassXmlVerbose.txt
>>>>>>> Generating test/ref/errFailPassXmlVerbose-success.txt
>>>>>>> Generating test/ref/errFailPassXmlVerbose-failures.txt
>>>>>>> Generating test/ref/errFailPassTapDefault.txt
>>>>>>> Generating test/ref/errFailPassTapDefault-success.txt
>>>>>>> Generating test/ref/errFailPassTapDefault-failures.txt
>>>>>>> Generating test/ref/errFailPassTapQuiet.txt
>>>>>>> Generating test/ref/errFailPassTapQuiet-success.txt
>>>>>>> Generating test/ref/errFailPassTapQuiet-failures.txt
>>>>>>> Generating test/ref/errFailPassTapVerbose.txt
>>>>>>> Generating test/ref/errFailPassTapVerbose-success.txt
>>>>>>> Generating test/ref/errFailPassTapVerbose-failures.txt
>>>>>>> Generating test/ref/errFailPassTextDefault.txt
>>>>>>> Generating test/ref/errFailPassTextDefault-success.txt
>>>>>>> Generating test/ref/errFailPassTextDefault-failures.txt
>>>>>>> Generating test/ref/errFailPassTextQuiet.txt
>>>>>>> Generating test/ref/errFailPassTextQuiet-success.txt
>>>>>>> Generating test/ref/errFailPassTextQuiet-failures.txt
>>>>>>> Generating test/ref/errFailPassTextVerbose.txt
>>>>>>> Generating test/ref/errFailPassTextVerbose-success.txt
>>>>>>> Generating test/ref/errFailPassTextVerbose-failures.txt
$

You can then commit the new files into git.

Note

how to commit updated reference outputs

When committing those changes into git, please use if possible an
intelligent git committing tool to commit only the interesting changes.
With SourceTree for example, in case of XML changes, I can select only the
lines relevant to the change and avoid committing all the updates to test
duration and test datestamp.

Typical failures for functional tests

Functional tests may start failing when:

	Increasing LuaUnit version

	Improving or breaking LuaUnit output

This a good place to start looking if you see failures occurring.

Annexes

Annex A: More on table printing

When asserting tables equality, by default, the table content is printed in case of failures. LuaUnit tries to print
tables in a readable format. It is
possible to always display the table id along with the content, by setting a module parameter PRINT_TABLE_REF_IN_ERROR_MSG . This
helps identifying tables:

local lu = require('luaunit')

local t1 = {1,2,3}
-- normally, t1 is dispalyed as: "{1,2,3}"

-- if setting this:
lu.PRINT_TABLE_REF_IN_ERROR_MSG = true

-- display of table t1 becomes: "<table: 0x29ab56> {1,2,3}"

Note

table loops

When displaying table content, it is possible to encounter loops, if for example two table references eachother. In such
cases, LuaUnit display the full table content once, along with the table id, and displays only the table id for the looping
reference.

Example: displaying a table with reference loop

local t1 = {}
local t2 = {}
t1.t2 = t2
t1.a = {1,2,3}
t2.t1 = t1

-- when displaying table t1:
-- table t1 inside t2 is only displayed by its id because t1 is already being displayed
-- table t2 is displayed along with its id because it is part of a loop.
-- t1: "<table: 0x29ab56> { a={1,2,3}, t2=<table: 0x27ab23> {t1=<table: 0x29ab56>} }"

Annex B: Comparing tables with keys of type table

If provided, extra_msg is a string which will be printed along with the failure message.

This is a very uncommon scenario but there are a few programs out there which use tables as keys for other tables. LuaUnit has been adjusted to deal intelligently with this scenario.

A small code block is worth a thousand pictures :

local lu = require('luaunit')

-- let's define two tables
t1 = { 1, 2 }
t2 = { 1, 2 }
lu.assertEquals(t1, t2) -- succeeds

-- let's define three tables, with the two above tables as keys
t3 = { t1='a' }
t4 = { t2='a' }
t5 = { t2='a' }

There are two ways to treat comparison of tables t3 and t4:

Method 1: table keys are compared by content

	t3 contain one key: t1

	t4 contain one key: t2, which has exactly the same content as t1

	the two keys compare equally with assertEquals, so assertEquals(t3, t4) succeeds

Method 2: table keys are compared by reference

	t3 contain one key: t1

	t4 contain one key: t2, which is not the same table as t1, its reference is different

	the two keys are different because t1 is a different object than t2 so assertEquals(t3, t4) fails

Whether method 1 or method 2 is more appropriate is up for debate.

LuaUnit has been adjusted to support both scenarios, with the config variable: TABLE_EQUALS_KEYBYCONTENT

	TABLE_EQUALS_KEYBYCONTENT = true (default): method 1 - table keys compared by content

	TABLE_EQUALS_KEYBYCONTENT = false: method 2 - table keys compared by reference

In any case, assertEquals(t4, t5) always succeeds.

To adjust the config, change it into the luaunit table before running any tests:

local lu = require('luaunit')

-- define all your tests
-- ...

lu.TABLE_EQUALS_KEYBYCONTENT = false
-- run your tests:
os.exit(lu.LuaUnit.run())

Annex C: Source code of example

Source code of the example used in the Getting started with LuaUnit

--
-- The examples described in the documentation are below.
--

lu = require('luaunit')

function add(v1,v2)
 -- add positive numbers
 -- return 0 if any of the numbers are 0
 -- error if any of the two numbers are negative
 if v1 < 0 or v2 < 0 then
 error('Can only add positive or null numbers, received '..v1..' and '..v2)
 end
 if v1 == 0 or v2 == 0 then
 return 0
 end
 return v1+v2
end

function adder(v)
 -- return a function that adds v to its argument using add
 function closure(x) return x+v end
 return closure
end

function div(v1,v2)
 -- divide positive numbers
 -- return 0 if any of the numbers are 0
 -- error if any of the two numbers are negative
 if v1 < 0 or v2 < 0 then
 error('Can only divide positive or null numbers, received '..v1..' and '..v2)
 end
 if v1 == 0 or v2 == 0 then
 return 0
 end
 return v1/v2
end

TestAdd = {}
 function TestAdd:testAddPositive()
 lu.assertEquals(add(1,1),2)
 end

 function TestAdd:testAddZero()
 lu.assertEquals(add(1,0),0)
 lu.assertEquals(add(0,5),0)
 lu.assertEquals(add(0,0),0)
 end

 function TestAdd:testAddError()
 lu.assertErrorMsgContains('Can only add positive or null numbers, received 2 and -3', add, 2, -3)
 end

 function TestAdd:testAdder()
 f = adder(3)
 lu.assertIsFunction(f)
 lu.assertEquals(f(2), 5)
 end
-- end of table TestAdd

TestDiv = {}
 function TestDiv:testDivPositive()
 lu.assertEquals(div(4,2),2)
 end

 function TestDiv:testDivZero()
 lu.assertEquals(div(4,0),0)
 lu.assertEquals(div(0,5),0)
 lu.assertEquals(div(0,0),0)
 end

 function TestDiv:testDivError()
 lu.assertErrorMsgContains('Can only divide positive or null numbers, received 2 and -3', div, 2, -3)
 end
-- end of table TestDiv

--[[
--
-- Uncomment this section to see how failures are displayed
--
TestWithFailures = {}
 -- two failing tests

 function TestWithFailures:testFail1()
 lu.assertEquals("toto", "titi")
 end

 function TestWithFailures:testFail2()
 local a=1
 local b='toto'
 local c = a + b -- oops, can not add string and numbers
 return c
 end
-- end of table TestWithFailures
]]

--[[
TestLogger = {}
 function TestLogger:setUp()
 -- define the fname to use for logging
 self.fname = 'mytmplog.log'
 -- make sure the file does not already exists
 os.remove(self.fname)
 end

 function TestLogger:testLoggerCreatesFile()
 initLog(self.fname)
 log('toto')
 f = io.open(self.fname, 'r')
 lu.assertNotNil(f)
 f:close()
 end

 function TestLogger:tearDown()
 self.fname = 'mytmplog.log'
 -- cleanup our log file after all tests
 os.remove(self.fname)
 end
-- end of table TestLogger

]]

os.exit(lu.LuaUnit.run())

Annex D: BSD License

This software is distributed under the BSD License.

Copyright (c) 2005-2018, Philippe Fremy <phil at freehackers dot org>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index and Search page

	Index

	Search Page

Index

 A
 | F
 | P
 | S

A

 	
 	assertAlmostEquals() (built-in function)

 	assertEquals() (built-in function)

 	assertError() (built-in function)

 	assertErrorMsgContains() (built-in function)

 	assertErrorMsgEquals() (built-in function)

 	assertErrorMsgMatches() (built-in function)

 	assertEvalToFalse() (built-in function)

 	assertEvalToTrue() (built-in function)

 	assertFalse() (built-in function)

 	assertInf() (built-in function)

 	assertIs() (built-in function)

 	assertIsBoolean() (built-in function)

 	assertIsCoroutine() (built-in function)

 	assertIsFunction() (built-in function)

 	assertIsNil() (built-in function)

 	assertIsNumber() (built-in function)

 	assertIsString() (built-in function)

 	assertIsTable() (built-in function)

 	assertIsThread() (built-in function)

 	assertIsUserdata() (built-in function)

 	assertItemsEquals() (built-in function)

 	
 	assertMinusInf() (built-in function)

 	assertMinusZero() (built-in function)

 	assertNan() (built-in function)

 	assertNil() (built-in function)

 	assertNotAlmostEquals() (built-in function)

 	assertNotEquals() (built-in function)

 	assertNotInf() (built-in function)

 	assertNotIs() (built-in function)

 	assertNotMinusInf() (built-in function)

 	assertNotMinusZero() (built-in function)

 	assertNotNan() (built-in function)

 	assertNotNil() (built-in function)

 	assertNotPlusInf() (built-in function)

 	assertNotPlusZero() (built-in function)

 	assertNotStrContains() (built-in function)

 	assertNotStrIContains() (built-in function)

 	assertPlusInf() (built-in function)

 	assertPlusZero() (built-in function)

 	assertStrContains() (built-in function)

 	assertStrIContains() (built-in function)

 	assertStrMatches() (built-in function)

 	assertTrue() (built-in function)

F

 	
 	fail() (built-in function)

 	
 	failIf() (built-in function)

P

 	
 	prettystr() (built-in function)

S

 	
 	success() (built-in function)

 	
 	successIf() (built-in function)

 nav.xhtml

 Table of Contents

 		
 Welcome to LuaUnit’s documentation!

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

