lua Documentation
Release 0.0.1

Thomas Heloin

Jun 12, 2017

Contents:

How to start LUA in TShark 3
Capture splitter (new title) 5
2.1 Exercise 1 e e e e 6
2.2 EXErciSE 2 . . . o e e e e e 6
Extracting some HTTP 7
3.1 Exercise 1 . . . o o e e e e e e 10
3.2 EXErCiSE2 . . o e e e e e e e e e 10
3.3 EXErcCiSe 3 e e e e e e 10
Reading a log file to add information to your streams 11
4.1 Exercise 1 e e e e e e e 16
Indices and tables 17

lua Documentation, Release 0.0.1

You are here today to learn how you can use LUA in TShark to process large files. You will also learn how you can
pre-process a log files to help you extract the right data

Capture and SSL key can be found here https://jumpshare.com/v/VMIpq669]7nxKQO7zhHw

Contents: 1

https://jumpshare.com/v/VMlpq669J7nxKQO7zhHw

lua Documentation, Release 0.0.1

2 Contents:

CHAPTER 1

How to start LUA in TShark

This is your first lab to test Wireshark and Lua.

Lua script. Save it as hello.lua:

’print("Hello World!")

Use an empty capture file, the -q is here to quiet TShark, so that it does not display the packets that it is processing.:

’tshark —-X lua_script:hello.lua -r empty.cap —g

lua Documentation, Release 0.0.1

4 Chapter 1. How to start LUA in TShark

CHAPTER 2

Capture splitter (new title)

Create a streams/ subfolder, the script does not create that folder for you and it will not work without it.

Tip: Use this command if you create too many files (Linux/Mac) in streams folder:

ls | xargs —n 100 rm

Tip: Raise your ulimit if your capture is really large:

ulimit -n 10000

Script:

—-— Register the field we want Wireshark to tell us about, here we just want the TCP_

—Stream ID
local tcp_stream = Field.new("tcp.stream")

—— Create a new "Listener" and the display filter "tcp", since we want to split tcp,

—streams out of the capture file.
local tap = Listener.new(nil, "tcp")

—-— Create an array to store all of our file descriptors
local dumpers = {}

—-— It might be prudent to raise your max file descriptor in an Unix system

-— ulimit -n 10000

—— https://superuser.com/questions/302754/increase—the-maximum-number—-of—-open—-file—

—descriptors—in-snow—leopard

—-— Create a write packet function, which will take a stream 1id,
—corresponding file under a subfolder streams/

-— You will need to create that folder before you run the script

and create a,

lua Documentation, Release 0.0.1

local function write_pkt (id)
local file = dumpers[id]
if not file then
—— Dumper.new 1is a function of LUA for Wireshark, it will create a_
—capture file for us
file = Dumper.new("streams/" .. id .. ".cap")

—— There 1is a little complexity here, but essentially what we are_
—working around 1is a problem when you run out of file descriptors
-— So we flush all open file descriptors, and start anew.
if (file == nil) then
for file,dumper in pairs (dumpers) do
dumper:flush ()
dumper:close ()

end

dumpers = {}

file = assert (Dumper.new("streams/" .. id .. ".cap"))
end
dumpers[id] = file

end

-— Simply dump the current packet to our file
file:dump_current ()
end

—— tap.packet is a function called by Wireshark for every packet matching our listener
function tap.packet (pinfo, tvb, tapdata)

write_pkt (tostring(tcp_stream()))
end

-— a listener tap's draw function is called every few seconds in the GUI
—-— and at end of file (once) in TShark
function tap.draw()
print ("file processed, closing all dumpers")
for file,dumper in pairs (dumpers) do
dumper:flush ()
dumper:close ()
end
dumpers = {}
end

—-— a listener tap's reset function is called at the end of a live capture run,
-— when a file is opened, or closed. TShark never appears to call it.
function tap.reset ()

end

Exercise 1

Create your own capture file and extract all traffic that is not TCP.

Exercise 2

Only split traffic where the destination is TCP port 80

6 Chapter 2. Capture splitter (new title)

CHAPTER 3

Extracting some HTTP

The following LUA script is a little more complex, we will now extract HTTP request and response from our capture
file and split them per TCP streams.

Note: You can use the 0.cap previously created as source to try out your code.:

tshark —-X lua_script:http.lua -r streams/O.cap —gq

Using other streams is unlikely to work, try to workout why.

After execution, you should have a whole bunch of S-<id>.txt in your streams folder

Script:

—-— Let's register all the fields we want TShark to extract
—-— Remember that we are creating functions retrieving the field values.

local tcp_stream = Field.new("tcp.stream")

local http_method = Field.new ("http.request.method")

local http_uri = Field.new("http.request.uri")

local http_version = Field.new ("http.request.version")
local http_code = Field.new("http.response.code")

local http_phrase = Field.new("http.response.phrase")
local http_location = Field.new("http.location")

local http_request = Field.new("http.request")

local http_response = Field.new("http.response")

local http_cookie = Field.new ("http.cookie_pair")

local http_setcookie = Field.new("http.set_cookie")

local http_request_header = Field.new("http.request.line™)
local http_response_header = Field.new("http.response.line")
local http_response_data = Field.new ("http.file data™)

—-— Creating the listener, to avoid http data appearing twice due to retransmit, let's,
—suppress them
local tap = Listener.new(nil, "http && !tcp.analysis.retransmission && !tcp.analysis.

—lost_segment™)

lua Documentation, Release 0.0.1

local dumpers = {}

—-— To avoid runtime error due to nil variable, this function will simply display,,
—nothing if TShark has not found the field we are looking for.
local function to_string(string)
if (string == nil) then
return ""
else
return tostring(string)
end
end

-— Same as the previous example, but this time we are writing text with normal LUA I/
—0O functions.
local function write_msg(id,msqg)
local file = dumpers[id]
if not file then
file = io.open("streams/" .. id .. ".txt", "a")
if (file == nil) then
for file,dumper in pairs (dumpers) do
dumper:flush ()
dumper:close ()

end

dumpers = {}

file = assert (io.open("streams/" .. id .. ".txt", "a"))
end
dumpers[id] = file

end
file:write (msqg)
end

function tap.packet (pinfo, tvb, tapdata)

—— The only reason I am checking i1f this is a http request is due to the,
—cookies
if (http_request ()) then
if (http_method() == nil) then return end

local request_mrhsession = ""

local cookie = {http_cookie()}

for i in pairs(cookie) do
—— One of the powerful function of LUA is its text matching
request_mrhsession = tostring(cookie[i]) :match '.xLastMRH_

—Session=(%w+) .*'

if (request_mrhsession ~= nil) then break end

end

-- pinfo is from our tap, and contains packet information created by,
—Wireshark, like timestamps.
local msg =
to_string("xx " .. string.format ("%8d", pinfo.number)) .. "
-
to_string(format_date (pinfo.abs_ts)) .. " "
to_string(http_method()) .. ™ "
to_string(http_uri()) .. "™ "
to_string(http_version()) .. "™ " ..
to_string(request_mrhsession) .. " "

8 Chapter 3. Extracting some HTTP

lua Documentation, Release 0.0.1

to_string(tcp_stream())
n \n "

-— Writing to file all of our HTTP request headers, we are adding a
—"S-" prefix to the filename

write_msg("S-" .. tostring(tcp_stream()),msqg)

local header = {http_request_header()}

for i in pairs (header) do

write_msg("S-" .. tostring(tcp_stream())," R

—tostring (header[i]))

end

else

—-— If that is not a request, then it is a response :)
local response_mrhsession = ""

local cookie = {http_setcookie()}
for i in pairs(cookie) do
response_mrhsession = tostring(cookie[i]) :match '.*LastMRH__

—Session=(%w+) .*
if (response_mrhsession ~= nil) then break end
end

local msg =

to_string("xx " .. string.format ("%8d", pinfo.number)) .. "
g

to_string(format_date (pinfo.abs_ts)) mwen
to_string(http_code()) .. "™ " ..
to_string (http_phrase()) .. ™ "
to_string (http_version()) .. "™ " ..
to_string(response_mrhsession) .. " "
to_string(http_location()) .. " "
to_string(tcp_stream())

u\nn

write_msg("S-" .. tostring(tcp_stream()),msqg)
local header = {http_response_header ()}
for i in pairs (header) do
write_msg("S-" .. tostring(tcp_stream())," .
—tostring (header[i]))
end
end
end

—-— a listener tap's draw function is called every few seconds in the GUI
-— and at end of file (once) in tshark
function tap.draw()
print ("file processed, closing all dumpers")
for file,dumper in pairs(dumpers) do
dumper:flush ()
dumper:close ()
end
dumpers = {}
end

—-— a listener tap's reset function is called at the end of a live capture run,
—-— when a file is opened, or closed. Tshark never appears to call it.
function tap.reset ()

lua Documentation, Release 0.0.1

‘ end

Exercise 1

Merge the previous script with this one. Nothing stops you from doing 2 things at the same time!

Exercise 2

What can you do in Wireshark to help you decrypt other streams but 0?

Exercise 3

Can you add the whole http response to your files?

10 Chapter 3. Extracting some HTTP

CHAPTER 4

Reading a log file to add information to your streams

We are now going a open an APM log file, extract session ID value and usernames.

Script:

—-— Let's register all the fields we want TShark to extract
—— Remember that we are creating functions retrieving the field values.

local tcp_stream = Field.new("tcp.stream")

local http_method = Field.new ("http.request.method")

local http_uri = Field.new("http.request.uri")

local http_version = Field.new("http.request.version")
local http_code = Field.new("http.response.code™)

local http_phrase = Field.new("http.response.phrase")
local http_location = Field.new("http.location")

local http_request = Field.new("http.request")

local http_response = Field.new("http.response")

local http_cookie = Field.new("http.cookie_pair")

local http_setcookie = Field.new("http.set_cookie")

local http_request_header = Field.new("http.request.line")
local http_response_header = Field.new("http.response.line")
local http_response_data = Field.new("http.file data™)

—-— Creating the listener, to avoid http data appearing twice due to retransmit, let's,
—suppress them

local tap = Listener.new(nil, "http && !tcp.analysis.retransmission && !tcp.analysis.
—lost_segment")

local dumpers = {}

—-— To avoid runtime error due to nil variable, this function will simply display,,
—nothing if TShark has not found the field we are looking for.
local function to_string(string)
if (string == nil) then
return ""
else

11

lua Documentation, Release 0.0.1

return tostring(string)
end
end

-— Same as the previous example, but this time we are writing text with normal LUA I/
—0O functions.
local function write_msg(id,msqg)
local file = dumpers[id]
if not file then
file = io.open("streams/" .. id .. ".txt", "a")
if (file == nil) then
for file,dumper in pairs (dumpers) do
dumper:flush ()
dumper:close ()

end

dumpers = {}

file = assert (io.open("streams/" .. id .. ".txt", "a"))
end
dumpers[id] = file

end
file:write (msqg)
end

—-— Let's create some arrays that will be useful when reading our APM log files.
local timeouts = {}

local months = {}

local maps = {}

—-— Need to convert months as found in the log file to something LUA will understand

months["Jan"] = 1
months ["Feb"] = 2
months["Mar"] = 3
months["Apr"] = 4
months["May"] = 5
months["Jun"] = 6
months ["Jul"] = 7
months["Aug"] = 8
months["Sep"] = 9
months["Oct"] = 10
months["Nov"] = 11
months ["Dec"] = 12

local apm = assert (io.open("apm", "r"))
for 1 in apm:lines () do

—-— Jun 3 19:31:15 pulsar notice tmml[10766]: 01490520:5: /Common/
—test:Common:216342fe: Session deleted due to admin initiated termination.

local month, day, h, m, s, session, reason = l:match ' (%w+) (%d+) (%d+) :(
—%d+) ¢ (%d+) . xCommon: ($w+) : Session deleted due to (Sw+) .=*'
if (session ~= nil) then
—— There 1is no year to extract from the log file
local convertTime = os.time ({year = "2017", month = months[month],
—day = day, hour = h, min = m, sec = s})
—-— You may need to offset the timestamps
—— convertTime = convertTime - 3600

—— Adding the expiry timestamp (and reason) for a given session to_
—our table
timeouts[session] = {convertTime, reason}

12 Chapter 4. Reading a log file to add information to your streams

lua Documentation, Release 0.0.1

end
-— Jun 3 19:30:13 pulsar notice apmd[6566]: 01490010:5: /Common/
—test:Common:ab9%bee05: Username 'u-0088979'
local session, username = l:match '.xCommon: ($w+): Username \' (.x)\"''
if (username ~= nil) then
—— Adding the our username for a given session to our table,
—sometimes sessions are created with no Username, so lets ignore those.
maps[session] = username
end
end
print ("Done processing APM log file")

function tap.packet (pinfo, tvb, tapdata)

—— The only reason I am checking 1if this 1is a http request 1is due to the,
—cookies
if (http_request ()) then
if(http_method() == nil) then return end

local request_mrhsession = ""

local cookie = {http_cookie()}

for i in pairs(cookie) do
—— One of the powerful function of LUA is its text matching
request_mrhsession = tostring(cookie[i]) :match '.xLastMRH__

—Session=(%w+) .*"'

if (request_mrhsession ~= nil) then break end

end

—-— What we are doing here 1is to compare the current timestamp of our_
—packet with an APM session

local username = ""

if (request_mrhsession ~= nil and maps[request_mrhsession] ~= nil)_,
—then

—— retrieve the username from the LastMRH Session cookie
username = maps[request_mrhsession]

—-— do we know when this session was expired
if (timeouts[request_mrhsession] ~= nil) then

—— If the packet timestamps 1s superior, then the_
—session has been previously deleted, and that user created a new session
if (tonumber (pinfo.abs_ts) > tonumber (timeouts|[request_

—mrhsession] [1])) then

local msg = "xx " .. string.format ("%$8d",
—pinfo.number) .. " xx " .. os.date("%b %d, %Y $X",timeouts[request_mrhsession][1])
. ".000000000 PDT +++++++ THIS USER HAS HAD HIS SESSION TERMINATED BY " .
—timeouts[request_mrhsession] [2] .. "\n"

write_msg(username,msqg)
—-— Lets remove that key from our map table,_,
—otherwise we will keep writing the message above all the time

timeouts[request_mrhsession] = nil
end
end
end
local msg =
to_string("xx " .. string.format ("%8d", pinfo.number)) .. "

13

lua Documentation, Release 0.0.1

to_string(format_date (pinfo.abs_ts)) .. " "
to_string (http_method()) .. ™ "
to_string (http_uri())
to_string(http_version()) .. " "
(
(
(

non

to_string(request_mrhsession)
to_string (username) mwen
to_string(tcp_stream())

n \n n

-— Writing to file the request for a given username, since we know it.
— That been said, there is a limit here an initial request with no MRH will not,,
—match.
-— We would need to wait for the response and then retrieve the,
—corresponding request to finally write it to file.
—— RFE: Need to store the request in memory with the stream ID, and_
—probably a request number. Wait for the matching response and commit to file.
if (username ~= "") then
write_msg(username, msqg)
else
write_msg ("u-UNKNOWN",msqg)
end

—-— Writing to file all of our HTTP request headers, we are adding a
—"S-" prefix to the filename

write_msg("S-" .. tostring(tcp_stream()),msqg)

local header = {http_request_header ()}

for i in pairs(header) do

write_msg("S-" .. tostring(tcp_stream()),"

—tostring(header([i]))

end

else

-— If that is not a request, then it is a response :)
local response_mrhsession = ""

local cookie = {http_setcookie()}
for i in pairs(cookie) do
response_mrhsession = tostring(cookie[i]) :match '.xLastMRH_

—Session=(%w+) .*
if (response_mrhsession ~= nil) then break end
end

local username = ""

if (response_mrhsession ~= nil and maps[response_mrhsession] ~= nil
—) then
username = maps[response_mrhsession]
end
local msg =
to_string("xx " .. string.format ("%$8d", pinfo.number)) "
xx "

to_string(format_date (pinfo.abs_ts)) .. " "
to_string(http_code()) .. ™ " .
to_string (http_phrase()) .. " "
to_string(http_version()) .. " "
to_string(response_mrhsession)
(n n
(

to_string (username) ..
to_string(http_location()) .. "

14 Chapter 4. Reading a log file to add information to your streams

lua Documentation, Release 0.0.1

to_string(tcp_stream())

n \n "
if (username ~= "") then
write_msg (username,msqg)
else
write_msg ("u-UNKNOWN",msqg)
end
write_msg("S-" .. tostring(tcp_stream()),msqg)

local header = {http_response_header ()}
for i in pairs(header) do

write_msg("S-" .. tostring(tcp_stream())," "
—tostring(header([i]))
end
-— write _msg("S-" .. tostring(tcp_stream()),to_string(http response_
—data()))
end
end

—-— a listener tap's draw function is called every few seconds in the GUI
—— and at end of file (once) in tshark
function tap.draw()
print ("file processed, closing all dumpers")
for file,dumper in pairs(dumpers) do
dumper:flush ()
dumper:close ()
end
dumpers = {}

print ("adding last user timeouts to log files")

for key,value in pairs(timeouts) do
local username = maps[key]

if (username ~= nil) then
local msg = "xx - xx " .. os.date("%b %d, %Y %X",
—value[l]) .. ".000000000 PDT ####### THIS USER HAS HAD HIS SESSION TERMINATED BY "
. value[2] .. "\n"
local file = io.open("streams/" .. username .. ".txt", "r")
if (file ~= nil) then
file:close()
local file = io.open("streams/" .. username .. ".txt",
— "a")
file:write (msqg)
file:close()
end
end
end
end

—-— a listener tap's reset function is called at the end of a live capture run,
—-— when a file is opened, or closed. Tshark never appears to call it.
function tap.reset ()

end

15

lua Documentation, Release 0.0.1

Exercise 1

We are not adding the timeouts to our files, using your S-0.cap file try to workout why.

16 Chapter 4. Reading a log file to add information to your streams

CHAPTER B

Indices and tables

* genindex
* modindex

e search

17

	How to start LUA in TShark
	Capture splitter (new title)
	Exercise 1
	Exercise 2

	Extracting some HTTP
	Exercise 1
	Exercise 2
	Exercise 3

	Reading a log file to add information to your streams
	Exercise 1

	Indices and tables

