
lts-workflows Documentation
Release 0.2.4+0.g1cd4ef9.dirty

Per Unneberg

Jan 29, 2018

Contents

1 Installation 3
1.1 Stable release . 3
1.2 From sources . 3

2 Configuration guide 5
2.1 Snakemake . 5
2.2 Nextflow . 8

3 Developer guide 9
3.1 Summary . 9
3.2 Setting up a local copy . 9
3.3 Branching/development model . 9
3.4 Issues . 11
3.5 Adding a workflow . 11
3.6 Continuous integration . 11

4 The workflow test environment 13
4.1 Running workflow tests . 13
4.2 Additional options . 13
4.3 Local conda installs . 14
4.4 Test fixtures . 15
4.5 Hints on developing workflows . 15
4.6 Testing external data sources . 15

5 Docker images 17

6 Workflows 19

7 Credits 21
7.1 Development Lead . 21
7.2 Contributors . 21

8 History 23
8.1 0.2.4 (2017-11-14) . 23
8.2 0.2.3 (2017-11-14) . 23
8.3 0.2.2 (2017-11-13) . 23
8.4 0.2.1 (2017-09-26) . 23

i

8.5 0.2.0 (2017-03-21) . 24
8.6 0.1.1 (2017-03-01) . 24
8.7 0.1.0 (2017-02-12) . 24

9 lts_workflows 25
9.1 lts_workflows package . 26

10 Indices and tables 27

Python Module Index 29

ii

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

The lts-workflow module is a top-level module for workflow repositories developed by the SciLifeLab Bioinformatics
Long-term Support team.

Note that this module doesn’t actually contain any workflows. Rather, it provides helper functions and documentation
of a more general nature that relates to all workflows.

Contents:

Contents 1

https://www.scilifelab.se/facilities/wabi/
https://www.scilifelab.se/facilities/wabi/

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

2 Contents

CHAPTER 1

Installation

1.1 Stable release

To install lts-workflows, run this command in your terminal:

Warning: WIP: as of yet there is no scilifelab-lts channel.

$ # conda install -c scilifelab-lts lts-workflows
$ conda install -c percyfal lts-workflows

This is the preferred method to install lts-workflows, as it will always install the most recent stable release.

1.2 From sources

The sources for lts-workflows can be downloaded from the Bitbucket repo.

You can either clone the public repository:

$ git clone git@bitbucket.org:scilifelab-lts/lts-workflows.git

Once you have a copy of the source, you can install it with:

$ python setup.py install

3

https://bitbucket.org/scilifelab-lts/lts-workflows

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

4 Chapter 1. Installation

CHAPTER 2

Configuration guide

The configuration guide provides a basic overview of the general options and settings layout for the supported work-
flow managers. Please refer to the workflow documentation pages for more specifice instructions regarding a particular
workflow.

Currently, the supported workflow managers are:

• snakemake: a workflow management system written in python

• nextflow: a fluent DSL for data-driven computational pipelines

2.1 Snakemake

Snakemake can be configured through a configuration file that is passed either via the --configfile command line
option, or the Snakefile configfile: directive. Once loaded, the configuration settings can be accessed through
the global python object config.

Internally, configuration objects are python dictionaries, where the keys correspond to configuration options. This has
the unfortunate consequence that it is difficult to provide a documentation API to the options. This text tries to address
this issue, albeit in an unsufficient manner. As a last resort, for now at least, one simply has to look at the source code
to get an idea of what the options do. In most cases though, the key names themselves should give an idea of what
behaviour they target.

It is important to keep in mind that no validation of user-supplied configuration files is done. Consequently, should
the user supply a non-defined configuration key, it will passed unnoticed by Snakemake. This can be frustrating when
debugging; you are sure that you have changed a configuration value, only to notice later that the configuration key
was misspelled.

2.1.1 Implementation

The configuration is constructed as a hierarchy of at most three levels:1

1 Note that the configuration structure can vary depending on workflow since different developers work on different workflows. The structure
described in this document was developed for the first iteration of the workflows.

5

https://snakemake.readthedocs.io/en/stable/
https://www.nextflow.io/
https://docs.python.org/3.5/tutorial/datastructures.html#dictionaries

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

section:
subsection:
option:

The section level corresponds to an application, or a configuration group of more general nature. The
subsection can either be a new configuration grouping, or an option to be set. For applications, the subsection
often corresponds to a given rule. Finally, at the option level, an option is set.

2.1.2 Configuration sections

For each workflow, there is a subdirectory named rules. The directory contains rules organized by directories and
settings files that provide default configuration values. Every rule directory has its own settings file. There are
two top-level settings file located directly in the rules directory, namely main.settings and ngs.settings.

settings

The settings section defines configurations of a general nature.

settings:
sampleinfo: sampleinfo.csv
email: # email
java:

java_mem: 8g
java_tmpdir: /tmp

runfmt: "{SM}/{SM}_{PU}"
samplefmt: "{SM}/{SM}"
threads: 8
temporary_rules:
- picard_merge_sam

For all settings, see rules/main.settings.

Importantly, many of these settings are inherited by the application rules, so that changing threads to 4 in
settings, will set the number of threads for all configurations that inherit this option. However, you can fine-tune
the behaviour of the inheriting rules to override the value in settings; see Application settings.

Here, the most important option is sampleinfo, which must be set. The runfmt and samplefmt options de-
scribe how the data is organized. They represent python miniformat strings, where the entries correspond to columns
in the sampleinfo file; hence, in this case, the column SM and PU must be present in the sampleinfo file. So, given the
following sampleinfo file

SM,PU,DT,fastq
s1,AAABBB11XX,010101,s1_AAABBB11XX_010101_1.fastq.gz
s1,AAABBB11XX,010101,s1_AAABBB11XX_010101_2.fastq.gz
s1,AAABBB22XX,020202,s1_AAABBB22XX_020202_1.fastq.gz
s1,AAABBB22XX,020202,s1_AAABBB22XX_020202_2.fastq.gz

samplefmt will be formatted as s1/s1 and runfmt as s1/s1_AAABBB11XX or s1/s1_AAABBB22XX, depending
on the run. The formatted strings are used in the workflows as prefixes to identify targets. Rules that operate on the
runfmt will be prefixed by s1/s1_AAABBB11XX or s1/s1_AAABBB22XX, rules that operate on the sample level
(i.e. after merging) will be prefixed by s1/s1.

Currently, the tests define three different sample organizations.

6 Chapter 2. Configuration guide

https://docs.python.org/3/library/string.html#formatspec

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

sample:
runfmt: "{SM}/{SM}_{PU}_{DT}"
samplefmt: "{SM}/{SM}"

sample_run:
runfmt: "{SM}/{PU}_{DT}/{SM}_{PU}_{DT"}
samplefmt: "{SM}/{SM}"

sample_project_run:
runfmt: "{SM}/{PID}/{PU}_{DT}/{PID}_{PU}_{DT"}
samplefmt: "{SM}/{SM}"

However, it is trivial to add more configurations, should that be deemed necessary.

ngs.settings

Warning: The ngs.settings section is slightly disorganized.

ngs.settings affect settings related to ngs analyses:

ngs.settings:
annotation:

annot_label: ""
transcript_annot_gtf: ""
sources: []

db:
dbsnp: ""

ref: ref.fa
transcripts: []
build: ""

fastq_suffix: ".fastq.gz"
read1_label: "_1"
read2_label: "_2"
read1_suffix: ".fastq.gz"
read2_suffix: ".fastq.gz"
regions: []
sequence_capture:
bait_regions: []

target_regions: []

For all settings, see rules/ngs.settings.

samples

The samples section is one of the few top-level configuration keys that are actually set, in this case to a list of sample
names.

Application settings

Applications, i.e. bioinformatics software, are grouped in sections by their application name. Subsections correspond
to rules, or subprograms. For instance, the entire bwa section looks as follows (with a slight abuse of notation as we
here mix yaml with python objects):

2.1. Snakemake 7

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

bwa:
cmd: bwa
ref: config['ngs.settings']['db']['ref']
index: ""
index_ext: ['.amb', '.ann', '.bwt', '.pac', '.sa']
threads: config['settings']['threads']
mem:
options:

Setting option threads would then override the value in settings, providing a means to fine-tune options on a
per-application basis.

Workflow settings

Finally, the workflows comes with a configuration section called workflow.

2.2 Nextflow

TODO.

8 Chapter 2. Configuration guide

CHAPTER 3

Developer guide

3.1 Summary

• use the issue tracker

• create feature branches and submit pull requests

3.2 Setting up a local copy

See installation section From sources.

3.3 Branching/development model

The development model is based on a stable master branch and an unstable develop branch. The master branch should
be used in production. Pushing to master/develop has been disabled; only pull requests from feature branches are
permitted.

Vincent Driessen’s branching model provides a good model for organizing the development process, and its adoption
is recommended here. It adds some more branch types, of which three will be descriped below: feature, release and
hotfix branches.

3.3.1 Feature branches

Feature branches hold new features for upcoming releases and are branched off develop. Feature branches should be
prefixed with “feature/”:

$ git checkout develop
$ git checkout -b "feature/myfeature"

Once you’ve added the feature you want, push the branch to bitbucket and create a pull request to the develop branch.

9

http://nvie.com/posts/a-successful-git-branching-model/

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

3.3.2 Release branches

Release branches group recent feature changes into a release set. More code additions can be made, although they
should focus on minor fixes. Documentation updates are encouraged.

When creating a release branch, make sure you branch off develop. Furthermore, release branches should be prefixed
with “release/”:

$ git checkout develop
$ git checkout -b "release/X.X.X"

Upon creating a release branch, the version number must be bumped, preferably with bumpversion. First check that
the changes do what you expect:

$ bumpversion --dry-run --verbose --new-version X.X.X part

Note that the part argument should be set to either patch, minor or major, depending on what part is to be updated. If
everything looks ok, bump the version with

$ bumpversion --new-version X.X.X part

The configuration is setup not to tag the commit. Since merging is done on bitbucket, the release tag must be assigned
manually to the master branch, once the release been merged.

When the release branch is finished it is merged into master and master is backmerged into develop. See the gitflow
cheat sheet for more information.

3.3.3 Hotfixes

Occasionally, things break on the master branch that require immediate fixing. This is what hotfixes are for. Impor-
tantly, updates to master must also be merged immediately with develop to keep it in sync. gitflow (see following
section) has builtin support for hotfixes.

Ideally, all hotfixes should be accompanied by a regression test, so that the error doesn’t pop up again.

3.3.4 Using gitflow

It may help to use gitflow to organise work, as it is based on Vincent Driessen’s branching model. The commands
simplify the task of creating feature branches and hotfixes.

To setup gitflow, issue the following in the source code directory:

$ git flow init

which produces (press ENTER at each question):

Which branch should be used for bringing forth production releases?
- master

Branch name for production releases: [master]
Branch name for "next release" development: [develop]

How to name your supporting branch prefixes?
Feature branches? [feature/]
Bugfix branches? [bugfix/]
Release branches? [release/]
Hotfix branches? [hotfix/]

10 Chapter 3. Developer guide

https://danielkummer.github.io/git-flow-cheatsheet/
https://danielkummer.github.io/git-flow-cheatsheet/
https://github.com/nvie/gitflow
http://nvie.com/posts/a-successful-git-branching-model/

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

Support branches? [support/]
Version tag prefix? []
Hooks and filters directory? [/path/to/source/.git/hooks]

Then, to create a feature branch, simply type

$ git flow feature start test

which produces

Switched to a new branch 'feature/test'

Summary of actions:
- A new branch 'feature/test' was created, based on 'develop'
- You are now on branch 'feature/test'

Now, start committing on your feature. When done, use:

git flow feature finish test

Warning: do not issue the finish command locally as it will merge the feature branch into develop. Merging is
only done on bitbucket.

3.4 Issues

For all problems, small or large, use the issue tracker instead of sending emails! The main motivation is that all
developers should be able to follow the discussion and history of any issue of general interest.

3.5 Adding a workflow

Note: WIP: Describe minimum requirements, including

1. tests for all sample organizations

2. example snakefiles and configurations

3.6 Continuous integration

As the number of collaborators on a project grows, code integration problems frequently occur. Continuous integration
is a method for dealing with these issues. Typically, whenever a push is done to the repository, tests are automatically
run on a test server. bitbucket has recently added a service called Pipelines which gives some support for CI. It
runs integration tests in Docker containers. lts-workflows provides a Docker container that packages the basic
dependencies for running tests. Each workflow then provides a separate Docker container that builds on the lts-
workflows container, adding workflow-specific dependencies, for running tests.

3.4. Issues 11

https://en.wikipedia.org/wiki/Continuous_integration

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

12 Chapter 3. Developer guide

CHAPTER 4

The workflow test environment

The workflow test environment1 is built using the pytest framework. All workflows have tests that test minimal
features of a workflow, such as listing rules or printing help messages. In addition, by installing the pytest plugin
pytest_ngsfixtures, the workflows can be tested on small data sets.

4.1 Running workflow tests

There are two different ways to run the tests, depending on installation mode. If the _workflow was installed as a
package, either via python setup.py install or a conda install, running

$ pytest --pyargs workflow

will run the tests. In addition, if pytest_ngsfixtures is installed, the workflow will be run on a small test data set.

lts_workflows provides a number of pytest options (see Additional options). Unfortunately, they are not loaded
when running the tests as described above. Rather, the full path to the test file must be given for the options to load:

$ pytest /path/to/workflow/tests/ -h

The test suite will first setup and install local conda environments necessary for the tests, and then run the tests. Please
note that the intended use of the local conda environments is to run the tests only, not to run analyses based on the
workflows.

Alternatively, by applying the -D option the test conda enviroment setup is disabled. This obviously requires that the
dependencies are already installed (see section Installing dependencies below).

4.2 Additional options

lts_workflows provides a helper function lts_workflows.pytest.plugin.addoptions() for adding

1 This section does not describe how to run the test suite for lts-workflows. Rather, it describes general features of running workflow tests.
Obviously, a workflow has to be installed for this section to apply.

13

http://docs.pytest.org/en/latest
https://github.com/percyfal/pytest-ngsfixtures
https://github.com/percyfal/pytest-ngsfixtures

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

pytest options. Depending on the workflow engine, different options are added. As an example, running the following
setup code

def pytest_addoption(parser):
group = parser.getgroup("ltssm_scrnaseq", "single cell rna sequencing options")
lts_pytest.addoption(group)

in a pytest conftest file will add the following options to the test suite:

single cell rna sequencing options:
--no-slow don't run slow tests
-H, --hide-workflow-output

hide workflow output
-T THREADS, --threads=THREADS

number of threads to use
-D, --disable-test-conda

disable test conda setup; instead use user-supplied
environments, where the activated environment hosts
snakemake

--conda-install-dir=CONDA_INSTALL_DIR
set conda install dir

--conda-update update local conda installation
-2 PYTHON2_CONDA, --python2-conda=PYTHON2_CONDA

name of python2 conda environment [default: py2.7]
-C, --use-conda pass --use-conda flag to snakemake workflows; will

install conda environments on a rule by rule basis

All tests that execute workflows have been marked as slow. To disable these tests, add the --no-slow option. By
default, workflow output is sent to stdout which is captured. If you want to follow progress, add the regular pytest -s
option. The -T option states how many threads/processes snakemake will use and can be set to increase the speed of
the slow tests. Finally, the test environment will check if there is a conda environment called py2.7 and if so, add the
bin path to PATH. Use the -2 option if your python2 conda environment is named differently.

Note that the workflow directories should contain conda environment files environment.yaml and
environment-27.yaml that define the depencies for a workflow. You can apply the latter to you python2 reposi-
tory by issuing

$ conda env update -n python2env -f environment-27.yaml

4.3 Local conda installs

By default, the test setup will automatically download and install all required packages via conda to $HOME/.
conda_env. By passing the option --disable-test-conda (or -D), dependencies will not be installed by
default. The following sections describe the steps needed to setup personal conda environments with the required
packages.

4.3.1 Installing dependencies with deploy_workflow.py

Warning: Due to refactorization, this is currently broken; see issue #1.

The helper script deploy_workflow.py can be employed to install required workflow dependencies in user-
specified conda environments.

14 Chapter 4. The workflow test environment

http://doc.pytest.org/en/latest/writing_plugins.html#local-conftest-plugins
https://bitbucket.org/scilifelab-lts/lts-workflows/issues/1/deploy_workflowpy-is-broken

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

4.3.2 Semi-automated installation of snakemake and dependencies

Setup a conda python3 environment that hosts snakemake:

$ conda create -n py3.5 -c bioconda snakemake python=3.5

Some workflows have python2 program dependencies. Create a conda environment for these packages too:

$ conda create -n py2.7 python=2.7

Every workflow has a conda environment file, environment.yaml and possibly environment-27.yaml that
list the necessary dependencies. You can update your conda python environments like so:

$ conda env update -n=py3.5 -f /path/to/environment.yaml
$ conda env update -n=py2.7 -f /path/to/environment-27.yaml

4.3.3 Semi-automated installation of snakemake and dependencies

Unfortunately, nextflow requires java sdk <=8.0, whereas gatk requires java sdk >=8.0. For this reason, it is recom-
mended to install nextflow in a separate conda environment:

$ conda create -n py3.5 -c bioconda nextflow python=3.5

4.4 Test fixtures

TODO.

4.5 Hints on developing workflows

Use the test run wrapper functions in lts_workflow.pytest.helpers to setup tests. They will create a file
command.sh located in the test output directory that can be rerun to aid in debugging.

4.6 Testing external data sources

If you have data that you want to test, bot whose sample layout is not yet provided by the fixtures, you have to run
snakemake as usual:

$ snakemake -s /path/to/Snakefile -d /path/to/sample_data --configfile /path/to/
→˓config.yaml targetname

You then obviously need to create a config file and a sampleinfo file. You can also use the factory functions in
pytest_ngsfixtures to generate custom fixtures that resemble your sample layout.

4.4. Test fixtures 15

https://github.com/percyfal/pytest-ngsfixtures

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

16 Chapter 4. The workflow test environment

CHAPTER 5

Docker images

lts-workflows includes a docker image percyfal/lts-workflows that serves as a base image for workflows in the
lts-workflows package. It is configured to be fairly lean, containing packages for reproducible research and liter-
ate programming using R and Rmarkdown. Workflows that provide docker images should use percyfal/lts-workflows
as the starting image.

17

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

18 Chapter 5. Docker images

CHAPTER 6

Workflows

Currently the following workflows are available:

• lts-workflows-sm-non-model-toolkit: Snakemake toolkit for analysis of non-model organisms, including work-
flows and rules for doing variant calling, BQSR, VQSR, and demographic modelling

• lts-workflows-sm-scrnaseq: Snakemake workflow for single-cell RNA seqnames

19

http://lts-workflows.readthedocs.io/projects/sm-non-model-toolkit/en/latest/
http://lts-workflows.readthedocs.io/projects/sm-scrnaseq/en/latest/

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

20 Chapter 6. Workflows

CHAPTER 7

Credits

7.1 Development Lead

• Per Unneberg <per.unneberg at scilifelab.se>

• Rasmus Ågren <rasmus.agren at scilifelab.se>

• Leif Väremo Wiggle <leif.varemo at scilifelab.se>

7.2 Contributors

None yet. Why not be the first?

21

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

22 Chapter 7. Credits

CHAPTER 8

History

8.1 0.2.4 (2017-11-14)

• Hotfix: remove versioneer from setup_requirements (issue #24)

8.2 0.2.3 (2017-11-14)

• Add setup requirements to install tagged lts-workflows version in docker image

8.3 0.2.2 (2017-11-13)

• Add options to snakemake_run (issue #23)

8.4 0.2.1 (2017-09-26)

• Minor changes to conda/meta.yaml

• Update docs

• Update development requirements

• Add snakemake utilities

• Add inconsolata fonts to docker

• CRLF to LF and Dockerfile organization

• Make conda builds with conda build-all (issue #22)

• Fix pytest mark for slow tests (issue #19)

23

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

• Add pytest entry point (issue #18)

• Add configfile option to pytest (issue #16)

• Redirect subprocess stderr to stdout and use stdout variable (issue #17)

8.5 0.2.0 (2017-03-21)

• Add docker base image and make it smallish (issue #3)

• Update docs

8.6 0.1.1 (2017-03-01)

• Convert threads argument to string (issue #7)

• Add population layouts to helper function (issue #4)

8.7 0.1.0 (2017-02-12)

• First release on conda.

24 Chapter 8. History

25

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

CHAPTER 9

lts_workflows

9.1 lts_workflows package

9.1.1 Subpackages

lts_workflows.pytest package

Submodules

lts_workflows.pytest.factories module

lts_workflows.pytest.helpers module

lts_workflows.pytest.plugin module

Module contents

lts_workflows.snakemake package

Submodules

lts_workflows.snakemake.config module

Module contents

9.1.2 Submodules

9.1.3 lts_workflows.utils module

9.1.4 Module contents
26 Chapter 9. lts_workflows

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

27

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

28 Chapter 10. Indices and tables

Python Module Index

l
lts_workflows, 26
lts_workflows.pytest, 26
lts_workflows.snakemake, 26

29

lts-workflows Documentation, Release 0.2.4+0.g1cd4ef9.dirty

30 Python Module Index

Index

L
lts_workflows (module), 26
lts_workflows.pytest (module), 26
lts_workflows.snakemake (module), 26

31

	Installation
	Stable release
	From sources

	Configuration guide
	Snakemake
	Nextflow

	Developer guide
	Summary
	Setting up a local copy
	Branching/development model
	Issues
	Adding a workflow
	Continuous integration

	The workflow test environment
	Running workflow tests
	Additional options
	Local conda installs
	Test fixtures
	Hints on developing workflows
	Testing external data sources

	Docker images
	Workflows
	Credits
	Development Lead
	Contributors

	History
	0.2.4 (2017-11-14)
	0.2.3 (2017-11-14)
	0.2.2 (2017-11-13)
	0.2.1 (2017-09-26)
	0.2.0 (2017-03-21)
	0.1.1 (2017-03-01)
	0.1.0 (2017-02-12)

	lts_workflows
	lts_workflows package

	Indices and tables
	Python Module Index

