

Welcome to lp2gh’s documentation!

Contents:

Indices and tables

	Index

	Module Index

	Search Page

Index

Moving Your Bugs, Blueprints and Milestones to GitHub

This document will give you a detailed account of how to transfer your bugs,
blueprints and milestones from Launchpad to GitHub and explain what to do once
you’ve moved.

You’ll Be Using

	python-github3 (included in the lp2gh tree)

	launchpadlib (http://launchpad.net/launchpadlib)

	most of the files in the bin directory

	a launchpad account that has access to your project’s branches (actually the
code only handles anonymous access at the moment)

	a github account

	if you want to be cool, a mapping of your project members’ Launchpad
usernames to their GitHub usernames

Overview

The import process works by first exporting the current content of the bugs,
blueprints and milestones associated with your project, and then feeding those
files into the import tools.

The import tools will push them to GitHub while translating some of their
content to point to the new issue numbers and adding a summary to the
description that shows some additional history of the issue and a link to the
original Launchpad bug or blueprint.

They will all be imported as GitHub issues and tagged appropriately.

Exporting Your Bugs

Bugs are so Launchpad, we want to make some Issues, but the first step is
getting all the data.

To begin the export run the following:

<your_project_name> is the part after 'lp:', e.g. nova instead of lp:nova
$ bin/lp2gh-export-bugs <your_project_name> > my_bugs.json

That will export the bugs from Launchpad and dump a JSON file that looks a bit
like:

[
 {
 "status": "Fix Released",
 "security_related": false,
 "description": "nova/objectstore/handler.py\nimageResoure#render_GET\n\nYou can call image.is_authorized(context, True)",
 "tags": [],
 "duplicates": [],
 "assignee": "xtoddx",
 "milestone": "austin",
 "owner": "xtoddx",
 "id": 653344,
 "duplicate_of": null,
 "title": "Image downloading should check project membership and publicity settings",
 "comments": [
 {
 "owner": "dendrobates",
 "content": "what is the status if this fix",
 "date_created": "2010-10-19T16:12:08Z"
 },
 {
 "owner": "xtoddx",
 "content": "Fix in lp:~xtoddx/nova/imagedownload, proposing now",
 "date_created": "2010-10-19T23:42:40Z"
 }
],
 "importance": "Critical",
 "lp_url": "https://bugs.launchpad.net/bugs/653344",
 "date_created": "2010-10-01T23:50:09Z"
 }
]

It may take a while for big projects, but should give you some progress updates
as it moves along.

Keep track of that file, you are going to use it again later.

Exporting Your Milestones

Pretty much the same process here as for exporting bugs:

<your_project_name> is the part after 'lp:', e.g. nova instead of lp:nova
$ bin/lp2gh-export-milestones <your_project_name> > my_milestones.json

Which will result in a my_milestones.json that looks like:

[
 {
 "active": false,
 "date_targeted": null,
 "name": "2010.1-rc2",
 "summary": "Austin Release Candidate 2"
 },
 {
 "active": true,
 "date_targeted": "2011-09-10T00:00:00Z",
 "name": "diablo-integrated-freeze",
 "summary": ""
 }
]

Exporting Your Blueprints

The same process here as for exporting bugs:

<your_project_name> is the part after 'lp:', e.g. nova instead of lp:nova
$ bin/lp2gh-export-blueprints <your_project_name> > my_blueprints.json

Which will result in a my_blueprints.json that looks like:

[
 {
 "whiteboard": "Setting this to diablo-4 because it is vital to have for our next release, but we haven't fully defined all of the functions needed. Some of this can be informed by the effort to move dashboard over. --vish",
 "name": "admin-account-actions",
 "title": "Admin API: Actions to perform on accounts",
 "url": "http://wiki.openstack.org/NovaAdminAPI#A.2BAC8-accounts.2BAC8.7Baccount_id.7D.2BAC8-action",
 "milestone": "diablo-4",
 "bugs": [],
 "definition_status": "Approved",
 "priority": "Essential",
 "assignee": "rackspace-titan",
 "dependencies": [
 "api-additions"
],
 "lp_url": "https://blueprints.launchpad.net/nova/+spec/admin-account-actions",
 "drafter": "glen-campbell",
 "lifecycle_status": "Not started",
 "date_created": "2011-04-13T18:59:40Z",
 "summary": "As a service provider, Rackspace needs to perform certain actions on a per-account basis. For example, an account needs to be suspended for violations of terms of service or non-payment. This specification is for a set of actions that can be performed on an account, which usually translates to actions performed on all the servers belonging to an account. ",
 "implementation_status": "Not started"
 }
]

Getting All That Stuff On To GitHub

This part starts getting a bit more complicated because the order you do things
in will matter more. While it is possible to import only bugs or only blueprints or only milestones this guide will focus on the more involved process of
importing all three.

The general way of the importers is that as they are run they produce an output
that is a mapping of the old Launchpad identifiers to the new GitHub
identifiers. Those mappings will be used by other importers to support the
translation of content in the bugs, etcetera.

Importing Milestones

Milestones don’t have any other dependencies so we’ll import those first.

You’ll need to have your my_milestones.json file around:

$./bin/lp2gh-import-milestones --username=<your_github_username> \
 --password=<your_github_password> \
 --repo_user=<target_github_repo_user> \
 --repo_name=<target_github_repo_name> \
 my_milestones.json > my_milestones_map.json

Which will output a my_milestones_map.json that looks like:

{
 "diablo-4": 3,
 "cactus-gamma": 9,
 "diablo-1": 6,
 "diablo-2": 5,
 "diablo-3": 4,
 "bexar-gamma": 13,
 "2010.1-rc2": 1,
 "2011.1.1": 10,
 "austin-final-freeze": 17,
 "2010.1": 15,
 "2011.2": 7,
 "austin-feature-freeze": 18,
 "2011.1": 11,
 "bexar-rc": 12,
 "austin-rc": 16,
 "austin": 14,
 "cactus-rc": 8,
 "diablo-integrated-freeze": 2
}

And will result in a a variety of empty milestones, preserving any targeted
dates.

Importing Bugs

Similar to importing the milestones, but will make use of the mapping file
created earlier to allow attaching bugs to milestones:

$./bin/lp2gh-import-bugs --username=<your_github_username> \
 --password=<your_github_password> \
 --repo_user=<target_github_repo_user> \
 --repo_name=<target_github_repo_name> \
 --milestones_map=my_milestones_map.json
 my_bugs.json > my_bugs_map.json

This will output a my_bugs_map.json file that looks similar to:

[INSERT BUGS OUTPUT]

And will result in all the issues being created over three passes, the first
pass will generate all the labels (tags in Launchpad) that are being used by
any bug. The second pass will create the basic content of the issue as it
existed on Launchpad. Finally, the third pass will use the new bug mapping
to translate autolinks from the Launchpad bug numbers to the GitHub issue
numbers, add a summary to the issue description that includes additional
information from the launchpad history of the project, and finally add all
the comments made so far on the issue.

The summary will currently look similar to:

Imported from Launchpad using lp2gh.

date created: 2011-04-04T17:52:50Z
owner: tpatil
assignee: mihgen
the launchpad url was https://bugs.launchpad.net/bugs/750544

The comments will look similar to:

(by blamar)
What version of glance are you running? Although snapshotting doesn't work for me in nova trunk, this looks to be a glance issue?

Moving Your Branches from Launchpad to GitHub

This document will give you a detailed account of how to transfer your branches
from Launchpad to GitHub and explain what to do once you’ve moved.

You’ll Be Using

	git-bzr-ng (http://github.com/termie/git-bzr-ng)

	python-github3 (included in the lp2gh tree)

	launchpadlib (http://launchpad.net/launchpadlib)

	bin/lp2gh-export-branches

	git and bzr, obviously

	a launchpad account that has access to your project’s branches (actually the
code only handles anonymous access at the moment)

	a github account

Overview

The import process works by getting a list of all Launchpad branches associated
with your project, exporting them to a local git repository and then using a
normal git command to push to GitHub. The original owners of those branches
will then pull the changes in to their forks (example commands given below).

The exporter does some minor modifications along the way to ensure that branch
names will be git-compliant, specifically replacing the tilde ‘~’ character
with a dash ‘-‘ character.

Exporting Your Branches

This process is easy to get started but will likely take a while if you have
a large project with many branches, you will effectively be making a bzr
checkout _and_ git checkout of each branch.

To begin the export run the following:

<your_project_name> is the part after 'lp:', e.g. nova instead of lp:nova
$ bin/lp2gh-export-branches <your_project_name>

Note that this will only work on base projects, if you are trying to get a
specific branch only, I refer you to just using git-bzr-ng directly.

That will make a directory named <your_project_name> and begin importing all
of the branches associated with it. The branches will be named according to the
template <owner>_<branch_name> so that it will be easier for your project
members to find their branches afterwards.

You may want to take this chance to create the GitHub project you will import
to, if you haven’t already.

Setting Up Your GitHub Project

Let’s assume your project is named ‘nova’ and will be owned by an organization
named ‘openstack’ that you can create repositories in and your github user is
‘termie’. To reduce the size of the main repository you aren’t going to upload
all the branches to the fork owned by the organization, we’re just going to
push master:

$ cd nova
$ git push git@github.com:openstack/nova master

This will push the ‘base’ code to the main repository. Once it is done, go to
that project on github.com, http://github.com/openstack/nova, and fork it. We
are going to upload the rest of the branches to your fork (thanks for taking
one for the team!) and you’ll probably want to delete them all eventually:

$ git push --all git@github.com:termie/nova

That will take a little while, though probably much less time than the import.

Also, for the moment, it will also push all of the bzr/* tracking branches,
which is a waste of space and time, but easier than coming up with some way
of filtering them out (until somebody tells me how). If you really want to you
can delete those extra branches before pushing with:

$ git branch -D <branch_name>

or delete them afterwards with:

$ git push git@github.com:termie/nova :<branch_name>

Where the colon in front means, effectively, “push nothingness to
<branch_name>”

Getting Your Project Members On Board

Now that you’ve got all the code related to the project on to GitHub we still
need to get it into the hands of the original authors. Here’s what each of them
should do:

First, go to http://github.com/openstack/nova and fork that project.
$ git clone git@github.com:<your_name>/nova
$ cd nova

This will import <export_branch_name> as <branch_name> in your repository
so you can remove your name from the branch.
Repeat for each branch you wish to import.
$ git fetch http://github.com/termie/nova <export_branch_name>:<branch_name>

Push all your local branches to your GitHub fork.
$ git push -a origin

Vwalla! Now you can work on any of those branches by doing:

$ git checkout <branch_name>

And later pushing back to GitHub by:

$ git push origin <branch_name>

Read on for some strategies for managing your project’s forks and branches.

Continuing Your Development on GitHub

There are plenty of strategies teams use for developing with git, but this one
is geared at those of you making the Launchpad to GitHub transition.

Forks and Branches, Oh My!

Launchpad is a project-centric environment, so you will most likely have a
GitHub organization that owns the ‘main’ repository and encourage all members
and newcomers to fork from that. This means every developer should have a fork
of the organization’s repository.

Within that fork, developers will make branches to support their feature work
and periodically, usually when about to issue a pull request – GitHub’s version
of a merge proposal, pull down changes from the upstream organization master
into their master. Since this will happen relatively often it is easiest to add
an additional ‘remote’ target for it:

$ git remote add openstack http://github.com/openstack/nova.git

To update your feature branches before issuing a pull request you will do
something like:

$ git checkout master
$ git pull openstack
$ git checkout <branch_name>

If you prefer to merge
$ git merge master

Or if you prefer to rebase (I do)
$ git rebase master

And if you want to get fancy and use interactive rebase
$ git rebase -i master

Either way, at the end you should be left with a branch that should merge
cleanly with master once your pull request is approved.

Continuous Integration

A popular pattern on Launchpad is one of automating merges into the main
repository and gating that automation on continuous integration testing. For
this Launchpad often uses Jenkins and Tarmac, and on GitHub for the moment I’d
recommend using Jenkins and Roundabout for similar results.

Roundabout is triggered off of keywords used in comments on pull requests,
combined with filters on group membership (and is generally easily to hack to
add additional filters). Typically this will be checking for some number of
comments with a single ‘LGTM’ made by a member of a given team in an
organization.

Roundabout will then attempt to perform the merge, run all the tests via
Jenkins and if the result passes, push that merge to the main repository. If
the tests fail it will update the pull requests with the output and refuse to
merge.

 nav.xhtml

 Table of Contents

 		Welcome to lp2gh's documentation!

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

