

    
      
          
            
  
[image: _images/logos_combined_spaced.jpg]



Low-dimensional Energy Balance Models

This project is a python-implementation of low-dimensional energy balance models (EBMs), built up from a set of physical functions, combined to represent the behaviour of earth’s climate through space and time. The implementations of this project are mainly based on a set of publications, especially from Michail Budyko and William Sellers. (For the full list see References)

The project was started as part of my bachelor thesis, Benjamin Schmiedel (2019), at the Institute of Environmental Physics, University of Heidelberg, under the supervision of Dr. Kira Rehfeld, group leader of STACY [http://www.iup.uni-heidelberg.de/institut/forschung/groups/palaeo/index_stacy.html] (State and timescale-dependency of climate variability from the last Glacial to present day).

Continuing work was carried out by me as scientific assistant, supervised by Dr. Kira Rehfeld, and as intern at the Geophysical Institute, University of Bergen, supervised by Ingo Bethke. Funding through the Emmy Noether programme of the German Research foundation and the european Erasmus+ Program is gratefully acknowledged.


Welcome to the lowEBMs documentation!

This documentation primarily aims on explaining the structure of the sourcecode and show how to use it for your own purpose.
It is now the most well documented sourcecode, so if questions or concerns about implementations come up, please contact me.
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Physical Background / Model Types

With this project different types of EBMs can be used to run simulations.
However, the versatility of the resolution is limited to low dimensional EBMs from zero dimensionsal EBMs to one one dimensional EBMs resolved over the latitudes. It would be nice and is planned by me to extend this project to higher resolutions (for more information see ToDo)


Physical Background

In general, energy balance models describe the behaviour of a planet’s energy balance over time. Here, the focus is obviously on the earth’s energy balance, but EBMs are generally not restricted to describe the earth’s energy balance.


[image: _images/EB.png]
Earth’s energy balance [IPCC, 2013]



Here shown is a 0D schematic of the earth’s energy balance like it is often given in the standard literature. The radiative energy fluxes (in \(Wm^{-2}\)) of the earth are indicated with their strength and direction. However, EBMs describe the energy balance mostly with the crucial parts only, which means that small or strongly regional energy fluxes are neglected.

EBMs are commonly restricted to the downward radiative energy flux (\(R_{down}\)), the upward radiative energy flux (\(R_{up}\)), in the case of the treated 1D-EBMs to the latitudinal transfer energy fluxes (\(F_{transfer}\)) and in some cases of to additional forcing energy flux (\(F_{forced}\)) (e.g. Carbon Dioxide forcing). This is of course no necessity rather than a general identification of EBMs since they are specifically characterized by their simplicity.

The physical basis of EBMs can be expressed in a model equation which commonly has the following form:


\[C \cdot \frac{dT}{dt} = R_{down} + R_{up} + F\]

where C is the heatcapacity, \(\frac{dT}{dt}\) the temperature tendency and \(R_{down}\), \(R_{up}\), \(F\) the energy fluxes which are included.




Model Types


0D-EBM

If one is interested in the 0D case, the model equation above suffices to describe the energy balance over time. However, \(F\) is neglected in general and only used in specific cases. By using the following discretizations:


\[\begin{split}R_{down} & = (1-\alpha)\cdot Q \\
R_{up} & = - \epsilon\sigma T^4\end{split}\]

with the albedo \(\alpha\), the solar insolation \(Q\), the Stefan-Boltzmann constant \(\sigma\), and the emissivity \(\epsilon\), the simplest form of an EBM is described by:


\[C \cdot \frac{dT}{dt} = R_{down} + R_{up} = (1-\alpha) \cdot Q - \epsilon\sigma T^4\]

This equation can easily be solved analytically, but to observe the behaviour of the energy balance over time a numerical algorithm can be used to solve this equation.
With the chapter How to use it will be investigated in detail how this project implements such an EBM. Additionally there is a demonstration file given once you have installed this project.


Note

The dependencies of parameters like \(\alpha\) on variables like the temperature \(T\) are strongly related to the inbound type of Functions and is therefore not specified while formulating this model equations.






1D-EBM

The description of 1D EBMs does not differ much from 0D EBMs. In 1D EBMs the earth is commonly described by a grid of latitudinal bands.
The model equation as introduced above can directly be transfered to be valid for each latitudinal band seperately.

As already mentioned, 1D EBMs use latitudinal transfer energy fluxes \(F_{transfer}\) which consider an exchange of energy between latitudinal bands. This term is crucial, because the energy balance resolved over the latitudes shows strong differences between equator and poles due to the stronger insolation at the equator.

By identifying each latitudinal band and all its parameters with an index i, the simplest form of an 1D-EBM is described by:


\[C \cdot \frac{dT_i}{dt} = R_{down,i} + R_{up,i} + F_{transfer,i}\]

There are many different approaches to discretize these terms in 1D. Because this project was started to implement two specific EBMs, one developed by Michail Budyko and one by William Seller, both published in the late 1960s, these two discretizations will be shown.


Budyko-type model

This EBM constructed by Michail Budyko uses various assumptions, supported by global earth observation data. The key features of this model are:


	An empirically determined upward radiation flux with linear dependence on temperature, in its simplest form described by \(R_{up}=- (A+B\cdot T)\).


	An albedo seperated into three different regions with dependence on latitude (or by customization on temperature), with high albedo values towards the polar regions and low albedo values in the equatorial regions.


	A symmetric diffusive transfer energy flux with dependence on the difference of zonal (ZMT) to global (GMT) mean temperature.


	A grid resolving latitudinal bands of any width (in this project mostly used is a width of 1°)




The detailed physical formulation of the terms (and additional extensions) can be viewed along with the implementations (Functions).

An example zonal mean temperature distribution:


[image: _images/Budyko_ZMT.png]





Sellers-type model

The EBM constructed by William Seller is adapted even more to global earth observation data than the Budyko-type model and thereby is constructed with more complex terms. The key features of this model are:


	The Stefan-Boltzmann radiation law as upward radiation flux extended with a term considering atmospheric attenuation.


	An albedo described by an empircal law with linear dependence on temperature and surface elevation.


	A transfer energy flux P seperated into three different components, the atmospheric water vapour transfer, the atmospheric sensible heat transfer and the oceanic sensible heat transfer. The total transfer energy flux \(F\) of one gridbox is given by the difference of northward and southward transfer energy flux \(P\) (the sum of those three components from the northern/southern boundary).


	A grid resolving the earth with latitudinal bands of 10° width. Hence, the earth is resolved by 18 latitudinal bands.




The detailed physical formulation of the terms (and additional extensions) can be viewed along with the implementations (Functions).

An example zonal mean temperature distribution:


[image: _images/Sellers_ZMT.png]












          

      

      

    

  

    
      
          
            
  
Installation


Dependecies

To properly use this package there are several other packages required:


	Python (2.7 should work but I recommend higher versions, 3.5, 3.6 …)


	numpy (for mathematical calculations)


	matplotlib (for plotting)


	netCDF4 (for comparison to observational data stored as netCDF-files)


	tqdm (for progress visualization)







Python Package

The simplest way to install lowEBMs is from source.
To download and install lowEBMs with all its dependencies, go to the command line and type:

pip install lowEBMs





or (if you have python 2 and python 3 installed and want to install it on python 3):

pip install lowEBMs





Alternatively, you can clone the git repository of the source code and manually run the setup.py which installs the package with all its dependencies:

git clone https://github.com/BenniSchmiedel/Low-dimensional-EBMs.git

python setup.py install





(keep in mind to change to the directory where you cloned the repository to).




Export Tutorial Files

lowEBMs comes with a list of tutorial files supplemented in a subfolder of the package. When the package is installed via pip, it is automatically inbound in your specific python environment. To easily extract those jupyter notebooks and configuration.ini files to your preferred directory, do the following:

Open the terminal, change your directory to the one where you want the files and use:

python -c "from lowEBMs import Tutorial_copy; Tutorial_copy()"






Note

You can specify the output directory as argument with Tutorial_copy(path='/outputdir')






Export Forcing Files

There are also PMIP3 forcing datasets included which can be exported the same way as the tutorial files.

Open the terminal, change your directory to the one where you want the files and use:

python -c "from lowEBMs import Forcing_copy; Forcing_copy()"






Note

You can specify the output directory as argument with Forcing_copy(path='/outputdir')









          

      

      

    

  

    
      
          
            
  
How to use

Here described is how you use a given input, which initializes an EBM, to run a simulation with it.

We will write a small python script, which will do this in a few steps. As it is easier to visualize the output in a plot and modify it, I recommend to perform this steps in a jupyter notebook.

Skip detailed description


Step 0: Import packages

Before you can use any module of this package you have to import the core modules:

import matplotlib.pyplot as plt
import numpy as np
from lowEBMs.Packages.Configuration import importer
from lowEBMs.Packages.Variables import variable_importer
from lowEBMs.Packages.RK4 import rk4alg
from lowEBMs.Packages.ModelEquation import model_equation








First Step: Import model configuration

The way this project is built up enables to take any physical function implemented and merge them to formulate the desired EBM.
The configuration has to be given manually and is stored in a configuration.ini file. Details on how to create and structure .ini files is given in input.


Important

The configuration.ini file will provide the physical sense of the EBM!



For now you can simply use the EBM0D_simple_config.ini file which imports a 0D EBM with a model run over 10 year and a stepsize of integration of 1 day. A demonstration on how to reproduce this .ini file is given in Example Input 0D-EBM.

To import the information from this file into the program use importer():

configuration=importer('EBM0D_simple_config.ini')






Note

In case you work in another directory than the installation directory of the project or get the error ‘File not found’, add the additional argument path: importer('filename',path='path/to/your/file'). The path can be a relative or full path to where your configuration.ini is located.



configuration is an dictionary which contains all required input parameters. To seperate them for a clearer structure you can use:

eq=configuration['eqparam']
rk=configuration['rk4input']
fun=configuration['funccomp']
ini=configuration['initials']





Those are four dictionaries which contain the information needed for the base equation, the runge-kutta algorithm, the functions used and the initial conditions.




Second Step: Import variables

As next step the information from the configuration has to be imported into the programs variablespace. To do so use variable_importer():

variable_importer(configuration)








Third Step: Start the simulation

Now we are ready to run the algorithm with rk4alg(). It requires the model_equation and the dictionaries we seperated before (maintain the order):

outputdata=rk4alg(model_equation,eq,rk,fun)





Depending on your settings the algorithm will need some time until it prints Finished!.




Final Step: Evaluating the output

The function rk4alg return three arrays, the Time, zonal mean temperature (ZMT) and global mean temperature (GMT). Other variables of interest, for example the grid specifications, can be accessed by importing the variables variablespace and additional constants by importing the constants class:

from lowEBMs.Packages.Variables import Vars
    import lowEBMs.Packages.Constants as const





and then return the desired variables by their specified name, for example:

latitudinal_grid=Vars.Lat





For detailed information about output variables see section output.

You can plot the global temperature over time with (with time conversion):

plt.plot(Time/const.time_sec_year,GMT)
plt.xlabel('time [years]')
plt.ylabel('GMT [K]')





and you get something like this (for the simple 0D EBM):


[image: _images/GMT12.png]
with an initial temperature of 12°C (285K)




[image: _images/GMT17.png]
with an initial temperature of 17°C (290K)






Putting it together

The summary of what you need to get the model running. Import packages:

import matplotlib.pyplot as plt
import numpy as np
from lowEBMs.Packages.Configuration import importer
from lowEBMs.Packages.Variables import variable_importer
from lowEBMs.Packages.RK4 import rk4alg
from lowEBMs.Packages.ModelEquation import model_equation





and run the specific modules:

configuration=importer('EBM0D_simple_config.ini')
eq=configuration['eqparam']
rk=configuration['rk4input']
fun=configuration['funccomp']
variable_importer(configuration)
Time,ZMT,GMT=rk4alg(model_equation,eq,rk,fun)





This demonstration also exists as a jupyter notebook in the ‘Tutorials/’ directive of this project (EBM0D_simple.ipynb).







          

      

      

    

  

    
      
          
            
  
Input

All the input required to run an EBM with this source code is provided by a configuration.ini file which you have to create.
As already mentioned in the section How to use:


Important

The configuration.ini file will provide the model setup and physical sense of the EBM!



Here shown is, how this file is structured and which syntax has to be maintained to make it readable to the importer function.

There are four main components of the file, the modelequation parameters [eqparam], the runge-kutta parameters [rk4input], the initial condition parameters [initials] and physical functions with their specific parameters enumerated with [func0], [func1] and so on.


Important

To define which function you add in [func], insert the name of the function as parameter func=name, then add the required parameters below (for available options see Configuration options and for their physical background see Functions).



If you want to put together a new model simply create a textfile with the suffix .ini and the following style:

#Initial model setup & algorithm parameters
#------------------------------------------
[eqparam]

[rk4input]

[initials]

#Model structure & physical equation parameters
#----------------------------------------------
[func1]

[func2]

.
.
.






Note

The order of your sections doesn’t matter as long as the headers are correctly labeled.



Now each section has to be filled with parameters. [eqparam], [rk4input] and [initials] always contain the same parameters since they define how the algorithm runs. The func-sections have to be modified since they define which model equation the algorithm solves.


Configuration options

For a detailed definition of the options available for the model setup see here:



	Configuration-Section Options
	[eqparam], [rk4input] and [initials]

	[func]
	flux_down Options

	flux_up Options

	transfer Options

	forcing Options
















Example Input 0D EBM

For the 0D-EBM (the EBM0D_simple_config.ini), the model setup might look like this:

#Initial model setup & algorithm parameters
#------------------------------------------
[eqparam]
c_ao=70*4.2e6

[rk4input]
number_of_integration=365*10
stepsize_of_integration=60*60*24
spatial_resolution=0
both_hemispheres=True
latitudinal_circle=True
latitudinal_belt=False

eq_condition=False
eq_condition_length=100
eq_condition_amplitude=1e-3

data_readout=1
number_of_externals=0

[initials]
time=0
zmt=273+15
gmt=273+15
initial_temperature_cosine=False
initial_temperature_amplitude=30
initial_temperature_noise=True
initial_temperature_noise_amplitude=5





If you now want to give a model structure with a downward radiative energy flux and a upward radiative energy flux, this might look like this:

#Model structure & physical equation parameters
#----------------------------------------------
[func0]
func=flux_down.insolation
q=342
m=1
dq=0

albedo=albedo.static
albedoread=True
albedoparam=[0.3]

noise=False
noiseamp=342*0.03
noisedelay=1
seed=True
seedmanipulation=0

sinusodial=False
convfactor=1
timeunit='annualmean'
orbital=False
orbitalyear=0

[func1]
func=flux_up.planck
activation=True
grey=0.612
sigma=const.sigma











          

      

      

    

  

    
      
          
            
  
Configuration-Section Options


[eqparam], [rk4input] and [initials]

The options of these sections are always the same and are always required! After the Configuration.importer function processes the .ini-file, these options are distributed to the functions of the model algorithm. For more information about the parameters, for [eqparam] see ModelEquation, for [rk4input] see variable_importer and for [initials] see variable_importer:

[eqparam]
C_ao=70*4.2e6

[rk4input]
number_of_integration=365*10
stepsize_of_integration=60*60*24
spatial_resolution=0
both_hemispheres=True
latitudinal_circle=True
latitudinal_belt=False

eq_condition=False
eq_condition_length=100
eq_condition_amplitude=1e-3

data_readout=1
number_of_externals=0

[initials]
time=0
zmt=273+15
gmt=273+15
initial_temperature_cosine=False
initial_temperature_amplitude=30
initial_temperature_noise=True
initial_temperature_noise_amplitude=5








[func]

The options for a [func] section are all physical functions defined in Functions which describe an Energy flux. There are four classes which contain such functions, Functions.flux_down, Functions.flux_up, Functions.transfer and Functions.forcing.

The functions and examples of their required parameters are listed here after their class.


Important

There may only be one option each of Functions.flux_down, Functions.flux_up and  Functions.transfer be used while multiple functions of Functions.forcing might be used.




flux_down Options

There is only one option, Insolation:

[func0]
func=flux_down.insolation
q=1
m=1
dq=0

albedo=albedo.dynamic_bud
albedoread=True
albedoparam=[273.15-5,273.15-15,0.32,0.5,0.75]

noise=False
noiseamp=342*0.03
noisedelay=1
seed=True
seedmanipulation=0

solarinput=True
convfactor=1
timeunit='annualmean'
orbital=False
orbitalyear=0








flux_up Options

Option 1, Budyko clear sky:

[func1]
func=flux_up.budyko_noclouds
activation=True
a=210
b=2.1





Option 2, Budyko cloudy sky:

[func1]
func=flux_up.budyko_clouds
activation=True
a=230.31
b=2.2274
a1=3.0*15.91
b1=0.1*15.91
fc=0.5





Option 3, Stefan-Boltzmann radiation:

[func1]
func=flux_up.planck
activation=True
grey=0.612
sigma=const.sigma





Option 4, Sellers:

[func1]
func=flux_up.sellers
activation=True
m=0.5
sig=const.sigma
gamma=1.9*10**(-15)
k=1








transfer Options

Option 1, Budyko transfer:

[func2]
func=transfer.budyko
beta=3.18
read=True
activated=True





Option 2, Sellers transfer:

[func2]
func=transfer.sellers
readout=True
activated=True
k_wv=10**5
k_h=10**6
k_o=10**2
g=9.81
a=2/100
eps=0.622
p=1000
e0=1700
L=const.Lhvap/1000
rd=const.Rd/1000
dy=1.11*10**6
dp=800
cp=const.cp
dz=2000
l_cover=0.5
radius=const.a
cp_w=4182
dens_w=998
factor_wv=1
factor_air=1
factor_oc=1
factor_kwv=1
factor_kair=1








forcing Options


Important

If you use multiple forcing.random and forcing.predefiend you have to increase the value of the option forcingnumber by 1, this will create an additional space in the output-array and an internal counter of the forcings.



Option 1, Random forcing:

[func3]
func=forcing.random
forcingnumber=0
start=1958
stop=2018
steps=1/365
timeunit='year'
strength=10
frequency='rare'
behaviour='exponential'
lifetime=365
seed=None
sign='negative'





Option 2, Imported predefined forcing:

[func3]
func=forcing.predefined
forcingnumber=0
datapath="../Config/Data/"
name="EVA_800_2000.txt"
delimiter=","
header=1
footer=0
col_time=0
col_forcing=1
timeunit='year'
bp=False
time_start=0
k_output=1
m_output=0
k_input=1
m_input=0





Option 3, Imported 1D predefined forcing:

[func3]
func=forcing.predefined1
forcingnumber=0
datapath="../Config/Data/"
name="Forcingdata1D.csv"
delimiter=","
header=1
footer=0
col_time=0
colrange_forcing=[1,19]
timeunit='year'
bp=False
time_start=0
k_output=1
m_output=0
k_input=1
m_input=0





Option 4, Imported CO2 forcing after Myhre:

[func3]
func=forcing.co2_myhre
A=5.35
C_0=280
CO2_base=280
datapath="../Config/Data/"
name="CO2data.csv"
delimiter=","
header=0
footer=0
col_time=3
col_forcing=8
timeunit='year'
bp=False
time_start=0





Option 5, Imported orbital parameter data:

[func3]
func=forcing.orbital
datapath="../Config/Data/"
name="Orbitaldata.csv"
delimiter=","
header=0
footer=0
col_time=0
col_ecc=1
col_per=2
col_obl=3
timeunit='year'
bp=False
time_start=0
initial={'ecc': 0.017236, 'long_peri': 281.37, 'obliquity': 23.446}
perishift=180





Option 6, Imported total solar irradiance:

[func3]
func=forcing.solar
datapath="../Config/Data/"
name="tsi_SBF_11yr.txt"
delimiter=""
header=4
footer=0
col_time=0
col_forcing=1
timeunit='year'
bp=False
time_start=0
k_output=1
m_output=0
k_input=1
m_input=0





Option 7, Imported AOD forcing:

[func3]
func=forcing.aod
datapath="../Config/Data/"
name="AODdata.csv"
delimiter=","
header=0
footer=0
col_time=0
col_forcing=1
timeunit='year'
bp=False
time_start=0
k_output=1
m_output=0
k_input=1
m_input=0













          

      

      

    

  

    
      
          
            
  
Output

This chapter describes which variables can be printed out and how.


Note

Since longer model runs can be heavily memory-consuming the general frequency of data-readout can be adjusted in the configuration.ini.
The parameter data_readout indicates on which step the data is read. 1 for every, 2 for every second …



There are two types of data to print.

The first type are the primary variables: time and temperature. They are returned directly by the algorithm (for details see How to use or RK4).

The second type are secondary variables, such as the albedo or the insolation, which might be of interest to observe. They are stored by the Variables package within the class Vars.
Most of them are written into the dictionary Vars.Read and callable with:

from Variables import Vars
Vars.Read





and contains the following variables, callable with:

cL,C,F,P,Transfer,alpha,BudTransfer,solar,noise,Rdown,Rup,ExternalOutput,CO2Output,SolarOutput,AODOutput

Insolation_over_time=Vars.Read['solar']





Beneath the variables in Vars.Read, there are additional variables which can be printed, for example the following static variables:

Area=list
bounds=list
latlength=list
External_time_start=float
CO2_time_start=float





All of them are callable by:

from Variables import Vars
Vars.VARIABLENAME





The description of all output variables is given in chapter Variables.





          

      

      

    

  

    
      
          
            
  
Tutorials

Here given is a list of tutorial-/demonstration-EBMs which are supplemented within the installation directory under ~/lowEBMs/Tutorials/ or can otherwise be accessed from the git repository under
https://github.com/BenniSchmiedel/Climate-Modelling/tree/master/lowEBMs/Tutorials.


EBM tutorial files:


	Tutorials


	0D EBM (simple)


	0D EBM (\(CO_2\) forced)


	0D EBM (volcanic forced)


	1D EBM Budyko-type (static albedo)


	1D EBM Budyko-type (temperature-dependant albedo)


	1D EBM Sellers-type (temperature-dependant albedo)


	1D EBM Sellers-type, Volcanic Forcing










For the physical background see Model types and the explanation of usage see How to use. The explanation of additional functions and ther usage can be looked up in the functions’ definitions or in the referenced literature.


0D EBM (simple)

A 0D EBM equipped with:


	constant absorbed downward solar radiation flux


	upward radiation flux according to the Stefan-Boltzmann law







0D EBM (\(CO_2\) forced)

A 0D EBM equipped with:


	constant absorbed downward solar radiation flux


	upward radiation flux according to the Stefan-Boltzmann law


	\(CO_2\) radiative forcing according to estimates by Myhre




The tutorial-file of this EBM uses a \(CO_2\)-forcing based on 1958 - present atmospheric \(CO_2\)-concentrations (the Keeling-curve)




0D EBM (volcanic forced)

A 0D EBM equipped with:


	constant absorbed downward solar radiation flux


	upward radiation flux according to the Stefan-Boltzmann law


	volcanic radiative forcing given by the difference in \(Wm^{-2}\)




The tutorial-file of this EBM uses a randomly generated radiative forcing as volcanic-forcing. To truly consider volcanic radiative forcing the gas concentrations have to be converted into the amount of radiative forcing which is not implemented for now.




1D EBM Budyko-type (static albedo)

A 1D EBM equipped with:


	static albedo distribution with three regions of albedo regions → constant absorbed downward solar radiation flux


	upward radiation flux according to Budyko’s radiation law


	a symmetric diffusive transfer energy flux according to Budyko




The parameters of the tutorial-file are chosen to reproduce the EBM as it was introduced by Budyko (1968).




1D EBM Budyko-type (temperature-dependant albedo)

A 1D EBM equipped with:


	temperature dependant albedo distribution with three regions of albedo regions
→ dynamic absorbed downward solar radiation flux


	upward radiation flux given by the empirical law according to Budyko


	a symmetric diffusive transfer energy flux according to Budyko




The parameters of the tutorial-file are chosen to reproduce the EBM as it was introduced by Budyko (1968).
The temperature dependence of the albedo is defined in Functions.




1D EBM Sellers-type (temperature-dependant albedo)

A 1D EBM equipped with:


	dynamic albedo distribution with a continuous temperature dependant albedo function → dynamic absorbed downward solar radiation flux


	upward radiation flux given by an edited Stefan-Boltzmann radiation law according to Sellers (1969)


	transfer energy flux according to Sellers


	temperature distributions corrected by the average latitudinal band elevation




The parameters of the tutorial-file are chosen to reproduce the EBM as it was introduced by Sellers (1969).




1D EBM Sellers-type, Volcanic Forcing

A 1D EBM equipped with:


	dynamic albedo distribution with a continuous temperature dependant albedo function → dynamic absorbed downward solar radiation flux


	upward radiation flux given by an edited Stefan-Boltzmann radiation law according to Sellers (1969)


	transfer energy flux according to Sellers


	temperature distributions corrected by the average latitudinal band elevation


	volcanic radiative forcing, imported from an external dataset




The parameters of the tutorial-file are chosen to reproduce the EBM as it was introduced by Sellers (1969).
The volcanic radiative forcing was created with the ForcingGenerator-module, an adopted simplified version of the EVA-Generator from Toohey (2016).







          

      

      

    

  

    
      
          
            
  
Source Code

The project is seperated onto 5 python-packages with several submodules.

The coremodule is the numerical integrator, the Runge-Kutta 4th order scheme defined in lowEBMs.Packages.RK.

The structure of the model is provided by lowEBMs.Packages.ModelEquation. It builds up the EBM from a set of physical functions, specified in lowEBMs.Packages.Function.

In order to get a reasonable EBM structure you have to give a configurationfile (for details on how to create it, see Input) which is processed by lowEBMs.Packages.Configuration. Along with the basic configuration of the model many required variables are defined in lowEBMs.Packages.Variables, which may be running variables but also variables provided for later output (for details on what to print out, see Output).


lowEBMs.Packages



	lowEBMs.Packages.RK4
	Runge-Kutta 4th order scheme





	lowEBMs.Packages.ModelEquation

	lowEBMs.Packages.Functions
	flux_down

	flux_up

	transfer

	forcing

	albedo

	earthsystem

	tools





	lowEBMs.Packages.Configuration




	lowEBMs.Packages.Variables
	Variables class

	Single Simulation Functions

	Ensemble Simulation Functions

	Reset Functions















          

      

      

    

  

    
      
          
            
  
lowEBMs.Packages.RK4


Runge-Kutta 4th order scheme

The lowEBMs.Packages.RK4 provides the numerical scheme to iteratively solve differential equations, hence the model equation which is parsed by lowEBMs.Packages.ModelEquation, initialized with the configuration provided by lowEBMs.Packages.Configuration.

For an example see How to use.


Operating principle RK4

[image: ../_images/RK4.png]
The scheme operates from the initial step \(y_0(t_0)\) to the subsequent step \(y_1(t_1)\) with \(t_1=t_0+h\) and \(y_1=y_0+\phi(t_0,y_0) \cdot h\) by using a weighted increment \(\phi\) calculated from increments \(k_1,..,k_4\). This operation is continued with \(y_1(t_1)\) to estimate \(y_2(t_2)\) an so on.



The increments \(k_1,..,k_4\) are obtained by solving the model equation, as defined in the physical background for the dynamical term \(\frac{dT}{dt}\). The increments differ in their choice of inital conditions (point of evaluation of the model equation). One iterative step always goes through a cycle of evaluating the model equation four times. It starts with the calculation of \(k_1\) at point \(y_0(t_0)\) with:


\[k_1= f(t_0,y_0),\]

where \(f(t,y(t))\) is given by the deviation of \(y(t)\), hence \(\frac{dT}{dt} = \frac{1}{C}\cdot(R_{in}+R_{out}+...)\) at \(T_0 (t_0)\).

Now the scheme continues the following procedure:


\[\begin{split}k_2 &= f(t_0+\frac{h}{2},y_0+ \frac{h}{2}\cdot k1) \\
k_3 &= f(t_0+\frac{h}{2},y_0+ \frac{h}{2}\cdot k2) \\
k_4 &= f(t_0+h,y_0+ h\cdot k3).\end{split}\]

As final step of one iterative step the weighted increment \(\phi\) is calculated by through:


\[\phi = \frac{1}{6}\cdot k_1+\frac{1}{3}\cdot k_2+\frac{1}{3}\cdot k_3+\frac{1}{6}\cdot k_4\]

to estimate \(y_1\) as final step of one iteration step:


\[y_1=y_0+\phi(t_0,y_0)\cdot h . \]


	
lowEBMs.Packages.RK4.rk4alg(func, eqparam, rk4input, funccomp, progressbar=True, monthly=False)

	









          

      

      

    

  

    
      
          
            
  
lowEBMs.Packages.ModelEquation

In lowEBMs.Packages.ModelEquation modules are defined which build the EBM from functions given to it. The operation of this modules is adding the given functions \(F_1,F_2,...F_i\) according to the following scheme (compare physical background):


\[y= \frac{1}{C_{ao}} \cdot (F_1 + F_2 + ... + F_i),\]

with the deviation function \(y=\frac{dT}{dt}\) required by the lowEBMs.Packages.RK4.rk4alg and \(C_{ao}\) the heat capacity of the system which is passed to the right side of the model equation.


	
lowEBMs.Packages.ModelEquation.model_equation(eqparam, funccomp)

	The module which builds and evaluates the EBM by adding functions parsed through the funccomp.

Input has to be given as Dictionaries supplied by lowEBMs.Packages.Configuration.importer from a specific configuration.ini.

Function-call arguments


	Parameters

	
	eqparam (dict) – Configuration dictionary containing additional information for the model equation:


	C_ao: The systems heat capacity (times the height of the system)



	type: float


	unit: Joule*Meter/Kelvin


	value: > 0














	funccomp (dict) – Configuration 2D dictionary containing function names and function parameters used:


	funcnames: a dictionary of names of functions defined in lowEBMs.Packages.Functions which are added up. See here for a list of functions


	funcparams: a dictionary of functions parameters corresponding to the functions chosen within funcnames. For details on the parameters see the specific function here











	Returns

	The temperature gradient \(\frac{dT}{dt}\) (Kelvin/seconds)



	Return type

	float or array(float), depending on 0D EBM or 1D EBM. In 1D, output is an array containing the temperature gradient for each latitudinal belt.













          

      

      

    

  

    
      
          
            
  
lowEBMs.Packages.Functions

In lowEBMs.Package.Functions all physical equations are defined which describe the energy balance of the earth system.

This module is structured through classes which distinguish the type of energy flux or property definition. The classes contain several functions which follow a different approach of parameterizing the respective type of energy flux/ property.

The classes which define energy fluxes are:







	flux_down

	Class defining radiative fluxes directed downwards.



	flux_up

	Class defining radiative fluxes directed upwards.



	transfer

	Class defining latitudinal energy transfer transfer fluxes.



	forcing

	Class defining radiative forcing terms







Important

These contain the physical functions available for the EBM. To correctly run them they need parameters as input which are parsed by Configuration.importer but have to be given manually into the configuration.ini. To add a function, extend your configuration.ini with an enumerated [func_] section (with _ a number) and insert all parameters below which are given in the documentation here of the specific function. For examples see Configuration Options.



The classes which contain definitions of earth system properties are:







	albedo

	Class defining the albedo distributions



	earthsystem

	Class defining earthsystem properties






Additionally defined are tools for evaluation or simplification in the class:







	tools

	






Here the full list of modules defined in lowEBMs.Packages.Functions:



	flux_down




	flux_up




	transfer




	forcing




	albedo




	earthsystem




	tools
	lna

	nal

	cosd

	sind

	plotmeanstd

	datasetaverage

	interpolator

	SteadyStateConditionGlobal

	BPtimeplot













          

      

      

    

  

    
      
          
            
  
flux_down


	
class lowEBMs.Packages.Functions.flux_down

	Bases: object

Class defining radiative fluxes directed downwards.

Because the models in this project don’t include atmospheric layers (for now), the only radiative flux directed downwards is the radiative energy coming from the sun. This function is the same for all implemented models and is described in flux_down.insolation which allows several adjustments.







	insolation

	Function defining the absorbed solar insolation.











	
lowEBMs.Packages.Functions.flux_down.insolation(self, funcparam)

	Function defining the absorbed solar insolation. Physically there is an important difference between the insolation, which is denoted as \(Q\) and the absorbed insolation, which is the output of this function denoted as \(R_{down}\). The absorbed insolation in it’s simplest form is written (as introduced in the physical background):


\[R_{down} = (1-\alpha)\cdot Q,\]

with the albedo \(\alpha\) which is the reflected part of the insolation \(Q\).

The definition of \(R_{down}\) in this function has several extensions:


\[R_{down} = m\cdot (1-\alpha)\cdot (Q + dQ) + z,\]

with an energy offset \(dQ\) on \(Q\), a factorial change of absorbed insolation \(m\) and a random noise factor \(z\) on the absorbed insolation. \(z\) is chosen as a normal distributed random number with numpy.random.normal.

This function allows the observation of the models behaviour to diverse manipulations of the solar insolation.

Input has to be given as Dictionaries supplied by lowEBMs.Packages.Configuration.importer from a specific configuration.ini.

Function-call arguments


	Parameters

	funcparams (dict) – a dictionary of the functions parameters directly parsed from lowEBMs.Packages.ModelEquation.model_equation



	Q: The value of solar insolation (only useful for 0D EBMs)



	type: float


	unit: \(Watt\cdot meter^{-2}\)


	value: > 0 (standard 342)









	m: Factorial change of absorbed insolation



	type: float


	unit: -


	value: > 0









	dQ: Additive energy offset on \(Q\)



	type: float


	unit: \(Watt\cdot meter^{-2}\)


	value: any
















	albedo: The name of albedo function which is called from lowEBMs.Packages.Functions.albedo to return the albedo value/distribution. See class albedo.



	type: string


	unit: -


	value: albedo.static, albedo.static_bud, albedo.dynamic_bud, albedo.smooth, albedo.dynamical_sel









	albedoread: Indicates whether the albedo is provided as specific output



	type: boolean


	unit: -


	value: True/Flase









	albedoparam: Provides an array of parameters the albedo function (see class albedo)



	type: array


	unit: -


	value: depending on function chosen









	noise: Indicates whether solar noise is activated or not



	type: boolean


	unit: -


	value: True/False









	noiseamp: Determines the strength of the random solar noise as one standard deviation of a normal distribution (for further information see numpy.random.normal)



	type: float


	unit: \(Watt\cdot meter^{-2}\)


	value: >0 (e.g. noise with 1 percent of 342 is the value: 0.01*342)









	noisedelay: Determines how often this random factor is updated to a new random factor (one factor persists until it is replaced)



	type: int eger


	unit: number of iteration steps


	value: minimum 1 (every iteration cycle)









	seed: Indicates whether a specific seed is used to ensure that the random numbers are the one created by this specific seed (useful for comparisons to other simulation with the same solar noise)



	type: boolean


	unit: -


	value: True/False









	seedmanipulation: Defines the value for the seed



	type: integer


	unit: -


	value: any (if 0 it is everytime another seed)









	solarinput: Indicates whether the solar insolation distribution from climlab.solar.insolation are used (recommended for 1D EBMs), which are called from lowEBMs.Packages.Functions.earthsystem().solarradiation



	type: boolean


	unit: -


	value: True/False









	convfactor: Determines whether a conversation factor is used to change the solar insolation to another unit than Watt/m^2



	type: float


	unit: depending on the conversion applied


	value: > 0









	timeunit: Determines which timeunit of the solarradiation shall be used for averaging (depending on how the builtins.stepsize_of_integration is chosen*)



	type:  string


	unit: -


	value: ‘annualmean’ (average annually and give \(Q\) as Watt/m^2), ‘year’, ‘month’, ‘day’, ‘second’









	orbital: Indicates whether the solar insolation considers manipulation through orbital parameters over time (this will replace lowEBMs.Packages.Functions.earthsystem().solarradiation by lowEBMs.Packages.Functions.earthsystem().solarradiation_orbital



	type: boolean


	unit: -


	value: True/False (if False, the year given in orbitalyear still matters)









	orbitalyear: Determines for which year (in ky) the orbitalparameters are taken (orbital parameters are provided by climlab.solar.orbital which is based on Berger (1991) and Laskar (2004)



	type: integer


	unit: \(kyear\)


	value: -5000 to 0 (if 0, the year 1950 is used)


















	Returns

	The absorbed solar insolation \(R_{down}\)



	Return type

	float / array(floats)  (0D / 1D)













          

      

      

    

  

    
      
          
            
  
flux_up


	
class lowEBMs.Packages.Functions.flux_up

	Bases: object

Class defining radiative fluxes directed upwards.

The equations used here are, expect from flux_up.planck, are estimated empirically and the standard parameters are mostly tailored to specific applications where they are used by the authors.







	budyko_noclouds

	An empirically determined upward radiative energy flux which approximates the top of the atmosphere radiation emitted to space to be dependant linear on temperature.



	budyko_clouds

	An empirically determined upward radiative energy flux which approximates the top of the atmosphere radiation emitted to space to be dependant linear on temperature.



	planck

	The stefan-boltzmann radiation for a grey body as radiative energy flux directed upward.



	sellers

	An empirically, by William Sellers adjusted stefan-boltzmann radiation as radiative energy flux directed upward.











	
lowEBMs.Packages.Functions.flux_up.budyko_noclouds(self, funcparam)

	An empirically determined upward radiative energy flux which approximates the top of the atmosphere radiation emitted to space to be dependant linear on temperature. The presence of clouds is not specifically taken into account.

The upward radiative energy flux \(R_{up}\) of latitude \(\phi\) is given by:


\[R_{up}(\phi) = - (A + B \cdot T(\phi))\]

with the temperature \(T(\phi)\) and empirical constants \(A\) and \(B\). The Temperature is hereby converted to Celcius because the constants are optimized for Celcius not Kelvin.

Function-call arguments


	Parameters

	funcparams (dict) – a dictionary of the function’s parameters directly parsed from lowEBMs.Packages.ModelEquation.model_equation


	A: Empirical offset parameter



	type: float


	unit: \(Watt\cdot meter^{-2}\)


	value: any (standard 222.74)









	B: Empirical gradient parameter



	type: float


	unit: \(Watt\cdot meter^{-2}\cdot °Celcius^{-1}\)


	value: any (standard 2.23)















	Returns

	The upward radiative energy flux \(R_{up}\)



	Return type

	float / array(floats)  (0D / 1D)










	
lowEBMs.Packages.Functions.flux_up.budyko_clouds(self, funcparam)

	An empirically determined upward radiative energy flux which approximates the top of the atmosphere radiation emitted to space to be dependant linear on temperature. The presence of clouds is specifically taken into account with a second temperature dependant term.

The upward radiative energy flux \(R_{up}\) of latitude \(\phi\) is given by:


\[R_{up}(\phi) = - ((A + B \cdot T(\phi)) - f_c\cdot (A_1+B_1\cdot T(\phi)))\]

with the temperature \(T(\phi)\) and empirical constants \(A\), \(B\), \(A_1\) and \(B_1\). The Temperature is hereby converted to Celcius because the constants are optimized for Celcius not Kelvin

Function-call arguments


	Parameters

	funcparams (dict) – a dictionary of the function’s parameters directly parsed from lowEBMs.Packages.ModelEquation.model_equation


	A: Empirical offset parameter



	type: float


	unit: \(Watt\cdot meter^{-2}\)


	value: any (standard 222.74)









	B: Empirical gradient parameter



	type: float


	unit: \(Watt\cdot meter^{-2}\cdot °Celcius^{-1}\)


	value: any (standard 2.23)









	A1: Empirical offset parameter cloud term



	type: float


	unit: \(Watt\cdot meter^{-2}\)


	value: any (standard 47.73)









	B1: Empirical gradient parameter cloud term



	type: float


	unit: \(Watt\cdot meter^{-2}\cdot °Celcius^{-1}\)


	value: any (standard 1.59)









	f_c: Cloud fraction



	type: float


	unit: -


	value: 0 \(\leq\) f_c \(\leq\) 1 (standard 0.5)















	Returns

	The upward radiative energy flux \(R_{up}\)



	Return type

	float / array(floats)  (0D / 1D)










	
lowEBMs.Packages.Functions.flux_up.planck(self, funcparam)

	The stefan-boltzmann radiation for a grey body as radiative energy flux directed upward. The ideal stefan-boltzmann radiation with a temperature to the power of 4 scaled with an emissivity factor \(\epsilon\).

The upward radiative energy flux \(R_{up}\) of latitude \(\phi\) is given by:


\[R_{up}(\phi) = - \epsilon \cdot \sigma \cdot T(\phi)^4\]

with the temperature \(T(\phi)\), the emissivity \(\epsilon\) and stefan-boltzmann constant \(\sigma\).

Function-call arguments


	Parameters

	funcparams (dict) – a dictionary of the function’s parameters directly parsed from lowEBMs.Packages.ModelEquation.model_equation


	grey: The emissivity (greyness)



	type: float


	unit: -


	value: 0 \(\leq\) grey \(\leq\) 1 (standard 0.612)









	sigma: Stefan-boltzmann constant



	type: float


	unit: \(Watt\cdot meter^{-2}\cdot Kelvin^{-4}\)


	value: \(5,67\cdot 10^{-8}\) (use const.sigma to load it from climlab.constants)















	Returns

	The upward radiative energy flux \(R_{up}\)



	Return type

	float / array(floats)  (0D / 1D)










	
lowEBMs.Packages.Functions.flux_up.sellers(self, funcparam)

	An empirically, by William Sellers adjusted stefan-boltzmann radiation as radiative energy flux directed upward. The ideal stefan-boltzmann radiation with a temperature to the power of 4 and an additional tangens hyperbolicus term with the temperature to the power of 6 to take into account that cloud formation is temperature dependant.

The upward radiative energy flux \(R_{up}\) of latitude \(\phi\) is given by:


\[R_{up}(\phi) = - \sigma \cdot T(\phi)^4 \cdot (1-m\cdot tanh(\gamma \cdot T(\phi)^6)\]

with the temperature \(T(\phi)\), the stefan-boltzmann constant \(\sigma\), the atmospheric attenuation \(m\) and an empirical constant \(\gamma\).

To make this function more adjustable there is an additional emissivity introduced (similar to flux_up.planck).

Function-call arguments


	Parameters

	funcparams (dict) – a dictionary of the function’s parameters directly parsed from lowEBMs.Packages.ModelEquation.model_equation


	m: The atmospheric attenuation



	type: float


	unit: -


	value: 0 \(\leq\) m \(\leq\) 1 (standard 0.5)









	sigma: Stefan-boltzmann constant



	type: float


	unit: \(Watt\cdot meter^{-2}\cdot Kelvin^{-4}\)


	value: \(5,67\cdot 10^{-8}\) (use const.sigma to load it from climlab.constants)









	gamma: Empirical constant in the cloud term



	type: float


	unit: \(Kelvin^{-6}\)


	value: \(1.9\cdot 10^{-15}\)









	grey: The emissivity (greyness)



	type: float


	unit: -


	value: 0 \(\leq\) grey \(\leq\) 1 (standard 1)















	Returns

	The upward radiative energy flux \(R_{up}\)



	Return type

	float / array(floats)  (0D / 1D)













          

      

      

    

  

    
      
          
            
  
transfer


	
class lowEBMs.Packages.Functions.transfer

	Bases: object

Class defining latitudinal energy transfer transfer fluxes.

The equations used here are estimated empirically based on research of Michail Budyko and William Sellers.







	budyko

	A poleward energy transfer flux based on the local to global temperature difference introduced by Michail Budyko.



	sellers

	A energy transfer flux based on a combination of several transfer fluxes introduced by William Sellers.



	watervapour_sel

	The energy transfer flux through watervapour used in transfer().sellers.



	sensibleheat_air_sel

	The energy transfer flux through atmospheric sensible heat used in transfer().sellers.



	sensibleheat_ocean_sel

	The energy transfer flux through oceanic sensible heat used in transfer().sellers.







Note

Only transfer().budyko and transfer().sellers are transfer fluxes fully representing the globes meridional energy transfer, where transfer().sellers is built up from the three specific transfer fluxes transfer().watervapour_sel, transfer().sensibleheat_air_sel and transfer().sensibleheat_ocean_sel.








	
lowEBMs.Packages.Functions.transfer.budyko(self, funcparam)

	A poleward energy transfer flux based on the local to global temperature difference introduced by Michail Budyko.

It can be shown that it is equivalent to the diffusive heat transfer of the globe (North, 1975b).

It is given by:


\[F_{transfer}= \beta\cdot(T(\phi)-T_g)\]

with the temperature \(T(\phi)\) of latitude \(\phi\), the global mean temperature \(T_g\) and the transport parameter \(\beta\).

Function-call arguments


	Parameters

	funcparams (dict) – a dictionary of the function’s parameters directly parsed from lowEBMs.Packages.ModelEquation.model_equation


	beta: The transport parameter



	type: float


	unit: \(Watt\cdot meter^{-2} \cdot Kelvin^{-1}\)


	value: any (standard 3.74)









	Read: Indicates whether the transfer flux is specifically provided as output



	type: boolean


	unit:  -


	value: True/False (standard True)









	Activated: Indicates whether the transfer flux is actually activated



	type: boolean


	unit: -


	value: True/False (standard True)















	Returns

	The Budyko energy transfer flux \(F_{transfer}\)



	Return type

	array(floats)  (1D)










	
lowEBMs.Packages.Functions.transfer.sellers(self, funcparam)

	A energy transfer flux based on a combination of several transfer fluxes introduced by William Sellers.

It is defined as the difference of a sum of northward and a sum of southward transfer fluxes of one latitudinal belt. The sum (in one direction) \(P\) consists of transfer().watervapour_sel, transfer().sensibleheat_air_sel and transfer().sensibleheat_ocean_sel:


\[P(\phi)= L\cdot c_{wv}(\phi) + C_{air}(\phi) + F_{oc}(\phi)\]

with the energy transfer through watervapour \(c_{wv}(\phi)\), the energy transfer through atmospheric sensible heat \(C_{air}(\phi)\) and  the energy transfer through oceanic sensible heat \(F_{oc}(\phi)\) of latitude \(\phi\) and the latent heat of condensation \(L\).

The total energy flux, the difference of the southward and northward flux \(P(\phi)\) weighted with the length of a latitudinal circle :math`l(phi)` and the area of the latitudinal belt \(A(\phi)\), is given by:


\[F_{transfer} = (P(\phi)\cdot l(\phi) - P (\phi+d\phi)\cdot l (\phi+d\phi))\cdot \frac{1}{A(\phi)}\]

where \(P(\phi)\cdot l(\phi)\) is the sum of energy transfer from the latitudinal belt to the southern boundary and \(P (\phi+d\phi)\cdot l (\phi+d\phi)\) the one to the nothern boundary (\(d\phi\) indicates the step to the next northern gridpoint).


Note

The Sellers energy transfer flux comes with a large set of parameters, some given as scalars and some as distribution over the latitudes. In order to simplify the input of these parameters, the module lowEBMs.Packages.Configuration.add_sellersparameters can be called before running the algorithm which imports the parameter distributions into the funcparam dictionary. Scalars are not included there! The easiest way is to copy the prewritten configuration of this function from the FunctionCalls.txt in lowEBMs/Turotials and use Configuration.add_sellersparameters.



Function-call arguments


	Parameters

	funcparams (dict) – a dictionary of the function’s parameters directly parsed from lowEBMs.Packages.ModelEquation.model_equation


	Readout: Indicates whether all sellers transfer fluxes are provided as output



	type: boolean


	unit: -


	value: True/False (standard True)









	Activated: Indicates if the transfer flux is actually activated



	type: boolean


	unit: -


	value: True/False (standard True)









	K_wv: The thermal diffusivity of the watervapour term



	type: float


	unit: \(meter^2\cdot second^{-1}\)


	value: \(10^5\) (imported by Configuration.add_sellersparameters)









	K_h: The thermal diffusivity of the atmospheric sensible heat term



	type: float


	unit: \(meter^2 \cdot second^{-1}\)


	value: \(10^6\) (imported by Configuration.add_sellersparameters)









	K_o: The thermal diffusivity of the oceanic sensible heat term



	type: float


	unit: \(meter^2\cdot second^{-1}\)


	value: \(10^2\) (imported by Configuration.add_sellersparameters)









	g: The gravitational acceleration



	type: float


	unit: \(meter\cdot second^{-2}\)


	value: \(9.81\)









	a: Empricial constant to calculate the meridional windspeed



	type: float


	unit: \(meter\cdot second^{-1}\cdot °Celcius^{-1}\)


	value: \(10^-2\) (imported by Configuration.add_sellersparameters)









	eps: Empirical constant of the saturation specific humidity



	type: float


	unit: -


	value: 0.622









	p: The average sea level pressure



	type: float


	unit: \(mbar\)


	value: 1000









	e0: The mean sea level saturation vapour pressure



	type: float


	unit: \(mbar\)


	value: 17









	L: The latent heat of condensation



	type: float


	unit: \(Joule\cdot gramm^{-1}\)


	value: \(2.5\cdot 10^3\)









	Rd: The gas constant



	type: float


	unit: \(Joule\cdot gramm^{-1}\cdot Kelvin^{-1}\)


	value: \(0.287\)









	dy: The width of an latitudinal belt



	type: float


	unit: \(meter\)


	value: \(1.11\cdot 10^6\)









	dp: The tropospheric pressure depth



	type: float


	unit: \(mbar\)


	value: 700-900 (imported by Configuration.add_sellersparameters)









	cp: The specific heat capacity of air at constant pressure



	type: float


	unit: \(Joule\cdot gramm^{-1}\cdot Kelvin^{-1}\)


	value: \(1.004\)









	dz: The average zonal ocean depth



	type: float


	unit: \(meter\)


	value: 1000-4000 (imported by Configuration.add_sellersparameters)









	l_cover: The proportion of ocean covered surface



	type: float


	unit: -


	value: 0.5









	re: The earth’s radius



	type: float


	unit: \(meter\)


	value: \(6.371\cdot 10^6\)









	cp_w: The specific heat capacity of sea water



	type: float


	unit: \(Joule\cdot gramm^{-1}\cdot Kelvin^{-1}\)


	value: \(4182\)









	dens_w: The density of water



	type: float


	unit: \(gramm\cdot meter^{-3}\)


	value: \(0.997\cdot 10^6\)









	factor_wv: A tuning factor applied to the watervapour term



	type: float


	unit: -


	value: any









	factor_air: A tuning factor applied to the atmospheric sensible heat term



	type: float


	unit: -


	value: any









	factor_oc: A tuning factor applied to the oceanic sensible heat term (or it’s diffusivity)



	type: float


	unit: -


	value: any









	factor_kwv: A tuning factor applied to the thermal diffusivity of the watervapour term



	type: float


	unit: -


	value: any









	factor_kair: A tuning factor applied to the thermal diffusivity of the atmospheric sensible heat term



	type: float


	unit: -


	value: any















	Returns

	The Sellers energy transfer flux \(F_{transfer}\)



	Return type

	array(floats)  (1D)










	
lowEBMs.Packages.Functions.transfer.watervapour_sel(self, funcparam)

	The energy transfer flux through watervapour used in transfer().sellers.

It is based on the transport of watervapour to another latitudinal belt and it’s condensation which releases energy. It is described through:


\[c_{wv}=\left(v q - K_{wv}\frac{\Delta q}{\Delta y}\right) \cdot \frac{\Delta p}{g}\]

with the meridional windspeed \(v\) provided by earthsstem.meridionalwind_sel, the specific saturation humidity \(q\) provided by earthsystem().specific_saturation_humidity_sel and the humidity difference \(dq\) provided by earthsystem().humidity_difference. Additional parameters are the thermal diffusivity of watervapour \(K_{wv}\), the width of the latitudinal belts \(\Delta y\), the tropospheric pressure depth \(\Delta p\) and the gravitational acceleration \(g\).

For purposes of tuning, \(c_{wv}\) and \(K_{wv}\) are provided with the scaling factors factor_wv and factor_kwv.

Function-call arguments


	Parameters

	funcparams (dict) – 
	K_wv: The thermal diffusivity of the watervapour term



	type: float


	unit: \(meter^2\cdot second^{-1}\)


	value: \(10^5\) (imported by Configuration.add_sellersparameters)









	g: The gravitational acceleration



	type: float


	unit: \(meter\cdot second^{-2}\)


	value: \(9.81\)









	eps: Empirical constant of the saturation specific humidity



	type: float


	unit: -


	value: 0.622









	p: The average sea level pressure



	type: float


	unit: \(mbar\)


	value: 1000









	e0: The mean sea level saturation vapour pressure



	type: float


	unit: \(mbar\)


	value: 17









	L: The latent heat of condensation



	type: float


	unit: \(Joule\cdot gramm^{-1}\)


	value: \(2.5\cdot 10^3\)









	Rd: The gas constant



	type: float


	unit: \(Joule\cdot gramm^{-1}\cdot Kelvin^{-1}\)


	value: \(0.287\)









	dy: The width of an latitudinal belt



	type: float


	unit: \(meter\)


	value: \(1.11\cdot 10^6\)









	dp: The tropospheric pressure depth



	type: float


	unit: \(mbar\)


	value: 700-900 (imported by Configuration.add_sellersparameters)









	factor_wv: A tuning factor applied to the watervapour term



	type: float


	unit: -


	value: any









	factor_kwv: A tuning factor applied to the thermal diffusivity of the watervapour term



	type: float


	unit: -


	value: any















	Returns

	The watervapour energy transfer flux \(c_{wv}\)



	Return type

	array(floats)  (1D)










	
lowEBMs.Packages.Functions.transfer.sensibleheat_air_sel(self, funcparam)

	The energy transfer flux through atmospheric sensible heat used in transfer().sellers.

It is based on the heat transport through wind and convection to another latitudinal belt. It is described through:


\[C_{air}=\left(v T - K_h\frac{\Delta T}{\Delta y}\right) \cdot \frac{c_p}{g} \Delta p\]

with the meridional windspeed \(v\) provided by earthsstem.meridionalwind_sel, and the temperature difference \(\Delta T\) provided by earthsystem().tempdif. Additional parameters are the temperature \(T\), the thermal diffusivity of air \(K_{h}\), the width of the latitudinal belts \(\Delta y\), the tropospheric pressure depth \(\Delta p\), the specific heat capacity of air \(c_p\) and the gravitational acceleration \(g\).

For purposes of tuning, \(C_{air}\) and \(K_{h}\) are provided with the scaling factors factor_air and factor_kair.

Function-call arguments


	Parameters

	funcparams (dict) – 
	K_h: The thermal diffusivity of the atmospheric sensible heat term



	type: float


	unit: \(meter^2\cdot second^{-1}\)


	value: \(10^6\) (imported by Configuration.add_sellersparameters)









	g: The gravitational acceleration



	type: float


	unit: \(meter\cdot second^{-2}\)


	value: \(9.81\)









	dy: The width of an latitudinal belt



	type: float


	unit: \(meter\)


	value: \(1.11\cdot 10^6\)









	dp: The tropospheric pressure depth



	type: float


	unit: \(mbar\)


	value: 700-900 (imported by Configuration.add_sellersparameters)









	cp: The specific heat capacity of air at constant pressure



	type: float


	unit: \(Joule\cdot gramm^{-1}\cdot Kelvin^{-1}\)


	value: \(1.004\)









	factor_air: A tuning factor applied to the atmospheric sensible heat term



	type: float


	unit: -


	value: any









	factor_kair: A tuning factor applied to the thermal diffusivity of the atmospheric sensible heat term



	type: float


	unit: -


	value: any















	Returns

	The atmospheric sensible heat energy transfer flux \(C_{air}\)



	Return type

	array(floats)  (1D)










	
lowEBMs.Packages.Functions.transfer.sensibleheat_ocean_sel(self, funcparam)

	
The energy transfer flux through oceanic sensible heat used in transfer().sellers.

It is based on the heat transport through oceanic convection to another latitudinal belt. It is described through:


\[F_{oc}= - K_o l_{cover}\Delta z\frac{\Delta T}{\Delta y}\cdot C_{p,w}\]




ho_{w}


with the temperature difference \(\Delta T\) provided by earthsystem().tempdif. Additional parameters are the thermal diffusivity of the ocean \(K_{o}\), the width of the latitudinal belts \(\Delta y\), the average ocean depth \(\Delta z\), the proportion of ocean cover \(l_{cover}\), the specific heat capacity of water \(c_{p,w}\) and the densitiy of water \(\rho_w\).

For purposes of tuning, a scaling factors factor_oc is provided.

Function-call arguments


	param dict funcparams

	
	K_o: The thermal diffusivity of the oceanic sensible heat term



	type: float


	unit: \(meter^2\cdot second^{-1}\)


	value: \(10^2\) (imported by Configuration.add_sellersparameters)









	dz: The average zonal ocean depth



	type: float


	unit: \(meter\)


	value: 1000-4000 (imported by Configuration.add_sellersparameters)









	l_cover: The proportion of ocean covered surface



	type: float


	unit: -


	value: 0.5









	cp_w: The specific heat capacity of sea water



	type: float


	unit: \(Joule\cdot gramm^{-1}\cdot Kelvin^{-1}\)


	value: \(4182\)









	dens_w: The density of water



	type: float


	unit: \(gramm\cdot meter^{-3}\)


	value: \(0.997\cdot 10^6\)









	factor_oc: A tuning factor applied to the oceanic sensible heat term (or it’s diffusivity)



	type: float


	unit: -


	value: any













	returns

	The oceanic sensible heat energy transfer flux \(F_{oc}\)



	rtype

	array(floats)  (1D)
















          

      

      

    

  

    
      
          
            
  
forcing


	
class lowEBMs.Packages.Functions.forcing

	Bases: object

Class defining radiative forcing terms

Radiative forcing essentially can be comprehended as manipulation of the solar insolation which defines the amount of energy available in the system. This class defines terms which change the amount of energy in the system which can be derived from properties of the system (e.g. atmospheric CO2-concentrations). One has to be cautious when operating with these forcing because they are only used to mimic a radiative forcing detached from the systems propagation and therefore don’t represent interactions of the property which causes the forcing (e.g. the carbon cycle is not considered, only measured or projected trends).







	random

	The random forcing mimics randomly occuring radiative forcing events.



	predefined

	The predefined forcing imports data containing external radiative forcings.



	co2_myhre

	The co2_myhre forcing calculates a radiative forcing from imported atmospheric CO2 conenctration data.











	
lowEBMs.Packages.Functions.forcing.random(self, funcparam)

	The random forcing mimics randomly occuring radiative forcing events.

The random forcing is mainly used to mimic volcanic eruptions which are based on the idea that dust clouds, appearing after volcanic eruptions, affect the radiative balance. The consequence of an eruption is a negative radiative forcing over a specific time which generally causes a decrease in temperature, depending on the time and strentgh the forcing acts.

With this module such events are randomly generated. The parameters which have to be provided will determine a rough guess of frequency, strength and length of the events and many more. By setting a time of start and stop, this can be used to turn on/off the random radiative forcing for specifc times.

Function-call arguments


	Parameters

	funcparams (dict) – 
	forcingnumber the number of the radiative forcing term (relevant if multiple forcings are used)



	type: int


	unit: -


	value: 0, 1,…









	start: The time when the forcing starts



	type: float


	unit: depending on timeunit


	value: any









	stop: The time when the forcing stops



	type: float


	unit: depending on timeunit


	value: any









	steps: The amount of steps (timeresolution) between start and stop



	type: int


	unit: -


	value: any (preferably the same as builtins.stepsize_of_integration)









	timeunit: The unit of time for the forcing



	type: string


	unit: -


	value: ‘minute’, ‘hour’, ‘day’, ‘week’, ‘month’, ‘year’ (if none, seconds are used)









	strength: The maximal radiative forcing which can be randomly generated



	type: float


	unit: -


	value: any









	frequency: A classification how often an event occurs. Creates a window of frequency, from a minimal duration between two events towards a maximal from which the duration to the next event is randomly chosen.



	type: string


	unit: -


	value: options



	’common’: the next event is in the following 0-4 steps/total_steps


	’intermediate’: the next event is in the following 4-12 steps/total_steps


	’rare’: the next event is in the following 12-30 steps/total_steps


	’superrare’: the next event is in the following 30-60 steps/total_steps
















	behaviour: The behaviour/shape of the radiative forcing



	type: string


	unit: -


	value: options



	’step’: radiative forcing acts as stepfunction with width of one step defined by lifetime


	’exponential’: radiative forcing acts exponentially with a halflife defined by *lifetime*s
















	lifetime: The length on event appears (coupled to behaviour)



	type: float


	unit: depending on timeunit


	value: any









	seed: Indicates whether the random numbers are generated from a specific seed (for comparison)



	type: int


	unit: -


	value: any (if None, every call is random)









	sign: The sign of the resulting radiative forcing



	type: string


	unit: -


	value: ‘negative’, ‘positive’















	Returns

	A randomly generated radiative forcing



	Return type

	float










	
lowEBMs.Packages.Functions.forcing.predefined(self, funcparam)

	The predefined forcing imports data containing external radiative forcings.

This module imports radiative forcing data given as change in energy (\(Watt \cdot meter^{-2}\)) and applies it to the model run.

Function-call arguments


	Parameters

	funcparams (dict) – 
	forcingnumber the number of the radiative forcing term (relevant if multiple forcings are used)



	type: int


	unit: -


	value: 0, 1,…









	datapath: The path to the file (give full path or relative path!)



	type: string


	unit: -


	value: example: ‘/insert/path/to/file’









	name: The name of the file which is used



	type: string


	unit: -


	value: example: ‘datafile.txt’









	delimiter: How the data is delimited in the file



	type: string


	unit: -


	value: example: ‘,’









	header: The number of header rows to exclude



	type: int


	unit: -


	value: any









	col_time: The column where the time is stored



	type: int


	unit: -


	value: any









	col_forcing: The column where the forcing in stored



	type: int


	unit: -


	value:  any









	timeunit: The unit of time which is used in the file to convert it to seconds



	type: string


	unit: -


	value: ‘minute’, ‘hour’, ‘day’, ‘week’, ‘month’, ‘year’ (if none, seconds are used)









	BP: If the time is given as “Before present”



	type: boolean


	unit: -


	value: True / False









	time_start: The time of the first entry (or the time when is should be started to apply it)



	type: float


	unit: depending timeunit


	value: any









	k: Scaling factor



	type: float


	unit: -


	value: any















	Returns

	The radiative forcing for a specific time imported from a data file



	Return type

	float










	
lowEBMs.Packages.Functions.forcing.co2_myhre(self, funcparam)

	The co2_myhre forcing calculates a radiative forcing from imported atmospheric CO2 conenctration data.

This module imports atmospheric CO2 concentrations from a data file and converts them to a change in energy \(F_{CO2}\) (\(W/m^2\)) after Myhre (1998):


\[F_{CO2}= A\cdot ln(C / C_0)\]

With the atmospheric CO2 concentration \(C\) (\(ppmv\)), the preindustrial atmospheric CO2 concentration \(C_0\) and an empricial constant A (\(5.35\;W/m^2\)).

Function-call arguments


	Parameters

	funcparams (dict) – 
	A The empirical constant A



	type: float


	unit: \(Watt \cdot meter^{-2}\)


	value: 5.35









	C_0: The preindustrial atmospheric CO2 concentration



	type: float


	unit: \(ppmv\)


	value: 280









	C02_base: The CO2 concentration to use before the forcing starts and after it ends



	type: float


	unit: \(ppmv\)


	value: any









	datapath: The path to the file (give full path or relative path!)



	type: string


	unit: -


	value: example: ‘/insert/path/to/file’









	name: The name of the file which is used



	type: string


	unit: -


	value: example: ‘datafile.txt’









	delimiter: How the data is delimited in the file



	type: string


	unit: -


	value: example: ‘,’









	header: The number of header rows to exclude



	type: int


	unit: -


	value: any









	footer: The number of footer rows to exclude



	type: int


	unit: -


	value: any









	col_time: The column where the time is stored



	type: int


	unit: -


	value: any









	col_conc: The column where the concentration in stored



	type: int


	unit: -


	value:  any









	timeunit: The unit of time which is used in the file to convert it to seconds



	type: string


	unit: -


	value: ‘minute’, ‘hour’, ‘day’, ‘week’, ‘month’, ‘year’ (if none, seconds are used)









	BP: If the time is given as “Before present”



	type: boolean


	unit: -


	value: True / False









	time_start: The time of the first entry (or the time when is should be started to apply it)



	type: float


	unit: depending timeunit


	value: any















	Returns

	The radiative forcing for a specific time calculated from atmospheric CO2-concentrations imported from a data file



	Return type

	float













          

      

      

    

  

    
      
          
            
  
albedo


	
class lowEBMs.Packages.Functions.albedo

	Bases: object

Class defining the albedo distributions







	static

	Function defining a static albedo value



	static_bud

	A static albedo distribution as used in Budyko.



	dynamic_bud

	A temperature dependant albedo distribution with three albedo regions.



	smooth

	A temperature dependant albedo distribution with tangens hyperbolicus transition.



	dynamic_sel

	A albedo distribution with linear temperature dependence.







Note

These are special functions which are used by flux_down.insolation. In the configuration.ini they have to be inserted in its [func]-section with the parameters used (see albedo).








	
lowEBMs.Packages.Functions.albedo.static(self, alpha)

	Function defining a static albedo value

Function-call arguments


	Parameters

	alpha (float) – the globally averaged albedo value


	type: float


	unit: -


	value: 0 \(\leq\) alpha \(\leq\) 1








	Returns

	The globally averaged albedo value



	Return type

	float (0D)










	
lowEBMs.Packages.Functions.albedo.static_bud(self, alpha_p, border_1, border_2)

	A static albedo distribution as used in Budyko.

The albedo distribution is described through three zones of albedo values.







	Latitude of transition

	Albedo value alhpa



	< border_1

	low albedo zone: alpha= alpha_p



	> border_1

	intermediate zone: alpha= alpha_p +0.18



	> border_2

	high albedo zone: alpha= alpha_p +0.3






Function-call arguments


	Parameters

	albedoparam (array) – albedo distribution parameters [alpha_p,border_1,border_2]


	alpha_p: The low albedo zone value



	type: float


	unit: -


	value: 0 \(\leq\) albedo \(\leq\) 1 (standard 0.3)









	border_1: Latitude of low to intermediate albedo zone transition



	type: float


	unit: Unit of latitude (degree)


	value: 0 \(\leq\) border_1 \(\leq\) 90 (standard 60)









	border_2: Latitude of intermediate to high albedo zone transition



	type: float


	unit: Unit of latitude (degree)


	value: 0 \(\leq\) border_2 \(\leq\) 1 (standard 70)















	Returns

	The latitudinal albedo distribution



	Return type

	array(floats)  (1D)










	
lowEBMs.Packages.Functions.albedo.dynamic_bud(self, T_1, T_2, alpha_0, alpha_1, alpha_2)

	A temperature dependant albedo distribution with three albedo regions. Approach as used in Budyko but complemented with albedo transition depending on temperature.

The albedo distribution is described through three zones of albedo values.







	Temperature of transition

	Albedo value alpha



	> T_1

	low albedo zone: alpha= alpha_0



	< T_1 & > T_2

	intermediate zone: alpha= alpha_1



	< T_2

	high albedo zone: alpha= alpha_2






Function-call arguments


	Parameters

	albedoparam (array) – albedo distribution parameters [T_1,T_2,alpha_0,alpha_1,alpha_2]


	T_1: Temperature of low to intermediate albedo zone transition



	type: float


	unit: \(Kelvin\)


	value: > 0 in Kelvin (standard 273.15)









	T_2: Temperature of intermediate to high albedo zone transition



	type: float


	unit: \(Kelvin\)


	value: > 0 in kelvin (standard 263.15)









	alpha_0: The low albedo zone value



	type: float


	unit: -


	value: 0 \(\leq\) alpha_0 \(\leq\) 1 (standard 0.32)









	alpha_1: The intermediate albedo zone value



	type: float


	unit: -


	value: 0 \(\leq\) alpha_1 \(\leq\) 1 (standard 0.5)









	alpha_2: The high albedo zone value



	type: float


	unit: -


	value: 0 \(\leq\) alpha_2 \(\leq\) 1 (standard 0.62)















	Returns

	The latitudinal albedo distribution



	Return type

	array(floats) (1D)










	
lowEBMs.Packages.Functions.albedo.smooth(self, T_ref, alpha_f, alpha_i, steepness)

	A temperature dependant albedo distribution with tangens hyperbolicus transition. A common approach in climate modelling (for example see North)

The albedo of one latitude is defined by:


\[\alpha(\phi)=\alpha_i-\frac{1}{2}(\alpha_i-\alpha_f)\cdot (1+tanh(\gamma \cdot (T(\phi)-T_{ref})))\]

with the albedo value \(\alpha(\phi)\) and temperature \(T(\phi)\) of latitude \(\phi\), an ice-covered/ice-free albedo value \(\alpha_i / \alpha_f\), the reference temperature of transition \(T_{ref}\) and the steepness of the transition \(\gamma\).

Function-call arguments


	Parameters

	albedoparam (array) – albedo distribution parameters [T_ref,alpha_f,alpha_i,steepness]


	T_ref: Reference transition temperature from ice-free to ice-covered albedo



	type: float


	unit: \(Kelvin\)


	value: > 0 in Kelvin (standard 273.15)









	alpha_i: The ice-covered albedo value



	type: float


	unit: -


	value: 0 \(\leq\) alpha_i \(\leq\) 1 (standard 0.7)









	alpha_f: The ice-free albedo value



	type: float


	unit: -


	value: 0 \(\leq\) alpha_f \(\leq\) 1 (standard 0.3)









	steepness: The steepness of albedo transition (\($\gamma$\))



	type: float


	unit: \(Kelvin^{-1}\)


	value: 0 \(\leq\) steepness \(\leq\) 1 (standard 0.3)















	Returns

	The latitudinal albedo distribution



	Return type

	float / array(floats)  (0D / 1D)










	
lowEBMs.Packages.Functions.albedo.dynamic_sel(self, Z, b)

	A albedo distribution with linear temperature dependence. Approach as used by Sellers.

The albedo of one latitude is defined by:


\[\begin{split}&T_g(\phi)=T(\phi)-0.0065\cdot Z (\phi) \\
If \quad & T_g(\phi)<283.15: \quad \alpha(\phi)=b(\phi)-0.009\cdot T_g(\phi)   \\
If \quad & T_g(\phi)> 283.15: \quad \alpha(\phi)= b(\phi)-2.548\end{split}\]

with the albedo value \(\alpha(\phi)\) (maximum of 0.85) and temperature \(T(\phi)\) of latitude \(\phi\), the altitude weighted temperature \(T_g\) with the zonal mean altitude \(Z(\phi)\) and empirical constants \(b(\phi)\).

Function-call arguments


	Parameters

	albedoparam (array) – albedo distribution parameters [Z,b]


	Z: Zonal mean altitude (provided by Configuration.add_sellersparameters)



	type: array(float)


	unit: \(Kelvin \cdot meter^{-1}\)


	value: > 0









	b: Empirical constant to estimate the albedo (provided by Configuration.add_sellersparameters)



	type: float


	unit: -


	value: > 0















	Returns

	The latitudinal albedo distribution



	Return type

	array(floats)  (1D)













          

      

      

    

  

    
      
          
            
  
earthsystem


	
class lowEBMs.Packages.Functions.earthsystem

	Bases: object

Class defining earthsystem properties







	globalmean_temperature

	The GMT calculated from the ZMT with a gridspcific areaweighting.



	insolation

	



	solarradiation

	



	solarradiation_orbital

	The solar insolation over the latitudes \(Q\) with changing orbital parameters.



	specific_saturation_humidity_sel

	The specific saturation humidity of a latitudinal belt.



	saturation_pressure

	The saturation pressure of a latitudinal belt.



	humidity_difference

	The humidity difference between latitudinal belts.



	temperature_difference_latitudes

	The temperature difference between latitudinal belts.



	length_latitudes

	The length (circumference) of the latitudinal circles.



	area_latitudes

	The area of the latitudinal belts.











	
lowEBMs.Packages.Functions.earthsystem.globalmean_temperature(self)

	The GMT calculated from the ZMT with a gridspcific areaweighting.

The GMT, \(T_{global}\), is given by:


\[T_{global}= \int_{\phi_s}^{\phi_n} T(\phi) \cdot cos(\phi) d\phi\]

with the ZMT, \(T(\phi)\), of latitude \(\phi\), and the borders of the grid \(\phi_s\)/\(\phi_n\).

Function-call arguments


	Returns

	The global mean temperature in Kelvin



	Return type

	float










	
lowEBMs.Packages.Functions.earthsystem.solarradiation(self, convfactor, timeunit, orbitalyear, Q)

	




	
lowEBMs.Packages.Functions.earthsystem.solarradiation_orbital(self, convfactor, orbitalyear, unit)

	The solar insolation over the latitudes \(Q\) with changing orbital parameters.

The functionality of this module is in its main features the same as earthsystem().solarradiation with the addition that the orbital parameters are imported from climlab.solar.orbital and updated continously if Vars.t passes to the next century (can only be updated in kiloyears).

Function-call arguments


	Parameters

	
	convfactor (float) – Conversionfactor if another unit is desired


	unit: depending on the conversion


	value: any







	orbitalyear (string) – Indicates for which year the orbitalparameters are chosen and updated from


	unit: \(kyear\)


	value: -5000 to 0







	unit (string) – Indicates which unit of time is used in the simulation


	unit: -


	value: various options



	’year’: Returns the solarinsolation at time t which is given in unit years


	None: Use the value given in the Configuration.ini


















	Returns

	The solar insolation over latitudes with update of orbital parameters



	Return type

	float / array(float) (0D / 1D)










	
lowEBMs.Packages.Functions.earthsystem.meridionalwind_sel(self, a, re)

	The meridional wind \(v\) between latitudinal belts.

This function is part of the transfer().sellers module which calculates the meridional windspeed depending on a latitudes temperature. It is given by:


\[v = - a\cdot (\Delta T \pm | \overline{\Delta T} | )\]

with \(+\) north of 5°N and \(-\) south of 5°N, the temperature difference between latitudes \(\Delta T\) provided by earthsystem().temperature_difference_latitudes, empirical constants \(a\) and the area weighted mean temperature difference \(| \overline{\Delta T} |\).

The required parameters are directly parsed from the transfer().sellers module, for details see here.

Function-call arguments


	Parameters

	
	a (float) – Empirical constants estimating the windspeed of a latitudinal belt


	unit: \(meter\cdot second^{-1} \cdot Kelvin^{-1}\)


	value: (imported by Configuration.add_sellersparameters)







	re (float) – The earth’s radius


	unit: meter


	value: \(6.371\cdot 10^6\)











	Returns

	The meridional windspeed



	Return type

	array(float) (1D)










	
lowEBMs.Packages.Functions.earthsystem.specific_saturation_humidity_sel(self, e0, eps, L, Rd, p)

	The specific saturation humidity of a latitudinal belt.

This function is part of the transfer().sellers module which calculates provides the required properties for transfer().watervapour_sel. It is given by:


\[q = \frac{\epsilon \cdot e}{p} \]

with an empirical constant \(\epsilon\), the average sea level pressure p and the saturation pressure e from earthsystem().saturation_pressure.

The required parameters are directly parsed from the transfer().sellers module, for details see here.

Function-call arguments


	Parameters

	
	e0 (float) – The mean sea level saturation vapour pressure


	unit: \(mbar\)


	value: 17







	eps (float) – Empirical constant of the saturation specific humidity


	unit: -


	value: 0.622







	L (float) – The latent heat of condensation


	unit: \(Joule\cdot gramm^{-1}\)


	value: \(2.5\cdot 10^3\)







	Rd (float) – The gas constant


	unit: \(Joule\cdot gramm^{-1}\cdot Kelvin^{-1}\)


	value: \(0.287\)







	p (float) – The average sea level pressure


	unit: \(mbar\)


	value: 1000











	Returns

	The specific saturation humidity



	Return type

	array(float) (1D)










	
lowEBMs.Packages.Functions.earthsystem.saturation_pressure(self, e0, eps, L, Rd)

	The saturation pressure of a latitudinal belt.

This function is part of the transfer().sellers module which calculates provides the required properties for earthsystem().humidity_difference and earthsystem().specific_saturation_humidity_sel. It is given by:


\[e = e_0 \left(1 - 0.5 \frac{\epsilon L \Delta T}{R_d T^2} \right) \]

with the temperature difference between latitudes \(\Delta T\) provided by earthsystem().temperature_difference_latitudes, the empirical constant \(\epsilon\), the gas constant \(R_d\), the latent heat of condensation \(L\), the mean sea level saturation vapour pressure \(e_0\) and the temperature of the southern latitudinal belt \(T\).

The required parameters are directly parsed from the earthsystem().specific_saturation_humidity_sel module, for details see here.

Function-call arguments


	Parameters

	
	e0 (float) – The mean sea level saturation vapour pressure


	unit: \(mbar\)


	value: 17







	eps (float) – Empirical constant of the saturation specific humidity


	unit: -


	value: 0.622







	L (float) – The latent heat of condensation


	unit: \(Joule\cdot gramm^{-1}\)


	value: \(2.5\cdot 10^3\)







	Rd (float) – The gas constant


	unit: \(Joule\cdot gramm^{-1}\cdot Kelvin^{-1}\)


	value: \(0.287\)











	Returns

	The saturation pressure



	Return type

	array(float) (1D)










	
lowEBMs.Packages.Functions.earthsystem.humidity_difference(self, e0, eps, L, Rd, p)

	The humidity difference between latitudinal belts.

This function is part of the transfer().sellers module which calculates provides the required properties for transfer().watervapour_sel. It is given by:


\[\Delta q = \frac{e \epsilon^2 L \Delta T}{p R_d T^2} \]

with the temperature difference between latitudes \(\Delta T\) provided by earthsystem().temperature_difference_latitudes, the empirical constant \(\epsilon\), the average sea level pressure p, the gas constant \(R_d\), the latent heat of condensation \(L\), the mean sea level saturation vapour pressure \(e_0\) and the temperature of the southern latitudinal belt \(T\).

The required parameters are directly parsed from the transfer().sellers module, for details see here.

Function-call arguments


	Parameters

	
	e0 (float) – The mean sea level saturation vapour pressure


	unit: \(mbar\)


	value: 17







	eps (float) – Empirical constant of the saturation specific humidity


	unit: -


	value: 0.622







	L (float) – The latent heat of condensation


	unit: \(Joule\cdot gramm^{-1}\)


	value: \(2.5\cdot 10^3\)







	Rd (float) – The gas constant


	unit: \(Joule\cdot gramm^{-1}\cdot Kelvin^{-1}\)


	value: \(0.287\)







	p (float) – The average sea level pressure


	unit: \(mbar\)


	value: 1000











	Returns

	The humidity difference between two latitudinal belts



	Return type

	array(float) (1D)










	
lowEBMs.Packages.Functions.earthsystem.temperature_difference_latitudes(self)

	The temperature difference between latitudinal belts.

It is given by


\[\Delta T = T_{north}-T_{south}\]

with the temperature of the southern and northern latitudinal belt \(T_{south}\), \(T_{south}\).

Function-call arguments


	Returns

	The temperature difference between the latitudinal belts over the latitudes



	Return type

	array(float) (1D)










	
lowEBMs.Packages.Functions.earthsystem.length_latitudes(self, re)

	The length (circumference) of the latitudinal circles.

It is given by


\[l = 2\pi\cdot r\cdot cos (\phi)\]

with the earths radius \(r\) and the degree of latitude \(\phi\).

Function-call arguments


	Parameters

	re (float) – The earth’s radius


	unit: meter


	value: \(6.371\cdot 10^6\)








	Returns

	The length of the latitudinal circles



	Return type

	array(float) (1D)










	
lowEBMs.Packages.Functions.earthsystem.area_latitudes(self, re)

	The area of the latitudinal belts.

It is given by


\[A = \pi r^2 \left([sin(90-\phi_s)^2+(1-cos(90-\phi_s))^2] - [sin(90-\phi_n)^2 + (1+cos(90-\phi_n))^2]\right)\]

with the earths radius \(r\) and the degree of northern and southern latitudinal circle \(\phi_n\), \(\phi_s\).

Function-call arguments


	Parameters

	re (float) – The earth’s radius


	unit: meter


	value: \(6.371\cdot 10^6\)








	Returns

	The area of the latitudinal belts



	Return type

	array(float) (1D)
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lowEBMs.Packages.Configuration

Package with functions which configure the model setup.







	importer

	Reads a configuration.ini-file and creates the model run setup in a dictionary.



	dict_to_list

	Converts dictionaries returned from Configuration.importer into a list with the same structure.



	parameterimporter

	A function purpose-built to import 1-dimensional parameters for the sellers-type functions.



	parameterinterpolator

	An interpolation method fitting a polynomial of degree 10 to the parameter distributions.



	parameterinterpolatorstepwise

	An interpolation method stepwise fitting and averaging a polynomial of degree 2 to the parameter distribution.



	add_sellersparameters

	Overwrites the model setup with one-dimensional sellers parameters.



	import_parallelparameter

	Imports information from a .ini-file to create a setup of parallelized simulations.



	allocate_parallelparameter

	Transforms parameters for parallelization from tuple [start,end] to list [start,…,end] of length number_of_cycles.



	write_parallelparameter

	Overwrites the single run model setup with a parallelized model setup.







	
lowEBMs.Packages.Configuration.importer(filename, *args, **kwargs)

	Reads a configuration.ini-file and creates the model run setup in a dictionary. It is one of the coremodules of this project, mostly called as first step, because it gathers all information about the model setup and summarizes it.


Note

The file from which the information is imported has to have a specific structure, please read Input first to see how the configuration.ini-files are created.



The specificaton of the path to the filedirectory is optional. If none is given some standard diretories will be tried (python sys.paths and relative paths like ‘../’, ‘../Config/’,..)

Function-call arguments


	Parameters

	
	filename (string) – The name of the configuration.ini-file


	type: string


	value: example: ‘Configuration.ini’







	args – 


	kwargs – Optional Keyword arguments:


	path: The directory path where the configuration.ini-file is located.



	type: string


	value: full path (‘/home/user/dir0/dir1/filedir/’) or relative path (‘../../filedir/’)


















	Returns

	configdic: Dictionary of model setup parameters distributed over several subdictionaries



	Return type

	Dictionary










	
lowEBMs.Packages.Configuration.dict_to_list(dic)

	Converts dictionaries returned from Configuration.importer into a list with the same structure. This allows calling the content by index not keyword. It works for a maximum of 3 dimensions of dictionaries (dictionary inside a dictionary).

Function-call arguments


	Parameters

	dic (dict) – The dictionary to convert



	Returns

	List with same structure as input dictionary



	Return type

	List










	
lowEBMs.Packages.Configuration.parameterimporter(filename, *args, **kwargs)

	A function purpose-built to import 1-dimensional parameters for the sellers-type functions. The standard parameters (Sellers 1969) are written into a .ini-file and will be extracted to override the 0-dimensional parameters with 1-dimensional ones.


Important

This function is inbound into Configuration.parameterinterpolater or Configuration.parameterinterpolaterstepwise which interpolate the parameters to the gridresolution. To import, interpolate and overwrite these parameter use Configuration.add_sellersparameters.



Parameters which are imported 1-dimensionally:



	b: Empirical constant to estimate the albedo


	Z: Zonal mean altitude


	Q: Solar insolation


	dp: The tropospheric pressure depth


	dz: The average zonal ocean depth


	Kh: The thermal diffusivity of the atmospheric sensible heat term


	Kwv: The thermal diffusivity of the watervapour term


	Ko: The thermal diffusivity of the oceanic sensible heat term


	a: Empricial constant to calculate the meridional windspeed







The parameters are divided into two types, one defined on a latitudinal circle (gridlines) and one defined on a latitudinal belt (center point between two latitudinal circles/gridlines)


Note

The standard parameters from Sellers (1969) are already provided with this project in ‘lowEBMs/Tutorials/Config/Data/’. By specifying no path (path=None) they can directly be used (advised since the parameters are structured in a special way).



Function-call arguments


	Parameters

	
	filename (string) – The name of the parameter.ini-file


	type: string


	value: standard: ‘SellersParameterization.ini’







	args – 


	kwargs – Optional Keyword arguments:


	path: The directory path where the parameter.ini-file is located.



	type: string


	value: full path (‘/home/user/dir0/dir1/filedir/’) or relative path (‘../../filedir/’)


















	Returns

	circlecomb, beltcomb: List of parameters defined on a latitudinal circle, and latitudinal belt



	Return type

	List, List










	
lowEBMs.Packages.Configuration.parameterinterpolator(filename, *args, **kwargs)

	An interpolation method fitting a polynomial of degree 10 to the parameter distributions. This creates parameter distributions suitable for the gridresolution (necessary if a higher resolution than 10° is used.

This function includes the function Configuration.parameterimporter and takes the same arguments.

Function-call arguments


	Parameters

	
	filename (string) – The name of the parameter.ini-file


	type: string


	value: standard: ‘SellersParameterization.ini’







	args – 


	kwargs – Optional Keyword arguments:


	path: The directory path where the parameter.ini-file is located.



	type: string


	value: full path (‘/home/user/dir0/dir1/filedir/’) or relative path (‘../../filedir/’)


















	Returns

	newcircle, newbelt: List of interpolated parameters defined on a latitudinal circle, and latitudinal belt



	Return type

	List, List










	
lowEBMs.Packages.Configuration.parameterinterpolatorstepwise(filename, *args, **kwargs)

	An interpolation method stepwise fitting and averaging a polynomial of degree 2 to the parameter distribution.

The interpolation method is more advanced compared to Configuration.parameterinterpolator. For each point (over the latitudes) a polynomial fit of degree 2 is made over the point plus the neighbouring points and estimates for the new gridresolution between these neighbouring points are stored. This is done for every point of the original parameters (except the endpoints). Because the interpolations overlap, the values are averaged to obtain a best estimate from multiple interpolations.

This function includes the function Configuration.parameterimporter and takes the same arguments.

Function-call arguments


	Parameters

	
	filename (string) – The name of the parameter.ini-file


	type: string


	value: standard: ‘SellersParameterization.ini’







	args – 


	kwargs – Optional Keyword arguments:


	path: The directory path where the parameter.ini-file is located.



	type: string


	value: full path (‘/home/user/dir0/dir1/filedir/’) or relative path (‘../../filedir/’)


















	Returns

	newcircle, newbelt: List of interpolated parameters defined on a latitudinal circle, and latitudinal belt



	Return type

	List, List










	
lowEBMs.Packages.Configuration.add_sellersparameters(config, importer, file, transfernumber, downwardnumber, solar, albedo, *args, **kwargs)

	Overwrites the model setup with one-dimensional sellers parameters. It takes a model configuration with 0D sellers parameters, the filename of new parameters and a method of interpolation.

This function uses either the method Configuration.parameterinterpolator or Configuration.parameterinterpolatorstepwise which both use the import function Configuration.parameterimporter, therefore it requires their attributes too.

Function-call arguments


	Parameters

	
	config (dict) – The original config dictionary to overwrite


	type: dictionary


	value: created by Configuration.importer







	importer (function) – The name of the interpolator method


	type: functionname


	value: parameterinterpolator or parameterinterpolatorstepwise







	file (string) – The name of the parameter.ini-file


	type: string


	value: standard: ‘SellersParameterization.ini’







	transfernumber (integer) – The [func] header-number in the configuration.ini-file which describes the transfer flux


	type: integer


	value: any







	incomingnumber (integer) – The [func] header-number in the configuration.ini-file which describes the downward flux


	type: integer


	value: any







	solar (boolean) – Indicates whether the insolation by Sellers is used


	type: boolean


	value: True / False







	albedo (boolean) – Indicates whether the albedo parameters by Sellers are used


	type: boolean


	value: True / False







	args – 


	kwargs – Optional Keyword arguments:


	path: The directory path where the parameter.ini-file is located.



	type: string


	value: full path (‘/home/user/dir0/dir1/filedir/’) or relative path (‘../../filedir/’)


















	Returns

	configuration, parameters



	Return type

	Dictionary, List










	
lowEBMs.Packages.Configuration.import_parallelparameter(parallelconfig_filename, *args, **kwargs)

	Imports information from a .ini-file to create a setup of parallelized simulations. This shall allow time-efficient creation of ensemble run, focused to run simulations with various parameters to gain best-fit parameters.

Function-call arguments


	Parameters

	
	parallelconfig_filename (string) – The name of the Parallelization.ini-file for parallelization


	type: string


	value: standard: ‘Parallelization.ini’







	args – 


	kwargs – Optional Keyword arguments:


	path: The directory path where the Parallelization.ini-file is located.



	type: string


	value: full path (‘/home/user/dir0/dir1/filedir/’) or relative path (‘../../filedir/’)


















	Returns

	raw parallelization setup



	Return type

	Dictionary










	
lowEBMs.Packages.Configuration.allocate_parallelparameter(parameter_raw)

	Transforms parameters for parallelization from tuple [start,end] to list [start,…,end] of length number_of_cycles. This shall create lists of parameters to be tested in parallelized simulations.

Function-call arguments


	Parameters

	parameter_raw (dict) – A dictionary with parameters to allocate. The values of the parameters should have the form [start,end] to create [start,…,end] of length number_of_cycles


	type: dictionary


	value: as returned by configuration.import_parallelparameter








	Returns

	allocated parallelization setup, parallelization information



	Return type

	Dictionary, Dictionary










	
lowEBMs.Packages.Configuration.write_parallelparameter(config, parameter, parametersetup)

	Overwrites the single run model setup with a parallelized model setup. This function uses the allocated parallelization setup as returned by Configuration.allocate_parallelparameter. Depending on the number of paramters n to parallelize, a n-dimensional matrix is created. This matrix will be transformed to a one-dimensional list by placing one row after another.

Function-call arguments


	Parameters

	
	config (dict) – The original config dictionary to overwrite


	type: dictionary


	value: created by Configuration.importer







	parameter (dict) – A dictionary with allocated parameters for parallelization. First element returned by Configuration.allocate_parallelparameter.


	type: dictionary


	value: as returned by Configuration.allocate_parallelparameter







	parametersetup (dict) – A dictionary with information about parallelization. Second element returned by Configuration.allocate_parallelparameter.


	type: dictionary


	value: as returned by Configuration.allocate_parallelparameter











	Returns

	config: Updated dictionary of model setup parameters for parallelization



	Return type

	Dictionary













          

      

      

    

  

    
      
          
            
  
lowEBMs.Packages.Variables

Package which defines a large set of variables and functions to process them.

The variables defined are divided into three types:


*Running variables: they store information which is overwritten in each following iteration step
*Static variables: they are non-changing system properties 
*Storage variables: these are lists filled with system properties during a model run




The centre piece of this package is the class Variables.Vars:







	Vars

	Variables.Vars defines any variable desired to store and access from another module’s functions.






All variables defined in Variable.Vars can be read and written with:

from lowEBMs.Packages.Variable import Vars

Vars.x          #returns the current value of variable x in Vars
Vars.x = y      #variable x in Vars is permanently set to value y





Functions to process variables before a simulation run are, for single simulations







	variable_importer

	Executes all relevant functions to import variables for a single simulation run.



	builtin_importer

	Adds the most important variables to the python-builtin functions which are globally accessible.



	initial_importer

	Calculates the initial conditions of the primary variables from the initials-section.



	output_importer

	






and for parallelized ensemble simulations







	variable_importer_parallelized

	



	builtin_importer_parallelized

	



	initial_importer_parallelized

	



	output_importer_parallelized

	







Important

Variables.variable_importer and executes the in the list following processing functions which has to be executed before a simulation can be run for more information see How to use). For parallelized simulations this can be swapped to Variables.variable_importer_parallelized.



Functions to process variables during or after a simulation run are:







	reset

	Resets the given variable to the initial value specified in Vars.__init__.



	datareset

	Resets the primary variables to their initial values.






All modules defined in lowEBMs.Packages.Variables are:



	Variables class

	Single Simulation Functions




	Ensemble Simulation Functions




	Reset Functions












          

      

      

    

  

    
      
          
            
  
Variables class


	
lowEBMs.Packages.Variables.Vars()

	Variables.Vars defines any variable desired to store and access from another module’s functions.

There are three different types of variables defined.

Running variables:

Static variables:







	Lat

	The latitudes of the gridpoints (or ZMT)



	Lat2

	The latitudes of the centres between gridpoints (or centered ZMT)



	solar

	The distribution of solar insolation



	orbtable

	The lookup-table for orbital parameters (from climlab)



	area

	The area of a latitudinal belt



	bounds

	The boundary latitudes used to calculate Area



	latlength

	The circumference of a latitudinal circle



	External_time_start

	The simulation time when the external forcing sets in



	CO2_time_start

	The simulation time when the CO2 forcing sets in



	start_time

	The real clock time when the simulation was started






Storage variables:







	cL

	The sellers watervapour energy transfer



	C

	The sellers atmospheric sensible heat energy transfer



	F

	The sellers oceanic sensible heat energy transfer



	P

	The total energy transfer , P=cL+C+F (non-weighted, one direction)



	Transfer

	The total sellers energy transfer for a latitudinal belt



	BudTransfer

	The budyko energy transfer for a latitudinal belt



	alpha

	The alpha value distribution



	Rdown

	The downward radiative energy flux



	Rup

	The upward radiative energy flux



	ExternalOutput

	List of radiative forcings



	CO2Output

	The CO2 radiative forcing



	ExternalInput

	List of the raw input to calculate the radiative forcing



	CO2Input

	The raw CO2 input














          

      

      

    

  

    
      
          
            
  
Single Simulation Functions







	variable_importer

	



	builtin_importer

	



	initial_importer

	



	output_importer

	







	
lowEBMs.Packages.Variables.variable_importer(config, initialZMT=True, control=False, parallel=False, parallel_config=0, accuracy=0.001, accuracy_number=1000)

	Executes all relevant functions to import variables for a single simulation run. From the configuration dictionary, returned by Configuration.importer, the relevant information is extracted and the specific importer functions are executed in the following order:


\[buliltin \_ importer \quad \rightarrow \quad initial \_ importer \quad \rightarrow \quad output \_ importer\]


Note

When doing this manually, maintain the order!



Function-call arguments


	Parameters

	config (dict) – The configuration dictionary returned by Configuration.importer



	Returns

	No return










	
lowEBMs.Packages.Variables.builtin_importer(rk4input, control=False, parallel=False, parallel_config=0, accuracy=0.001, accuracy_number=1000)

	Adds the most important variables to the python-builtin functions which are globally accessible. This enables calling and writing variables globally and across different files.

Variables added to the builtin-functions are all arguments of the [rk4input]-section from the configuration dictionary, returned by Configuration.importer, and three additional ones.


Important

Variables from the [rk4input]-section are added with their key given in the configuration.ini-file and can be called by the same one later.



Here all added variables ([rk4input]-variables + additional ones):

Function-call arguments


	Parameters

	rk4input (dict) – The [rk4input]-section from the configuration dictionary returned by Configuration.importer



	Returns

	No return










	
lowEBMs.Packages.Variables.initial_importer(initials, initialZMT=True, control=False, parallel=False)

	Calculates the initial conditions of the primary variables from the initials-section.

The initial conditions are directly written to their entry in Variable.Vars.

Function-call arguments


	Parameters

	initials (dict) – The [initials]-section from the configuration dictionary returned by Configuration.importer



	Returns

	No return










	
lowEBMs.Packages.Variables.output_importer(functiondict)

	







          

      

      

    

  

    
      
          
            
  
Ensemble Simulation Functions







	variable_importer_parallelized

	



	builtin_importer_parallelized

	



	initial_importer_parallelized

	



	output_importer_parallelized

	










          

      

      

    

  

    
      
          
            
  
Reset Functions







	reset

	



	datareset

	







	
lowEBMs.Packages.Variables.reset(x)

	Resets the given variable to the initial value specified in Vars.__init__.

Function-call arguments


	Parameters

	x (float/list) – The variable which shall be reset to the initial value



	Returns

	No return










	
lowEBMs.Packages.Variables.datareset()

	Resets the primary variables to their initial values. The primary variables are variables defined under the``[initials]``-section in the configuration.ini-file. These are:













          

      

      

    

  

    
      
          
            
  
To-Do
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Low-dimensional Energy Balance Models

This project is a python-implementation of low-dimensional energy balance models (EBMs), built up from a set of physical functions, combined to represent the behaviour of earth’s climate through space and time. The implementations of this project are mainly based on a set of publications, especially from Michail Budyko and William Sellers. (For the full list see References)

The project was started as part of my bachelor thesis, Benjamin Schmiedel (2019), at the Institute of Environmental Physics, University of Heidelberg, under the supervision of Dr. Kira Rehfeld, group leader of STACY [http://www.iup.uni-heidelberg.de/institut/forschung/groups/palaeo/index_stacy.html] (State and timescale-dependency of climate variability from the last Glacial to present day).

Continuing work was carried out by me as scientific assistant, supervised by Dr. Kira Rehfeld, and as intern at the Geophysical Institute, University of Bergen, supervised by Ingo Bethke. Funding through the Emmy Noether programme of the German Research foundation and the european Erasmus+ Program is gratefully acknowledged.


Welcome to the lowEBMs documentation!

This documentation primarily aims on explaining the structure of the sourcecode and show how to use it for your own purpose.
It is now the most well documented sourcecode, so if questions or concerns about implementations come up, please contact me.
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