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Installation

In short: pip install louvain.
Alternatively, use Anaconda [https://www.anaconda.com/distribution/] and get
the conda packages from the conda-forge channel [https://anaconda.org/conda-forge/louvain-igraph], which supports both Unix, Mac OS and
Windows.

For Unix like systems it is possible to install from source. For Windows this is
overly complicated, and you are recommended to use the binary wheels. There are
two things that are needed by this package: the igraph C core library and
the python-igraph python package. For both, please see http://igraph.org.

Make sure you have all necessary tools for compilation. In Ubuntu this can be
installed using sudo apt-get install build-essential, please refer to the
documentation for your specific system.  Make sure that not only gcc is
installed, but also g++, as the louvain-igraph package is programmed in
C++.

You can check if all went well by running a variety of tests using python
setup.py test.

There are basically two installation modes, similar to the python-igraph
package itself (from which most of the setup.py comes).


	No C core library is installed yet. The packages will be compiled and
linked statically to an automatically downloaded version of the C core
library of igraph.


	A C core library is already installed. In this case, the package will
link dynamically to the already installed version. This is probably also the
version that is used by the igraph package, but you may want to double check
this.




In case the python-igraph package is already installed before, make sure that
both use the same versions.

The cleanest setup it to install and compile the C core library yourself
(make sure that the header files are also included, e.g. install also the
development package from igraph). Then both the python-igraph package, as well
as this package are compiled and (dynamically) linked to the same C core
library.




            

          

      

      

    

  

    
      
          
            
  
Introduction

This package facilitates community detection of networks and builds on the
package igraph, referred to as ig throughout this documentation.
Although the options in the package are extensive, most people are presumably
simply interested in detecting communities with a robust method that works
well. This introduction explains how to do that.

For those without patience (and some prior experience), if you simply want to
detect communities given a graph G using modularity, you simply use

>>> partition = louvain.find_partition(G, louvain.ModularityVertexPartition);





That’s it.

Why then should you use this package rather than the Louvain algorithm
community_multilevel() built into igraph? If you want to use
modularity, and you work with a simple undirected, unweighted graph, then
indeed you may use the built-in method. For anything else, the functionality is
not built-in and this package is for you.

For those less familiar with igraph, let us work out an example more
fully. First, we need to import the relevant packages:

>>> import igraph as ig
>>> import louvain





Let us then look at one of the most famous examples of network science: the
Zachary karate club (it even has a prize named after it):

>>> G = ig.Graph.Famous('Zachary')





Now detecting communities with modularity is straightforward, as demonstrated
earlier:

>>> partition = louvain.find_partition(G, louvain.ModularityVertexPartition)





You can simply plot the results as follows:

>>> ig.plot(partition) 





[image: _images/karate_modularity.png]
In this case, the algorithm actually finds the optimal partition (for small
graphs like these you can check this using
community_optimal_modularity() in the igraph package),
but this is generally not the case (although the algorithm should do well).
Although this is the optimal partition, it does not correspond to the split in
two factions that was observed for this particular network. We can uncover that
split in two using a different method: CPMVertexPartition:

>>> partition = louvain.find_partition(G, louvain.CPMVertexPartition,
...                                    resolution_parameter = 0.05);
>>> ig.plot(partition) 





[image: _images/karate_CPM.png]
Note that any additional **kwargs passed to find_partition()
is passed on to the constructor of the given partition_type. In this case,
we can pass the resolution_parameter, but we could also pass weights or
node_sizes.

This is the real benefit of using this package: it provides implementations for
six different methods (see Reference), and works also on directed and
weighted graphs. Finally, it also allows to work with more complex multiplex
graphs (see Multiplex).




            

          

      

      

    

  

    
      
          
            
  
Advanced

The basic interface explained in the Introduction should provide you
enough to start detecting communities. However, perhaps you want to improve the
partitions further or want to do some more advanced analysis. In this section,
we will explain this in more detail.


Optimiser

Although the package provides simple access to the function
find_partition(), there is actually an underlying
Optimiser class that is doing the actual work. We can also
explicitly construct an Optimiser object:

>>> optimiser = louvain.Optimiser()





The function find_partition() then does nothing else then
calling optimise_partition() on the provided
partition.

>>> diff = optimiser.optimise_partition(partition)





But optimise_partition() simply tries to improve any
provided partition. We can thus try to repeatedly call
optimise_partition() to keep on improving the current
partition:

>>> G = ig.Graph.Erdos_Renyi(100, p=5./100)
>>> partition = louvain.ModularityVertexPartition(G)
>>> improv = 1
>>> while improv > 0:
...   improv = optimiser.optimise_partition(partition)





Even if a call to optimise_partition() did not improve
the current partition, it is still possible that a next call will improve the
partition. Of course, if the current partition is already optimal, this will
never happen, but it is not possible to decide whether a partition is optimal.

The optimise_partition() itself is built on a basic
algorithm: move_nodes(). You can also call this
function yourself. For example:

>>> diff = optimiser.move_nodes(partition)





The usual strategy in the Louvain algorithm is then to aggregate the partition
and repeat the move_nodes() on the aggregated
partition. We can easily repeat that:

>>> partition = louvain.ModularityVertexPartition(G)
>>> while optimiser.move_nodes(partition) > 0:
...   partition = partition.aggregate_partition()





This summarises the whole Louvain algorithm in just three lines of code.
Although this finds the final aggregate partition, this leaves it unclear the
actual partition on the level of the individual nodes. In order to do that, we
need to update the membership based on the aggregate partition, for which we
use the function
from_coarse_partition().

>>> partition = louvain.ModularityVertexPartition(G)
>>> partition_agg = partition.aggregate_partition()
>>> while optimiser.move_nodes(partition_agg):
...   partition.from_coarse_partition(partition_agg)
...   partition_agg = partition_agg.aggregate_partition()





Now partition_agg contains the aggregate partition and partition
contains the actual partition of the original graph G. Of course,
partition_agg.quality() == partition.quality() (save some rounding).

The function move_nodes() in turn relies on two key
functions of the partition:
diff_move() and
move_node(). The first
calculates the difference when moving a node, and the latter actually moves the
node, and updates all necessary internal administration. The
move_nodes() then does something as follows

>>> for v in G.vs:
...   best_comm = max(range(len(partition)),
...                   key=lambda c: partition.diff_move(v.index, c))
...   partition.move_node(v.index, best_comm)





The actual implementation is more complicated, but this gives the general idea.



Resolution profile

Some methods accept so-called resolution parameters, such as
CPMVertexPartition or
RBConfigurationVertexPartition. Although some method may seem
to have some ‘natural’ resolution, in reality this is often quite arbitrary.
However, the methods implemented here (which depend in a linear way on
resolution parameters) allow for an effective scanning of a full range for the
resolution parameter. In particular, these methods somehow can be formulated as
\(Q = E - \gamma N\) where \(E\) and \(N\) are some other
quantities. In the case for CPMVertexPartition for example,
\(E = \sum_c m_c\) is the number of internal edges and \(N = \sum_c
\binom{n_c}{2}\) is the sum of the internal possible edges. The essential
insight for these formulations 1 is that if there is an optimal partition
for both \(\gamma_1\) and \(\gamma_2\) then the partition is also
optimal for all \(\gamma_1 \leq \gamma \leq \gamma_2\).

Such a resolution profile can be constructed using the
Optimiser object.

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = louvain.Optimiser()
>>> profile = optimiser.resolution_profile(G, louvain.CPMVertexPartition,
...                                        resolution_range=(0,1))





Plotting the resolution parameter versus the total number of internal edges we
thus obtain something as follows:

[image: _images/resolution_profile.png]
Now profile contains a list of partitions of the specified type
(CPMVertexPartition in this case) for
resolution parameters at which there was a change. In particular,
profile[i] should be better until profile[i+1], or stated otherwise for
any resolution parameter between profile[i].resolution_parameter and
profile[i+1].resolution_parameter the partition at position i should be
better. Of course, there will be some variations because
optimise_partition() will find partitions of varying
quality. The change points can then also vary for different runs.

This function repeatedly calls optimise_partition()
and can therefore require a lot of time. Especially for resolution parameters
right around a change point there may be many possible partitions, thus
requiring a lot of runs.



References


	1

	Traag, V. A., Krings, G., & Van Dooren, P. (2013). Significant scales in
community structure. Scientific Reports, 3, 2930.  10.1038/srep02930 [http://doi.org/10.1038/srep02930]









            

          

      

      

    

  

    
      
          
            
  
Multiplex

The implementation of multiplex community detection builds on ideas in 1.
The most basic form simply considers two or more graphs which are defined on
the same vertex set, but which have differing edge sets. In this context, each
node is identified with a single community, and cannot have different
communities for different graphs. We call this layers of graphs in this
context. This format is actually more flexible than it looks, but you have to
construct the layer graphs in a smart way. Instead of having layers of graphs
which are always identified on the same vertex set, you could define slices
of graphs which do not necessarily have the same vertex set. Using slices we
would like to assign a node to a community for each slice, so that the
community for a node can be different for different slices, rather than always
being the same for all layers. We can translate slices into layers but it
is not an easy transformation to grasp fully. But by doing so, we can again
rely on the same machinery we developed for dealing with layers.

Throughout the remained of this section, we assume an optimiser has been
created:

>>> optimiser = louvain.Optimiser()






Layer multiplex

If we have two graphs which are identified on exactly the same vertex set, we
say we have two layers. For example, suppose graph G_telephone contains
the communication between friends over the telephone and that the graph
G_email contains the communication between friends via mail. The exact same
vertex set then means that G_telephone.vs[i] is identical to the node
G_email.vs[i]. For each layer we can separately specify the type of
partition that we look for. In principle they could be different for each
layer, but for now we will assume the type of partition is the same for all
layers.  The quality of all partitions combined is simply the sum of the
individual qualities for the various partitions, weighted by the
layer_weight. If we denote by \(q_k\) the quality of layer \(k\)
and the weight by \(w_k\), the overall quality is then


\[q = \sum_k w_k q_k.\]

The optimisation algorithm is no different from the standard algorithm. We
simply calculate the overall difference of moving a node to another community
as the sum of the individual differences in all partitions. The rest
(aggregating and repeating on the aggregate partition) simple proceeds as
usual.

The most straightforward way to use this is then to use
find_partition_multiplex():

>>> membership, improv = louvain.find_partition_multiplex(
...                        [G_telephone, G_email],
...                        louvain.ModularityVertexPartition);






Note

You may need to carefully reflect how you want to weigh the importance
of an individual layer. Since the ModularityVertexPartition
is normalised by the number of links, you essentially weigh layers the same,
independent of the number of links. This may be undesirable, in which case it
may be better to use RBConfigurationVertexPartition, which is
unnormalised. Alternatively, you may specify different layer_weights.



Similar to the simpler function find_partition(), it is a simple
helper function. The function returns a membership vector, because the
membership for all layers is identical. You can also control the partitions and
optimisation in more detail. Perhaps it is better to use
CPMVertexPartition with different resolution parameter for
example for different layers of the graph.  For example, using email creates a
more connected structure because multiple people can be involved in a single
mail, which may require a higher resolution parameter for the email graph.

>>> part_telephone = louvain.CPMVertexPartition(
...                    G_telephone, resolution_parameter=0.01);
>>> part_email = louvain.CPMVertexPartition(
...                    G_email, resolution_parameter=0.3);
>>> diff = optimiser.optimise_partition_multiplex(
...                    [part_telephone, part_email]);





Note that part_telephone and part_email contain exactly the same
partition, in the sense that part_telephone.membership ==
part_email.membership. The underlying graph is of course different, and hence
the individual quality will also be different.

Some layers may have a more important role in the partition and this can be
indicated by the layer_weight. Using half the weight for the email layer for
example would be possible as follows:

>>> diff = optimiser.optimise_partition_multiplex(
...   [part_telephone, part_email],
...   layer_weights=[1,0.5]);






Negative links

The layer weights are especially useful when negative links are present,
representing for example conflict or animosity. Most methods (except CPM) only
accept positive weights. In order to deal with graphs that do have negative
links, a solution is to separate the graph into two layers: one layer with
positive links, the other with only negative links 2. In general, we would
like to have relatively many positive links within communities, while for
negative links the opposite holds: we want many negative links between
communities. We can easily do this within the multiplex layer framework by
passing in a negative layer weight. For example, suppose we have a graph G
with possibly negative weights. We can then separate it into a positive and
negative graph as follows:

>>> G_pos = G.subgraph_edges(G.es.select(weight_gt = 0), delete_vertices=False);
>>> G_neg = G.subgraph_edges(G.es.select(weight_lt = 0), delete_vertices=False);
>>> G_neg.es['weight'] = [-w for w in G_neg.es['weight']];





We can then simply detect communities using;

>>> part_pos = louvain.ModularityVertexPartition(G_pos, weights='weight');
>>> part_neg = louvain.ModularityVertexPartition(G_neg, weights='weight');
>>> diff = optimiser.optimise_partition_multiplex(
...   [part_pos, part_neg],
...   layer_weights=[1,-1]);







Bipartite

For some methods it may be possible to to community detection in bipartite
networks. Bipartite networks are special in the sense that they have only links
between the two different classes, and no links within a class are allowed. For
example, there might be products and customers, and there is a link between
\(i\) and \(j\) if a product \(i\) is bought by a customer
\(j\). In this case, there are no links among products, nor among
customers. One possible approach is simply project this bipartite network into
the one or the other class and then detect communities. But then the
correspondence between the communities in the two different projections is
lost. Detecting communities in the bipartite network can therefore be useful.

Setting this up requires a bit of a creative approach, which is why it is also
explicitly explained here. We will explain it for the CPM method, and then show
how this works the same for some related measures. In the case of CPM you would
like to be able to set three different resolution parameters: one for within
each class \(\gamma_0, \gamma_1\), and one for the links between classes,
\(\gamma_{01}\). Then the formulation would be


\[Q = \sum_{ij}
[A_{ij}
 - (\gamma_0\delta(s_i,0) + \gamma_1\delta(s_i,1)) \delta(s_i,s_j)
 - \gamma_{01}(1 - \delta(s_i, s_j))
]\delta(\sigma_i, \sigma_j)\]

where \(s_i\) denotes the bipartite class of a node and \(\sigma_i\)
the community of the node as elsewhere in the documentation. Rewriting as a sum
over communities gives a bit more insight


\[Q = \sum_c (e_c
- \gamma_{01} 2 n_c(0) n_c(1)
- \gamma_0 n^2_c(0)
- \gamma_1 n^2_c(1))\]

where \(n_c(0)\) is the number of nodes in community \(c\) of class 0
(and similarly for 1) and \(e_c\) is the number of edges within community
\(c\). We denote by \(n_c = n_c(0) + n_c(1)\) the total number of nodes
in community \(c\). Note that


\[\begin{split}n_c^2 &= (n_c(0) + n_c(1))^2 \\
&= n_c(0)^2 + 2 n_c(0) n_c(1) + n_c(1)^2\end{split}\]

We then create three different layers: (1) all nodes have node_size = 1 and
all relevant links; (2) only nodes of class 0 have node_size = 1 and no
links; (3) only nodes of class 1 have node_size = 1 and no links. If we add
the first with resolution parameter \(\gamma_{01}\), and the others with
resolution parameters \(\gamma_{01} - \gamma_0\) and \(\gamma_{01}
- \gamma_1\), but the latter two with a layer weight of -1 while the first
layer has layer weight 1, we obtain the following:


\[\begin{split}Q &=  \sum_c (e_c - \gamma_{01} n_c^2)
   -\sum_c (- (\gamma_{01} - \gamma_0) n_c(0)^2)
   -\sum_c (- (\gamma_{01} - \gamma_1) n_c(0)^2) \\
&=  \sum_c [e_c - \gamma_{01} 2 n_c(0) n_c(1)
                - \gamma_{01} n_c(0)^2
                - \gamma_{01} n_c(1)^2)
                + ( \gamma_{01} - \gamma_0) n_c(0)^2
                + ( \gamma_{01} - \gamma_1) n_c(1)^2
          ] \\
&=  \sum_c (e_c - \gamma_{01} 2 n_c(0) n_c(1)
              - \gamma_{0} n_c(0)^2
              - \gamma_{1} n_c(1)^2) \\\end{split}\]

Hence detecting communities with these three layers corresponds to detecting
communities in bipartite networks. Although we worked out this example for
directed network including self-loops (since it is easiest), it works out
similarly for undirected networks (with or without self-loops). This only
corresponds to the CPM method. However, using a little additional trick, we can
also make this work for modularity. Essentially, modularity is nothing else
than CPM with the node_size set to the degree, and the resolution parameter
set to \(\gamma = \frac{1}{2m}\). In particular, in general (i.e. not
specifically for bipartite graph) if node_sizes=G.degree() we then obtain


\[Q = \sum_{ij} A_{ij} - \gamma k_i k_j\]

In the case of bipartite graphs something similar is obtained, but then
correctly adapted (as long as the resolution parameter is also appropriately
rescaled). Note that this is only possible for modularity for undirected
graphs. Hence, we can also detect communities in bipartite networks using
modularity by using this little trick.

All of this has been implemented in the constructor
Bipartite(). You can simply pass in a
bipartite network with the classes appropriately defined in G.vs['type'] or
equivalent. This function assumes the two classes are coded by 0 and 1,
and if this is not the case it will try to convert it into such categories by
ig.UniqueIdGenerator().

An explicit example of this:

>>> p_01, p_0, p_1 = louvain.CPMVertexPartition.Bipartite(G,
...                    resolution_parameter_01=0.1);
>>> diff = optimiser.optimise_partition_multiplex([p_01, p_0, p_1],
...                                        layer_weights=[1, -1, -1]);








Slices to layers

The multiplex formulation as layers has two limitations: (1) each graph needs to
have an identical vertex set; (2) each node is only in a single community.
Ideally, one would like to relax both these requirements, so that you can work
with graphs that do not need to have identical nodes and where nodes can be in
different communities in different layers. For example, a person could be in one
community when looking at his professional relations, but in another community
looking at his personal relations. Perhaps more commonly: a person could be in
one community at time 1 and in another community at time 2.

Fortunately, this is also possible with this package. We call the more general
formulation slices in contrast to the layers required by the earlier
functions. Slices are then just different graphs, which do not need to have the
same vertex set in any way. The idea is to build one big graph out of all the
slices and then decompose it again in layers that correspond with slices. The
key element is that some slices are coupled: for example two consecutive time
windows, or simply two different slices of types of relations. Because any two
slices can be coupled in theory, we represent the coupling itself again with a
graph. The nodes of this coupling graph thus are slices, and the (possibly
weighted) links in the coupling graph represent the (possibly weighted)
couplings between slices. Below an example with three different time slices,
where slice 1 is coupled to slice 2, which in turn is coupled to slice 3:

[image: _images/slices.png]
The coupling graph thus consists of three nodes and a simple line structure: 1
-- 2 -- 3. We convert this into layers by putting all nodes of all slices in
one big network. Each node is thus represented by a tuple (node, slice) in a
certain sense. Out of this big network, we then only take those edges that are
defined between nodes of the same slice, which then constitutes a single layer.
Finally, we need one more layer for the couplings. In addition, for methods such
as CPMVertexPartition, so-called node_sizes are required, and for
them to properly function, they should be set to 0 (which is handled
appropriately by the package). We thus obtain equally many layers as we have
slices, and we need one more layer for representing the interslice couplings.
For the example provided above, we thus obtain the following:

[image: _images/layers_separate.png]
To transform slices into layers using a coupling graph, this package provides
layers_to_slices(). For the example above, this would function
as follows.  First create the coupling graph assuming we have three slices
G_1, G_2 and G_3:

>>> G_coupling = ig.Graph.Formula('1 -- 2 -- 3');
>>> G_coupling.es['weight'] = 0.1; # Interslice coupling strength
>>> G_coupling.vs['slice'] = [G_1, G_2, G_3]





Then we convert them to layers

>>> layers, interslice_layer, G_full = louvain.slices_to_layers(G_coupling);





Now we still have to create partitions for all the layers. We can freely choose
here to use the same partition types for all partitions, or to use different
types for different layers.


Warning

The interslice layer should usually be of type
CPMVertexPartition with a resolution_parameter=0 and
node_sizes set to 0. The G.vs[node_size] is automatically set to 0
for all nodes in the interslice layer in slices_to_layers(),
so you can simply pass in the attribute node_size. Unless you know what
you are doing, simply use these settings.




Warning

When using methods that accept a node_size argument, this should
always be used. This is the case for CPMVertexPartition,
RBERVertexPartition, SurpriseVertexPartition and
SignificanceVertexPartition.



>>> partitions = [louvain.CPMVertexPartition(H, node_sizes='node_size',
...                                          weights='weight', resolution_parameter=gamma)
...               for H in layers];
>>> interslice_partition = louvain.CPMVertexPartition(interslice_layer, resolution_parameter=0,
...                                                   node_sizes='node_size', weights='weight');





You can then simply optimise these partitions as before using
optimise_partition_multiplex():

>>> diff = optimiser.optimise_partition_multiplex(partitions + [interslice_partition]);







Temporal community detection

One of the most common tasks for converting slices to layers is that we have
slices at different points in time. We call this temporal community detection.
Because it is such a common task, we provide several helper functions to
simplify the above process. Let us assume again that we have three slices
G_1, G_2 and G_3 as in the example above. The most straightforward
function is find_partition_temporal():

>>> membership, improvement = louvain.find_partition_temporal(
...                             [G_1, G_2, G_3],
...                             louvain.CPMVertexPartition,
...                             interslice_weight=0.1,
...                             resolution_parameter=gamma)





This function only returns the membership vectors for the different time slices,
rather than actual partitions.

Rather than directly detecting communities, you can also obtain the actual
partitions in a slightly more convenient way using
time_slices_to_layers():

>>> layers, interslice_layer, G_full = \
...               louvain.time_slices_to_layers([G_1, G_2, G_3],
...                                             interslice_weight=0.1);
>>> partitions = [louvain.CPMVertexPartition(H, node_sizes='node_size',
...                                          weights='weight',
...                                          resolution_parameter=gamma)
...               for H in layers];
>>> interslice_partition = \
...               louvain.CPMVertexPartition(interslice_layer, resolution_parameter=0,
...                                          node_sizes='node_size', weights='weight');
>>> diff = optimiser.optimise_partition_multiplex(partitions + [interslice_partition]);





Both these functions assume that the interslice coupling is always identical for
all slices. If you want more finegrained control, you will have to use the
earlier explained functions.
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Implementation

If you have a cool new idea for a better method, and you want to optimise it,
you can easily plug it in the current tool. This section explains how the
package is setup internally, and how you can extend it. Most of this concerns
C++, and python only comes in when exposing the resulting classes.


Method

All methods in the end derive from MutableVertexPartition, which
implements almost all necessary details, such as moving actual nodes while
maintaining the internal administration. Similarly, it provides all the
necessary functionality for initialising a partition. Additionally, there are
two abstract classes that derive from this base class:
ResolutionParameterVertexPartition and
LinearResolutionParameterVertexPartition (which in turn derives from
the former class). If you want a method with a resolution parameter, you should
derive from one of these two classes, otherwise, simply from the base class
MutableVertexPartition.

There are two functions that you need to implement yourself: diff_move()
and quality(). Note that they should always be consistent, so that we can
double check the internal consistency. You should also ensure that the
diff_move function can be correctly used on any aggregate graph (i.e. moving a
node in the aggregate graph indeed corresponds to moving a set of nodes in the
individual graph).

That’s it. In principle, you could now use and test the method in C++.



Python

Exposing the method to python takes a bit more effort. There are various
places in which you need to change/add things. In the following, we assume you
created a new class called CoolVertexPartition. In order of dependencies, it
goes as follows:


	Your own new VertexPartition class should add some specific methods. In
particular, you need to ensure you create a method

CoolVertexPartition* CoolVertexPartition::create(Graph* graph)
{
  return new CoolVertexPartition(graph);
}





and

CoolVertexPartition* CoolVertexPartition::create(Graph* graph, vector<size_t> const& membership)
{
  return new CoolVertexPartition(graph, membership);
}





These methods ensure that based on a current partition, we can create a new
partition (without knowing its type).



	In python_partition_interface.cpp some methods need to be added. In
particular

PyObject* _new_CoolVertexPartition(PyObject *self, PyObject *args, PyObject *keywds)





You should be able to simply copy an existing method, and adapt it to your
own needs.



	These methods need to be exposed in pynterface.h. In particular, you
need to add the method you created in step (2) to louvain_funcs[].
Again, you should be able to simply copy an existing line.


	You can then finally create the Python class in VertexPartition.py. The
base class derives from the VertexClustering from igraph, so
that it is compatible with all operations in igraph. You should add
the method as follows:

class CoolVertexPartition(MutableVertexPartition):

  def __init__(self, ... ):
    ...





Again, you should be able to copy the outline for another class and adapt it
to your own needs. Don’t forget to change to docstring to update the
documentation so that everybody knows how your new cool method works.



	Expose your newly created python class directly in __init__.py by
importing it:

from .VertexPartition import CoolVertexPartition









That’s it! You’re done and should now be able to find communities using your
new CoolVertexPartition:

>>> louvain.find_partition(G, louvain.CoolVertexPartition); 









            

          

      

      

    

  

    
      
          
            
  
Reference


Module functions

This package implements the louvain algorithm in C++ and exposes it to
python.  It relies on (python-)igraph for it to function. Besides the
relative flexibility of the implementation, it also scales well, and can be run
on graphs of millions of nodes (as long as they can fit in memory). Each method
is represented by a different class, all of whom derive from
MutableVertexPartition. In addition,
multiplex graphs are supported as layers, which also supports multislice
representations.

Examples

The simplest example just finds a partition using modularity

>>> G = ig.Graph.Tree(100, 3)
>>> partition = louvain.find_partition(G, louvain.ModularityVertexPartition)





Alternatively, one can access the different optimisation routines individually
and construct partitions oneself. These partitions can then be optimised by
constructing an Optimiser object and running
optimise_partition().

>>> G = ig.Graph.Tree(100, 3)
>>> partition = louvain.CPMVertexPartition(G, resolution_parameter = 0.1)
>>> optimiser = louvain.Optimiser()
>>> diff = optimiser.optimise_partition(partition)





The Optimiser class contains also the different subroutines that are
used internally by optimise_partition(). In addition, through
the Optimiser class there are various options available for changing some of
the optimisation procedure which can affect both speed and quality, which are
not immediately available in louvain.find_partition().


	
louvain.find_partition(graph, partition_type, initial_membership=None, weights=None, seed=None, **kwargs)

	Detect communities using the default settings.

This function detects communities given the specified method in the
partition_type. This should be type derived from
VertexPartition.MutableVertexPartition, e.g.
ModularityVertexPartition or CPMVertexPartition. Optionally
an initial membership and edge weights can be provided. Remaining
**kwargs are passed on to the constructor of the partition_type,
including for example a resolution_parameter.


	Parameters

	
	graph (ig.Graph) – The graph for which to detect communities.


	partition_type (type of :class:`) – The type of partition to use for optimisation.


	initial_membership (list of int) – Initial membership for the partition. If None then defaults to a
singleton partition.


	weights (list of double, or edge attribute) – Weights of edges. Can be either an iterable or an edge attribute.


	seed (int) – Seed for the random number generator. By default uses a random seed
if nothing is specified.


	**kwargs – Remaining keyword arguments, passed on to constructor of
partition_type.






	Returns

	The optimised partition.



	Return type

	partition






See also

Optimiser.optimise_partition()



Examples

>>> G = ig.Graph.Famous('Zachary')
>>> partition = louvain.find_partition(G, louvain.ModularityVertexPartition)










	
louvain.find_partition_multiplex(graphs, partition_type, seed=None, **kwargs)

	Detect communities for multiplex graphs.

Each graph should be defined on the same set of vertices, only the edges may
differ for different graphs. See
Optimiser.optimise_partition_multiplex() for a more detailed
explanation.


	Parameters

	
	graphs (list of ig.Graph) – List of louvain.VertexPartition layers to optimise.


	partition_type (type of MutableVertexPartition) – The type of partition to use for optimisation (identical for all graphs).


	seed (int) – Seed for the random number generator. By default uses a random seed
if nothing is specified.


	**kwargs – Remaining keyword arguments, passed on to constructor of partition_type.






	Returns

	
	list of int – membership of nodes.


	float – Improvement in quality of combined partitions, see
Optimiser.optimise_partition_multiplex().










Notes

We don’t return a partition in this case because a partition is always
defined on a single graph. We therefore simply return the membership (which
is the same for all layers).


See also

Optimiser.optimise_partition_multiplex(), slices_to_layers()



Examples

>>> n = 100
>>> G_1 = ig.Graph.Lattice([n], 1)
>>> G_2 = ig.Graph.Lattice([n], 1)
>>> membership, improvement = louvain.find_partition_multiplex([G_1, G_2],
...                                                            louvain.ModularityVertexPartition)










	
louvain.find_partition_temporal(graphs, partition_type, interslice_weight=1, slice_attr='slice', vertex_id_attr='id', edge_type_attr='type', weight_attr='weight', seed=None, **kwargs)

	Detect communities for temporal graphs.

Each graph is considered to represent a time slice and does not necessarily
need to be defined on the same set of vertices. Nodes in two consecutive
slices are identified on the basis of the vertex_id_attr, i.e. if two
nodes in two consecutive slices have an identical value of the
vertex_id_attr they are coupled.  The vertex_id_attr should hence be
unique in each slice. The nodes are then coupled with a weight of
interslice_weight which is set in the edge attribute weight_attr. No
weight is set if the interslice_weight is None (i.e.  corresponding in
practice with a weight of 1). See time_slices_to_layers() for
a more detailed explanation.


	Parameters

	
	graphs (list of ig.Graph) – List of louvain.VertexPartition layers to optimise.


	partition_type (type of VertexPartition.MutableVertexPartition) – The type of partition to use for optimisation (identical for all graphs).


	interslice_weight (float) – The weight of the coupling between two consecutive time slices.


	slice_attr (string) – The vertex attribute to use for indicating the slice of a node.


	vertex_id_attr (string) – The vertex to use to identify nodes.


	edge_type_attr (string) – The edge attribute to use for indicating the type of link (interslice or
intraslice).


	weight_attr (string) – The edge attribute used to indicate the weight.


	seed (int) – Seed for the random number generator. By default uses a random seed
if nothing is specified.


	**kwargs – Remaining keyword arguments, passed on to constructor of
partition_type.






	Returns

	
	list of membership – list containing for each slice the membership vector.


	float – Improvement in quality of combined partitions, see
Optimiser.optimise_partition_multiplex().











See also

time_slices_to_layers(), slices_to_layers()



Examples

>>> n = 100
>>> G_1 = ig.Graph.Lattice([n], 1)
>>> G_1.vs['id'] = range(n)
>>> G_2 = ig.Graph.Lattice([n], 1)
>>> G_2.vs['id'] = range(n)
>>> membership, improvement = louvain.find_partition_temporal([G_1, G_2],
...                                                           louvain.ModularityVertexPartition,
...                                                           interslice_weight=1)










	
louvain.slices_to_layers(G_coupling, slice_attr='slice', vertex_id_attr='id', edge_type_attr='type', weight_attr='weight')

	Convert a coupling graph of slices to layers of graphs.

This function converts a graph of slices to layers so that they can be used
with this package. This function assumes that the slices are represented by
nodes in G_coupling, and stored in the attribute slice_attr. In other
words, G_coupling.vs[slice_attr] should contain ig.Graph s . The
slices will be converted to layers, and nodes in different slices will be
coupled if the two slices are connected in G_coupling. Nodes in two
connected slices are identified on the basis of the vertex_id_attr, i.e.
if two nodes in two connected slices have an identical value of the
vertex_id_attr they will be coupled. The vertex_id_attr should hence
be unique in each slice.  The weight of the coupling is determined by the
weight of this link in G_coupling, as determined by the weight_attr.


	Parameters

	
	G_coupling (ig.Graph) – The graph connecting the different slices.


	slice_attr (string) – The vertex attribute which contains the slices.


	vertex_id_attr (string) – The vertex attribute which is used to identify whether two nodes in two
slices represent the same node, and hence, should be coupled.


	edge_type_attr (string) – The edge attribute to use for indicating the type of link (interslice
or intraslice).


	weight_attr (string) – The edge attribute used to indicate the (coupling) weight.






	Returns

	
	G_layers (list of ig.Graph) – A list of slices converted to layers.


	G_interslice (ig.Graph) – The interslice coupling layer.


	G (ig.Graph) – The complete graph containing all layers and interslice couplings.










Notes

The distinction between slices and layers is not easy to grasp. Slices in
this context refer to graphs that somehow represents different aspects of a
network. The simplest example is probably slices that represents time: there
are different snapshots network across time, and each snapshot is considered
a slice. Some nodes may drop out of the network over time, while others enter
the network. Edges may change over time, or the weight of the links may
change over time. This is just the simplest example of a slice, and there may
be different, more complex possibilities. Below an example with three time
slices:

[image: _images/slices.png]
Now in order to optimise partitions across these different slices, we
represent them slightly differently, namely as layers. The idea of layers is
that all graphs always are defined on the same set of nodes, and that only
the links differ for different layers. We thus create new nodes as
combinations of original nodes and slices. For example, if node 1 existed in
both slice 1 and in slice 2, we will thus create two nodes to build the
layers: a node 1-1 and a node 1-2. Additionally, if the slices are connected
in the slice graph, the two nodes would also be connected, so there would be
a linke between node 1-1 and 1-2. Different slices will then correspond to
different layers: each layer only contains the link for that particular
slice. In addition, for methods such as CPMVertexPartition,
so-called node_sizes are required, and for them to properly function,
they should be set to 0 (which is handled appropriately in this function, and
stored in the vertex attribute node_size). We thus obtain equally many
layers as we have slices, and we need one more layer for representing the
interslice couplings.  For the example provided above, we thus obtain the
following:

[image: _images/layers_separate.png]
The idea of doing community detection with slices is further detailed in [1].
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10.1126/science.1184819 [http://doi.org/10.1126/science.1184819]






See also

find_partition_temporal(), time_slices_to_layers()








	
louvain.time_slices_to_layers(graphs, interslice_weight=1, slice_attr='slice', vertex_id_attr='id', edge_type_attr='type', weight_attr='weight')

	Convert time slices to layer graphs.

Each graph is considered to represent a time slice. This function simply
connects all the consecutive slices (i.e. the slice graph) with an
interslice_weight.  The further conversion is then delegated to
slices_to_layers(), which also provides further details.


See also

find_partition_temporal(), slices_to_layers()









Optimiser


	
class louvain.Optimiser

	Bases: object

Class for doing community detection using the Louvain algorithm.

The optimiser class provides a number of different methods for optimising a
given partition. The overall optimise procedure optimise_partition()
calls move_nodes() then aggregates the graph and repeats the same
procedure. For calculating the actual improvement of moving a node
(corresponding a subset of nodes in the aggregate graph), the code relies on
diff_move() which provides
different values for different methods (e.g. modularity or CPM). Finally, the
Optimiser class provides a routine to construct a resolution_profile()
on a resolution parameter.

Create a new Optimiser object


	
property consider_comms

	Determine how alternative communities are considered for moving
a node for optimising a partition.

Nodes will only move to alternative communities that improve the given
quality function.

Notes

This attribute should be set to one of the following values


	louvain.ALL_NEIGH_COMMS
Consider all neighbouring communities for moving.


	louvain.ALL_COMMS
Consider all communities for moving. This is especially useful in the
case of negative links, in which case it may be better to move a node to
a non-neighbouring community.


	louvain.RAND_NEIGH_COMM
Consider a random neighbour community for moving. The probability to
choose a community is proportional to the number of neighbours a node has
in that community.


	louvain.RAND_COMM
Consider a random community for moving. The probability to choose a
community is proportional to the number of nodes in that community.









	
property consider_empty_community

	if True consider also moving nodes to an empty community
(default).


	Type

	boolean










	
move_nodes(partition, consider_comms=None)

	Move nodes to alternative communities for optimising the partition.


	Parameters

	
	partition – The partition for which to move nodes.


	consider_comms – If None uses consider_comms, but can be set to
something else.






	Returns

	Improvement in quality function.



	Return type

	float





Notes

When moving nodes, the function loops over nodes and considers moving the
node to an alternative community. Which community depends on
consider_comms. The function terminates when no more nodes can be moved
to an alternative community.

Examples

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = louvain.Optimiser()
>>> partition = louvain.ModularityVertexPartition(G)
>>> diff = optimiser.move_nodes(partition)










	
optimise_partition(partition)

	Optimise the given partition.


	Parameters

	partition – The MutableVertexPartition to optimise.



	Returns

	Improvement in quality function.



	Return type

	float





Examples

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = louvain.Optimiser()
>>> partition = louvain.ModularityVertexPartition(G)
>>> diff = optimiser.optimise_partition(partition)










	
optimise_partition_multiplex(partitions, layer_weights=None)

	Optimise the given partitions simultaneously.


	Parameters

	
	partitions – List of MutableVertexPartition layers to optimise.


	layer_weights – List of weights of layers.






	Returns

	Improvement in quality of combined partitions, see Notes.



	Return type

	float





Notes

This method assumes that the partitions are defined for graphs with the
same vertices. The connections between the vertices may be different, but
the vertices themselves should be identical. In other words, all vertices
should have identical indices in all graphs (i.e. node i is assumed to be
the same node in all graphs). The quality of the overall partition is
simply the sum of the individual qualities for the various partitions,
weighted by the layer_weight. If we denote by \(Q_k\) the quality of
layer \(k\) and the weight by \(\lambda_k\), the overall quality
is then


\[Q = \sum_k \lambda_k Q_k.\]

This is particularly useful for graphs containing negative links. When
separating the graph in two graphs, the one containing only the positive
links, and the other only the negative link, by supplying a negative weight
to the latter layer, we try to find relatively many positive links within a
community and relatively many negative links between communities. Note that
in this case it may be better to assign a node to a community to which it
is not connected so that consider_comms may be better set to
louvain.ALL_COMMS.

Besides multiplex graphs where each node is assumed to have a single
community, it is also useful in the case of for example multiple time
slices, or in situations where nodes can have different communities in
different slices. The package includes some special helper functions for
using optimise_partition_multiplex() in such cases, where there is a
conversion required from (time) slices to layers suitable for use in this
function.


See also

slices_to_layers(), time_slices_to_layers(), find_partition_multiplex(), find_partition_temporal()



Examples

>>> G_pos = ig.Graph.SBM(100, pref_matrix=[[0.5, 0.1], [0.1, 0.5]], block_sizes=[50, 50])
>>> G_neg = ig.Graph.SBM(100, pref_matrix=[[0.1, 0.5], [0.5, 0.1]], block_sizes=[50, 50])
>>> optimiser = louvain.Optimiser()
>>> partition_pos = louvain.ModularityVertexPartition(G_pos)
>>> partition_neg = louvain.ModularityVertexPartition(G_neg)
>>> diff = optimiser.optimise_partition_multiplex(
...                     partitions=[partition_pos, partition_neg],
...                     layer_weights=[1,-1])










	
resolution_profile(graph, partition_type, resolution_range, weights=None, bisect_func=<function Optimiser.<lambda>>, min_diff_bisect_value=1, min_diff_resolution=0.001, linear_bisection=False, number_iterations=1, **kwargs)

	Use bisectioning on the resolution parameter in order to construct a
resolution profile.


	Parameters

	
	graph – The graph for which to construct a resolution profile.


	partition_type – The type of MutableVertexPartition used
to find a partition (must support resolution parameters obviously).


	resolution_range – The range of resolution values that we would like to scan.


	weights – If provided, indicates the edge attribute to use as a weight.


	bisect_func – The function used for bisectioning. For the methods currently
implemented, this should usually not be altered.


	min_diff_bisect_value – The difference in the value returned by the bisect_func below which the
bisectioning stops (i.e. by default, a difference of a single edge does
not trigger further bisectioning).


	min_diff_resolution – The difference in resolution below which the bisectioning stops. For
positive differences, the logarithmic difference is used by default, i.e.
diff = log(res_1) - log(res_2) = log(res_1/res_2), for which diff >
min_diff_resolution to continue bisectioning. Set the linear_bisection
to true in order to use only linear bisectioning (in the case of negative
resolution parameters for example, which can happen with negative
weights).


	linear_bisection – Whether the bisectioning will be done on a linear or on a logarithmic
basis (if possible).


	number_iterations – Indicates the number of iterations of the algorithm to run. If negative
(or zero) the algorithm is run until a stable iteration.






	Returns

	A list of partitions for different resolutions.



	Return type

	list of MutableVertexPartition





Examples

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = louvain.Optimiser()
>>> profile = optimiser.resolution_profile(G, louvain.CPMVertexPartition,
...                                        resolution_range=(0,1))










	
set_rng_seed(value)

	Set the random seed for the random number generator.


	Parameters

	value – The integer seed used in the random number generator















MutableVertexPartition


	
class louvain.VertexPartition.MutableVertexPartition(graph, initial_membership=None)

	Bases: VertexClustering

Contains a partition of graph, derives from ig.VertexClustering.

This class contains the basic implementation for optimising a partition.
Specifically, it implements all the administration necessary to keep track of
the partition from various points of view. Internally, it keeps track of the
number of internal edges (or total weight), the size of the communities, the
total incoming degree (or weight) for a community, et cetera.

In order to keep the administration up-to-date, all changes in a partition
should be done through
move_node() or
set_membership().  The first
moves a node from one community to another, and updates the administration.
The latter simply updates the membership vector and updates the
administration.

The basic idea is that
diff_move() computes the
difference in the quality function if we would call
move_node() for the same move.
These functions are overridden in any derived classes to provide an actual
implementation. These functions are used by Optimiser to optimise
the partition.


Warning

This base class should never be used in practice, since only
derived classes provide an actual implementation.




	Parameters

	
	graph – The ig.Graph on which this partition is defined.


	membership – The membership vector of this partition. Membership[i] = c implies that
node i is in community c. If None, it is initialised with a singleton
partition community, i.e. membership[i] = i.









	
classmethod FromPartition(partition, **kwargs)

	Create a new partition from an existing partition.


	Parameters

	
	partition – The MutableVertexPartition to replicate.


	**kwargs – Any remaining keyword arguments will be passed on to the constructor of
the new partition.








Notes

This may for example come in handy when determining the quality of a
partition using a different method. Suppose that we already have a
partition p and that we want to determine the Significance of that
partition. We can then simply use

>>> p = louvain.find_partition(ig.Graph.Famous('Zachary'),
...                            louvain.ModularityVertexPartition)
>>> sig = louvain.SignificanceVertexPartition.FromPartition(p).quality()










	
aggregate_partition(membership_partition=None)

	Aggregate the graph according to the current partition and provide a
default partition for it.

The aggregated graph can then be found as a parameter of the partition
partition.graph.

Notes

This function contrasts to the function cluster_graph in igraph itself,
which also provides the aggregate graph, but we may require setting
the appropriate resolution_parameter, weights and node_sizes.
In particular, this function also ensures that the quality defined on the
aggregate partition is identical to the quality defined on the original
partition.

Examples

>>> G = ig.Graph.Famous('Zachary')
>>> partition = louvain.find_partition(G, louvain.ModularityVertexPartition)
>>> aggregate_partition = partition.aggregate_partition(partition)
>>> aggregate_graph = aggregate_partition.graph
>>> aggregate_partition.quality() == partition.quality()
True










	
diff_move(v, new_comm)

	Calculate the difference in the quality function if node v is
moved to community new_comm.


	Parameters

	
	v – The node to move.


	new_comm – The community to move to.






	Returns

	Difference in quality function.



	Return type

	float





Notes

The difference returned by diff_move should be equivalent to first
determining the quality of the partition, then calling move_node, and then
determining again the quality of the partition and looking at the
difference. In other words

>>> partition = louvain.find_partition(ig.Graph.Famous('Zachary'),
...                            louvain.ModularityVertexPartition)
>>> diff = partition.diff_move(v=0, new_comm=0)
>>> q1 = partition.quality()
>>> partition.move_node(v=0, new_comm=0)
>>> q2 = partition.quality()
>>> round(diff, 10) == round(q2 - q1, 10)
True






Warning

Only derived classes provide actual implementations, the base
class provides no implementation for this function.








	
from_coarse_partition(partition, coarse_node=None)

	Update current partition according to coarser partition.


	Parameters

	
	partition (MutableVertexPartition) – The coarser partition used to update the current partition.


	coarse_node (list of int) – The coarser node which represent the current node in the partition.








Notes

This function is to be used to determine the correct partition for an
aggregated graph. In particular, suppose we move nodes and then get an
aggregate graph.

>>> diff = optimiser.move_nodes(partition)
>>> aggregate_partition = partition.aggregate_partition()





Now we also move nodes in the aggregate partition

>>> diff = optimiser.move_nodes(aggregate_partition)





Now we improved the quality function of aggregate_partition, but this
is not yet reflected in the original partition. We can thus call

>>> partition.from_coarse_partition(aggregate_partition)





so that partition now reflects the changes made to
aggregate_partition.

The coarse_node can be used it the aggregate_partition is not
defined based on the membership of this partition. In particular the
membership of this partition is defined as follows:

>>> for v in G.vs:
...   partition.membership[v] = aggregate_partition.membership[coarse_node[v]] 





If coarse_node is None it is assumed the coarse node was defined
based on the membership of the current partition, so that

>>> for v in G.vs:
...   partition.membership[v] = aggregate_partition.membership[partition.membership[v]] 





This can be useful when the aggregate partition is defined on a more
refined partition.






	
move_node(v, new_comm)

	Move node v to community new_comm.


	Parameters

	
	v – Node to move.


	new_comm – Community to move to.








Examples

>>> G = ig.Graph.Famous('Zachary')
>>> partition = louvain.ModularityVertexPartition(G)
>>> partition.move_node(0, 1)










	
quality()

	The current quality of the partition.






	
renumber_communities()

	Renumber the communities so that they are numbered in decreasing size.

Notes

The sort is not necessarily stable.






	
set_membership(membership)

	Set membership.






	
total_possible_edges_in_all_comms()

	The total possible number of edges in all communities.

Notes

If we denote by \(n_c\) the number of nodes in community \(c\),
this is simply


\[\sum_c \binom{n_c}{2}\]






	
total_weight_from_comm(comm)

	The total weight (i.e. number of edges) from a community.


	Parameters

	comm – Community





Notes

This includes all edges, also the ones that are internal to a community.
Sometimes this is also referred to as the community (out)degree.


See also

total_weight_to_comm(), total_weight_in_comm(), total_weight_in_all_comms()








	
total_weight_in_all_comms()

	The total weight (i.e. number of edges) within all communities.

Notes

This should be equal to simply the sum of total_weight_in_comm for all communities.


See also

total_weight_to_comm(), total_weight_from_comm(), total_weight_in_comm()








	
total_weight_in_comm(comm)

	The total weight (i.e. number of edges) within a community.


	Parameters

	comm – Community






See also

total_weight_to_comm(), total_weight_from_comm(), total_weight_in_all_comms()








	
total_weight_to_comm(comm)

	The total weight (i.e. number of edges) to a community.


	Parameters

	comm – Community





Notes

This includes all edges, also the ones that are internal to a community.
Sometimes this is also referred to as the community (in)degree.


See also

total_weight_from_comm(), total_weight_in_comm(), total_weight_in_all_comms()








	
weight_from_comm(v, comm)

	The total number of edges (or sum of weights) to node v from
community comm.


See also

weight_to_comm()








	
weight_to_comm(v, comm)

	The total number of edges (or sum of weights) from node v to
community comm.


See also

weight_from_comm()













ModularityVertexPartition


	
class louvain.ModularityVertexPartition(graph, initial_membership=None, weights=None)

	Bases: MutableVertexPartition

Implements modularity.

Notes

The quality function is


\[Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right)\delta(\sigma_i, \sigma_j)\]

where \(A\) is the adjacency matrix, \(k_i\) is the degree of node
\(i\), \(m\) is the total number of edges, \(\sigma_i\) denotes
the community of node \(i\) and \(\delta(\sigma_i, \sigma_j) = 1\)
if \(\sigma_i = \sigma_j\) and 0 otherwise.

This can alternatively be formulated as a sum over communities:


\[Q = \frac{1}{2m} \sum_{c} \left(m_c - \frac{K_c^2}{4m} \right)\]

where \(m_c\) is the number of internal edges of community \(c\) and
\(K_c = \sum_{i \mid \sigma_i = c} k_i\) is the total degree of nodes
in community \(c\).

References
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	Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating
community structure in networks.  Physical Review E, 69(2), 026113.
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	Parameters

	
	graph (ig.Graph) – Graph to define the partition on.


	initial_membership (list of int) – Initial membership for the partition. If None then defaults to a
singleton partition.


	weights (list of double, or edge attribute) – Weights of edges. Can be either an iterable or an edge attribute.














RBConfigurationVertexPartition


	
class louvain.RBConfigurationVertexPartition(graph, initial_membership=None, weights=None, resolution_parameter=1.0)

	Bases: LinearResolutionParameterVertexPartition

Implements Reichardt and Bornholdt’s Potts model with a configuration null model.

This quality function uses a linear resolution parameter.

Notes

The quality function is


\[Q = \sum_{ij} \left(A_{ij} - \gamma \frac{k_i k_j}{2m} \right)\delta(\sigma_i, \sigma_j)\]

where \(A\) is the adjacency matrix, \(k_i\) is the degree of node
\(i\), \(m\) is the total number of edges, \(\sigma_i\) denotes
the community of node \(i\), \(\delta(\sigma_i, \sigma_j) = 1\) if
\(\sigma_i = \sigma_j\) and 0 otherwise, and, finally \(\gamma\)
is a resolution parameter.

This can alternatively be formulated as a sum over communities:


\[Q = \sum_{c} \left(m_c - \gamma\frac{K_c^2}{4m} \right)\]

where \(m_c\) is the number of internal edges of community \(c\) and
\(K_c = \sum_{i \mid \sigma_i = c} k_i\) is the total degree of nodes
in community \(c\).

Note that this is the same as ModularityVertexPartition for
\(\gamma=1\) and using the normalisation by \(2m\).
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	Parameters

	
	graph (ig.Graph) – Graph to define the partition on.


	initial_membership (list of int) – Initial membership for the partition. If None then defaults to a
singleton partition.


	weights (list of double, or edge attribute) – Weights of edges. Can be either an iterable or an edge attribute.


	resolution_parameter (double) – Resolution parameter.









	
property resolution_parameter

	Resolution parameter.











RBERVertexPartition


	
class louvain.RBERVertexPartition(graph, initial_membership=None, weights=None, node_sizes=None, resolution_parameter=1.0)

	Bases: LinearResolutionParameterVertexPartition

Implements Reichardt and Bornholdt’s Potts model with a configuration null model.

This quality function uses a linear resolution parameter.

Notes

The quality function is


\[Q = \sum_{ij} \left(A_{ij} - \gamma p \right)\delta(\sigma_i, \sigma_j)\]

where \(A\) is the adjacency matrix,


\[p = \frac{m}{\binom{n}{2}}\]

is the overall density of the graph, \(\sigma_i\) denotes the community
of node \(i\), \(\delta(\sigma_i, \sigma_j) = 1\) if
\(\sigma_i = \sigma_j\) and 0 otherwise, and, finally \(\gamma\)
is a resolution parameter.

This can alternatively be formulated as a sum over communities:


\[Q = \sum_{c} \left[m_c - \gamma p \binom{n_c}{2} \right]\]

where \(m_c\) is the number of internal edges of community \(c\) and
\(n_c\) the number of nodes in community \(c\).

References
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	Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of
community detection.  Physical Review E, 74(1), 016110.
10.1103/PhysRevE.74.016110 [http://doi.org/10.1103/PhysRevE.74.016110]






	Parameters

	
	graph (ig.Graph) – Graph to define the partition on.


	initial_membership (list of int) – Initial membership for the partition. If None then defaults to a
singleton partition.


	weights (list of double, or edge attribute) – Weights of edges. Can be either an iterable or an edge attribute.


	node_sizes (list of int, or vertex attribute) – Sizes of nodes are necessary to know the size of communities in aggregate
graphs. Usually this is set to 1 for all nodes, but in specific cases
this could be changed.


	resolution_parameter (double) – Resolution parameter.














CPMVertexPartition


	
class louvain.CPMVertexPartition(graph, initial_membership=None, weights=None, node_sizes=None, resolution_parameter=1.0)

	Bases: LinearResolutionParameterVertexPartition

Implements CPM.
This quality function uses a linear resolution parameter.

Notes

The quality function is


\[Q = \sum_{ij} \left(A_{ij} - \gamma \right)\delta(\sigma_i, \sigma_j)\]

where \(A\) is the adjacency matrix, \(\sigma_i\) denotes the
community of node \(i\), \(\delta(\sigma_i, \sigma_j) = 1\) if
\(\sigma_i = \sigma_j\) and 0 otherwise, and, finally \(\gamma\)
is a resolution parameter.

This can alternatively be formulated as a sum over communities:


\[Q = \sum_{c} \left[m_c - \gamma \binom{n_c}{2} \right]\]

where \(m_c\) is the number of internal edges of community \(c\) and
\(n_c\) the number of nodes in community \(c\).

The resolution parameter \(\gamma\) for this functions has a
particularly simple interpretation. The internal density of communities


\[p_c = \frac{m_c}{\binom{n_c}{2}} \geq \gamma\]

is higher than \(\gamma\), while the external density


\[p_{cd} = \frac{m_{cd}}{n_c n_d} \leq \gamma\]

is lower than \(\gamma\). In other words, choosing a particular
\(\gamma\) corresponds to choosing to find communities of a particular
density, and as such defines communities. Finally, the definition of a
community is in a sense independent of the actual graph, which is not the
case for any of the other methods (see the reference for more detail).
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	Parameters

	
	graph (ig.Graph) – Graph to define the partition on.


	initial_membership (list of int) – Initial membership for the partition. If None then defaults to a
singleton partition.


	weights (list of double, or edge attribute) – Weights of edges. Can be either an iterable or an edge attribute.


	node_sizes (list of int, or vertex attribute) – Sizes of nodes are necessary to know the size of communities in aggregate
graphs. Usually this is set to 1 for all nodes, but in specific cases
this could be changed.


	resolution_parameter (double) – Resolution parameter.









	
Bipartite(resolution_parameter_01, resolution_parameter_0=0, resolution_parameter_1=0, degree_as_node_size=False, types='type', **kwargs)

	Create three layers for bipartite partitions.

This creates three layers for bipartite partition necessary for detecting
communities in bipartite networks. These three layers should be passed to
Optimiser.optimise_partition_multiplex() with
layer_weights=[1,-1,-1].


	Parameters

	
	graph (ig.Graph) – Graph to define the bipartite partitions on.


	resolution_parameter_01 (double) – Resolution parameter for in between two classes.


	resolution_parameter_0 (double) – Resolution parameter for class 0.


	resolution_parameter_1 (double) – Resolution parameter for class 1.


	degree_as_node_size (boolean) – If True use degree as node size instead of 1, to mimic modularity,
see Notes.




	types (vertex attribute or list) – Indicator of the class for each vertex. If not 0, 1, it is automatically
converted.


	**kwargs – Additional arguments passed on to default constructor of
CPMVertexPartition.


	_notes-bipartite (..) – 








Notes

For bipartite networks, we would like to be able to set three different
resolution parameters: one for within each class \(\gamma_0,
\gamma_1\), and one for the links between classes, \(\gamma_{01}\).
Then the formulation would be


\[Q = \sum_{ij}
[A_{ij}
 - (\gamma_0\delta(s_i,0) + \gamma_1\delta(s_i,1)) \delta(s_i,s_j)
 - \gamma_{01}(1 - \delta(s_i, s_j))
]\delta(\sigma_i, \sigma_j)\]

In terms of communities this is


\[Q = \sum_c (e_c
- \gamma_{01} 2 n_c(0) n_c(1)
- \gamma_0 n^2_c(0)
- \gamma_1 n^2_c(1))\]

where \(n_c(0)\) is the number of nodes in community \(c\) of class 0
(and similarly for 1) and \(e_c\) is the number of edges within community
\(c\). We denote by \(n_c = n_c(0) + n_c(1)\) the total number of nodes
in community \(c\).

We achieve this by creating three layers : (1) all nodes have node_size =
1 and all relevant links; (2) only nodes of class 0 have node_size =
1 and no links; (3) only nodes of class 1 have node_size = 1 and no
links. If we add the first with resolution parameter \(\gamma_{01}\),
and the others with resolution parameters \(\gamma_{01} - \gamma_0\)
and \(\gamma_{01} - \gamma_1\), but the latter two with a layer
weight of -1 while the first layer has layer weight 1, we obtain the
following:


\[\begin{split}Q &=  \sum_c (e_c - \gamma_{01} n_c^2)
   -\sum_c (- (\gamma_{01} - \gamma_0) n_c(0)^2)
   -\sum_c (- (\gamma_{01} - \gamma_1) n_c(1)^2) \\
&=  \sum_c [e_c - \gamma_{01} 2 n_c(0) n_c(1)
                 - \gamma_{01} n_c(0)^2
                 - \gamma_{01} n_c(1)^2)
                 + ( \gamma_{01} - \gamma_0) n_c(0)^2
                 + ( \gamma_{01} - \gamma_1) n_c(1)^2
           ] \\
&=  \sum_c [e_c - \gamma_{01} 2 n_c(0) n_c(1)
                 - \gamma_{0} n_c(0)^2
                 - \gamma_{1} n_c(1)^2]\end{split}\]

Although the derivation above is using \(n_c^2\), implicitly assuming a
direct graph with self-loops, similar derivations can be made for
undirected graphs using \(\binom{n_c}{2}\), but the notation is then
somewhat more convoluted.

If we set node sizes equal to the degree, we get something similar to
modularity, except that the resolution parameter should still be divided by
\(2m\). In particular, in general (i.e. not specifically for bipartite
graph) if node_sizes=G.degree() we then obtain


\[Q = \sum_{ij} A_{ij} - \gamma k_i k_j\]

In the case of bipartite graphs something similar is obtained, but then
correctly adapted (as long as the resolution parameter is also
appropriately rescaled).


Note

This function is not suited for directed graphs in the case of
using the degree as node sizes.













SignificanceVertexPartition


	
class louvain.SignificanceVertexPartition(graph, initial_membership=None, node_sizes=None)

	Bases: MutableVertexPartition

Implements Significance.

Notes

The quality function is


\[Q = \sum_c \binom{n_c}{2} D(p_c \parallel p)\]

where \(n_c\) is the number of nodes in community \(c\),


\[p_c = \frac{m_c}{\binom{n_c}{2}},\]

is the density of community \(c\),


\[p = \frac{m}{\binom{n}{2}}\]

is the overall density of the graph, and finally


\[D(x \parallel y) = x \ln \frac{x}{y} + (1 - x) \ln \frac{1 - x}{1 - y}\]

is the binary Kullback-Leibler divergence.

For directed graphs simply multiply the binomials by 2. The expected
Significance in Erdos-Renyi graphs behaves roughly as \(\frac{1}{2} n
\ln n\) for both directed and undirected graphs in this formulation.


Warning

This method is not suitable for weighted graphs.
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	Parameters

	
	graph (ig.Graph) – Graph to define the partition on.


	initial_membership (list of int) – Initial membership for the partition. If None then defaults to a
singleton partition.


	node_sizes (list of int, or vertex attribute) – Sizes of nodes are necessary to know the size of communities in aggregate
graphs. Usually this is set to 1 for all nodes, but in specific cases
this could be changed.














SurpriseVertexPartition


	
class louvain.SurpriseVertexPartition(graph, initial_membership=None, weights=None, node_sizes=None)

	Bases: MutableVertexPartition

Implements (asymptotic) Surprise.

Notes

The quality function is


\[Q = m D(q \parallel \langle q \rangle)\]

where \(m\) is the number of edges,


\[q = \frac{\sum_c m_c}{m},\]

is the fraction of internal edges,


\[\langle q \rangle = \frac{\sum_c \binom{n_c}{2}}{\binom{n}{2}}\]

is the expected fraction of internal edges, and finally


\[D(x \parallel y) = x \ln \frac{x}{y} + (1 - x) \ln \frac{1 - x}{1 - y}\]

is the binary Kullback-Leibler divergence.

For directed graphs we can multiplying the binomials by 2, and this leaves
\(\langle q \rangle\) unchanged, so that we can simply use the same
formulation.  For weighted graphs we can simply count the total internal
weight instead of the total number of edges for \(q\), while
\(\langle q \rangle\) remains unchanged.
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	Parameters

	
	graph (ig.Graph) – Graph to define the partition on.


	initial_membership (list of int) – Initial membership for the partition. If None then defaults to a
singleton partition.


	weights (list of double, or edge attribute) – Weights of edges. Can be either an iterable or an edge attribute.


	node_sizes (list of int, or vertex attribute) – Sizes of nodes are necessary to know the size of communities in aggregate
graphs. Usually this is set to 1 for all nodes, but in specific cases
this could be changed.
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