

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Índice

1.15.0 - October 24, 2018

	Add holiday calendar for PAD Canada

1.14.0 - July 18, 2018

	Add holiday calendar for BECS New Zealand

1.13.1 - June 22, 2018

	Fix June’s 2018 bank holidays for Bankgirot

1.13.0 - April 17, 2018

	Add support for specifying extra_working_dates (special dates that are «working days»,
even though they are not one of the specified days, for example weekend dates
that are considered to be working days)

1.12.0 - April 3, 2018

	Add Betalingservice & BECS calendars up until 2020

1.11.1 - December 20, 2017

	Add 2017-2018 BECS holiday definitions

1.11.0 - December 13, 2017

	Handle properly calendar initialization by Date objects (not strings),
coming from both YAML config and initialize().

1.10.0 - September 20, 2017

	Add 2018-2019 Betalingsservice holiday definitions

1.9.0 - August 23, 2017

	Add 2017 Betalingsservice holiday definitions

1.8.0 - February 13, 2017

	Add 2018-2027 TARGET holiday defintions

	Add 2018-2027 Bankgirot holiday defintions

1.7.0 - January 18, 2017

	Add 2018-2027 BACS holiday defintions

1.6.0 - December 23, 2016

	Add 2017 BACS holiday definitions

	Add 2017 and 2018 TARGET holiday definitions

1.5.0 - June 2, 2015

	Add 2016 holiday definitions

1.4.0 - December 24, 2014

	Add support for custom calendar load paths

	Remove the “sepa” calendar

1.3.0 - December 2, 2014

	Add Calendar#previous_business_day

1.2.0 - November 15, 2014

	Add TARGET calendar

1.1.0 - September 30, 2014

	Add 2015 holiday definitions

1.0.0 - June 11, 2014

	Initial public release

Business

[image: Gem version] [http://badge.fury.io/rb/business]
[image: Build status] [https://travis-ci.org/gocardless/business]

Date calculations based on business calendars.

Documentation

To get business, simply:

$ gem install business

Getting started

Get started with business by creating an instance of the calendar class,
passing in a hash that specifies with days of the week are considered working
days, and which days are holidays.

calendar = Business::Calendar.new(
 working_days: %w(mon tue wed thu fri),
 holidays: ["01/01/2014", "03/01/2014"] # array items are either parseable date strings, or real Date objects
)

extra_working_dates key makes the calendar to consider a weekend day as a working day.

A few calendar configs are bundled with the gem (see lib/business/data for
details). Load them by calling the load class method on Calendar. The
load_cached variant of this method caches the calendars by name after loading
them, to avoid reading and parsing the config file multiple times.

calendar = Business::Calendar.load("weekdays")
calendar = Business::Calendar.load_cached("weekdays")

If working_days is missing, then common default is used (mon-fri).
If holidays is missing, «no holidays» assumed.
If extra_working_dates is missing, then no changes in working_days will happen.

Elements of holidays and extra_working_dates may be
eiter strings that Date.parse() can understand,
or YYYY-MM-DD (which is considered as a Date by Ruby YAML itself).

holidays:
 - 2017-01-08 # Same as January 8th, 2017

Checking for business days

To check whether a given date is a business day (falls on one of the specified
working days or working dates, and is not a holiday), use the business_day?
method on Calendar.

calendar.business_day?(Date.parse("Monday, 9 June 2014"))
=> true
calendar.business_day?(Date.parse("Sunday, 8 June 2014"))
=> false

Custom calendars

To use a calendar you’ve written yourself, you need to add the directory it’s
stored in as an additional calendar load path:

Business::Calendar.additional_load_paths = ['path/to/your/calendar/directory']

You can then load the calendar as normal.

Business day arithmetic

The add_business_days and subtract_business_days are used to perform
business day arithmetic on dates.

date = Date.parse("Thursday, 12 June 2014")
calendar.add_business_days(date, 4).strftime("%A, %d %B %Y")
=> "Wednesday, 18 June 2014"
calendar.subtract_business_days(date, 4).strftime("%A, %d %B %Y")
=> "Friday, 06 June 2014"

The roll_forward and roll_backward methods snap a date to a nearby business
day. If provided with a business day, they will return that date. Otherwise,
they will advance (forward for roll_forward and backward for roll_backward)
until a business day is found.

date = Date.parse("Saturday, 14 June 2014")
calendar.roll_forward(date).strftime("%A, %d %B %Y")
=> "Monday, 16 June 2014"
calendar.roll_backward(date).strftime("%A, %d %B %Y")
=> "Friday, 13 June 2014"

To count the number of business days between two dates, pass the dates to
business_days_between. This method counts from start of the first date to
start of the second date. So, assuming no holidays, there would be two business
days between a Monday and a Wednesday.

date = Date.parse("Saturday, 14 June 2014")
calendar.business_days_between(date, date + 7)
=> 5

Included Calendars

We include some calendar data with this Gem but give no guarantees of its
accuracy.
The calendars that we include are:

	Bacs

	Bankgirot

	BECS (Australia)

	BECSNZ (New Zealand)

	PAD (Canada)

	Betalingsservice

	Target (SEPA)

But other libraries already do this

Another gem, business_time [https://github.com/bokmann/business_time], also
exists for this purpose. We previously used business_time, but encountered
several issues that prompted us to start business.

Firstly, business_time works by monkey-patching Date, Time, and FixNum.
While this enables syntax like Time.now + 1.business_day, it means that all
configuration has to be global. GoCardless handles payments across several
geographies, so being able to work with multiple working-day calendars is
essential for us. Business provides a simple Calendar class, that is
initialized with a configuration that specifies which days of the week are
considered to be working days, and which dates are holidays.

Secondly, business_time supports calculations on times as well as dates. For
our purposes, date-based calculations are sufficient. Supporting time-based
calculations as well makes the code significantly more complex. We chose to
avoid this extra complexity by sticking solely to date-based mathematics.

[image: I'm late for business]

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_images/b6c4a5b09a1c2cbd7f40190305f6f0c3ca96f9a5.jpeg
|"h'|'i'a'1't'é'
M\

J_

ForBullness!

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

