
Loom Documentation
Release 0.7

Loom Team

May 16, 2017

Contents

1 User guide 1
1.1 Introduction . 1
1.2 Installation . 3
1.3 Python client . 4
1.4 Extending worker . 14

2 API 17
2.1 API: Python Client . 17

i

ii

CHAPTER 1

User guide

Introduction

HyperLoom is a platform for defining and executing workflow pipelines in a distributed environment. HyperLoom
aims to be a highly scalable framework that is able to efficiently execute millions of interconnected tasks on hundreds
of computational nodes.

User defines and submits a plan - a computational graph (Directed Acyclic Graph) that captures dependencies between
computational tasks. The HyperLoom infrastructure then automatically schedules the tasks on available nodes while
managing all necessary data transfers.

Architecture

HyperLoom architecture is depicted in Fig. 1.1. HyperLoom consist of a server process that manages worker processes
running on computational nodes and a client component that provides an user interface to HyperLoom.

The main components are:

• client – The Python gateway to HyperLoom – it allows users to programmatically chain computational tasks
into a plan and submit the plan to the server. It also provides a functionality to gather results of the submitted
tasks after the computation finishes.

• server – receives and decomposes a HyperLoom plan and reactively schedules tasks to run on available compu-
tational resources provided by workers.

• worker – executes and runs tasks as scheduled by the server and inform the server about the task states. Hy-
perLoom provides options to extend worker functionality by defining custom task or data types. (Server and
worker are written in C++.)

Basic terms

The basic elements of Loom’s programming model are: data object, task, and plan. A data object is an arbitrary
data structure that can be serialized/deserialized. A task represents a computational unit that produces data objects. A

1

Loom Documentation, Release 0.7

Fig. 1.1: Architecture of HyperLoom

plan is a set of interconnected tasks.

Tasks

A task is an object representing a computation together with its dependencies and a configuration. Each task has the
following attributes:

• Task inputs – task’s prerequisites (some other tasks)

• Task type – the specification of the procedure that should be executed

• Task policy – defines how should be the task scheduled

• Configuration – a sequence of bytes that is interpreted according the task type

• Resource constraints

By task execution, we mean executing a procedure according to task type, which takes data objects and configuration,
and returns a new data object. The input data objects are obtained as a result of executing tasks defined in task inputs.
Resource constraints serve to express that a task execution may need some specific hardware or number of processes.

Plan

Plan is a set of tasks. Plan has to form a finite asyclic directed multigraph where nodes are tasks and arcs express
input dependencies between tasks. Plan execution is an execution of tasks according to the dependencies defined in
the graph.

Note:

• We have formally restricted each task to return only a single data object as its result. However, a task can
produce more results by returning an array of data objects.

• Input data objects are always results of a previous tasks. To create a specific constant data object, there is
a standard task (tasks.const in Python API) that takes no input and only creates a data object from its
configuration.

2 Chapter 1. User guide

Loom Documentation, Release 0.7

Symbols

Customization and extendability are important concepts of HyperLoom. HyperLoom is designed to enable creating
customized workers that providies new task types, data objects and resources. HyperLoom uses the concept of name
spaces to avoid potential name clashes between different workers. Each type of data object, task type and resource
type is identified by a symbol. Symbols are hierarchically organized and the slash character / is used as the separator
of each level (e.g. loom/data/const). All built-in task types, data object types, and resource types always start with
loom/ prefix. Other objects introduced in a a specialized worker should introduce its own prefix.

Data objects

Data objects are fundamental entities in HyperLoom. They represent values that serves as arguments and results of
tasks. There are the following build-in basic types of data objects:

• Plain object – An anonymous sequence of bytes without any additional interpretation by HyperLoom.

• File – A handler to an external file on shared file system. From the user’s perspective, it behaves like a plain
object; except when a data transfer between nodes occurs, only a path to the file is transferred.

• Array – A sequence of arbitrary data objects

• Index – A logical view over a D-Object data object with a list of positions. It is used to slice data according
some positions (e.g. positions of the new-line character to extract lines). It behaves like an array without explicit
storing of each entry.

• PyObj – Contains an arbitrary Python object

We call objects that are able to provide a content as continous chunk of memory as D-Objects. Plain object and File
object are D-Objects; Array, Index, and PyObj are not D-Objects.

Each data object

• size – the number of bytes needed to store the object

• length – the number of ‘inner pieces’. Length is zero when an object has no inner structure. Plain objects and
files have always zero length; an array has length equal to number of lements in the array.

Note: size is an approximation. For a plain object, it is the length of data itself without any metada. The size of an
array is a sum of sizes of elements. The size of PyObj is obtained by sys.getsizeof.

Installation

HyperLoom has two components from the installation perspective:

• Runtime - the HyperLoom infrastructure (Server and Worker)

• Python client

Both components resides in the same Git repository, but their installations are independent.

The main repository is: https://code.it4i.cz/ADAS/loom

Runtime

The HyperLoom infrastructural components depend on the following libraries that are not included in the HyperLoom
source code:

1.2. Installation 3

https://code.it4i.cz/ADAS/loom

Loom Documentation, Release 0.7

• libuv – Asychronous event notification

• Protocol buffers – Serialization library

• Python >=3.4 (optional)

• Clouldpickle (optional)

(HyperLoom also depends on spdlog and Catch that are distributed together with HyperLoom)

In Debian based distributions, dependencies can be installed by the following commands:

apt install libuv-dev libprotobuf-dev
pip install cloudpickle

Note: If you are going to create plans with many tasks, you can obtain a significant speedup by using PROTO-
COL_BUFFERS_PYTHON_IMPLEMENTATION=”cpp” feature.

When dependencies are installed, HyperLoom itself can be installed by the following commands:

cd loom
mkdir _build
cd _build
cmake ..
make
make install

Python client

Python client depends on:

• Protocol buffers

• Cloudpickle

Python client can be installed by the following commands:

cd loom/python
sh generate.sh
python setup.py install

Python client

Basic usage

The following code contains a simple example of HyperLoom usage. It creates two constants and a task that merge
them. Next, it creates a client and connect to the server and submits the plan and waits for the results. It assumes that
the server is running at address localhost on TCP port 9010.

from loom.client import Client, tasks

task1 = tasks.const("Hello ") # Create a plain object
task2 = tasks.const("world!") # Create a plain object
task3 = tasks.merge((task1, task2)) # Merge two data objects together

4 Chapter 1. User guide

Loom Documentation, Release 0.7

client = Client("localhost", 9010) # Create a client
result = client.submit_one(task3) # Submit task
print(result.gather()) # prints b"Hello world!"

The full list of build-in tasks can be found in Tasks. Method submit_one is non-blocking and returns instance of
loom.client.Future that represents a remote computation in HyperLoom infrastructure. There are basic four
operations that is provided by loom.client.Future:

• wait() - The operation blocks the client until the task is not finished.

• fetch() - The operation waits until the task is not finished, then it downloads the content to the client (while
the results also remains on workers).

• release() - It removes results from workers. This method is automatically called in __del__ method of the
object, hence you do not have to called it manually. However, it is a good practice to explicitly call the method
to release resources as soon as possible and do not depend on garbage collecting in the client.

• gather() - Basically, it is a short cut for fetch() + release(). It downloads data to the client and
removes them from the workers. For a single future it is actually the same as calling fetch() followed by
release() but when we work with more futures it allows some optimizations.

Submitting more tasks at once

All previously mentioned methods have alternatives for working with more tasks/futures at once:

from loom.client import Client, tasks

task1 = tasks.const("Hello ") # Create a plain object
task2 = tasks.const(" ") # Create a plain object
task3 = tasks.const("world!") # Merge two data objects together

client = Client("localhost", 9010) # Create a client
results = client.submit((task1, task2, task3)) # Submit tasks; returns list of
→˓futures
print(client.gather(results)) # prints [b"Hello world!", b" ", b
→˓"world!"]

In this case, we have replaced submit_one by method submit that takes a collection of tasks and we have called
the method gather not on the future but directly on the client. Client also have methods wait, relase, and fetch
for collective future processing.

When possible, it is recommdended to use collective processing futures, since it allows some optimizations in com-
parison of processing tasks/futures in a loop separately.

Reusing futures as tasks inputs

Futures can be also used as input for tasks. This allows to use a gradual submitting, i.e. HyperLoom may already
computes some part of the computation while the remaining plan is still composed.

task1 = ... # create a task
f1 = client.submit_one(task1) # submit task

task2 = ... # create a second task
taskA = tasks.merge((f1, tasks2)) # create task that uses f1 and taskA
fA = client.submit_one(f1)

1.3. Python client 5

Loom Documentation, Release 0.7

It does not matter if task1 is finished yet or not, as far it is not released it can be used as an input. In other words,
you can call wait and fetch on futures and they can be still used in tasks; however release or gather releas
tasks from the workers and it cannot be used anymore.

Important: The following code is usually a bad pattern:

task1 = ...
task2 = tasks.run("program1", stdin=task1)
f2 = client.submit_one(task2)
task3 = tasks.run("program1", stdin=task1)
f3 = client.submit_one(task3)
client.gather((f2, f3))

Task task1 is computed twice! Task task1 is requested in both submissions but we did not indicate that we want
to reuse its result later.

The better code:

task1 = ...
f1 = client.submit_one(task1)
task2 = tasks.run("program1", stdin=f1)
f2 = client.submit_one(task2)
task3 = tasks.run("program1", stdin=f1)
f3 = client.submit_one(task3)
client.gather((f2, f3))

or (without gradual submmiting):

task1 = ...
task2 = tasks.run("program1", stdin=task1)
task3 = tasks.run("program1", stdin=task1)
f2, f3 = client.submit((task2, task3))
client.gather((f2, f3))

In both cases, task1 is computed only once.

Running external programs

In this subsection, we demonstrate a running of external programs. The most basic scenario is execution of a program
while mapping a data object on standard input and capturing the standard output. It can be achieved by the following
code:

task1 = ...
task_run = tasks.run("/bin/grep Loom", stdin=task1)

If the task_run is executed, the standard unix program grep is executed. Result from task is mapped on its
standard input and output is captured. Therefore, this example creates a new plain data object that contains only lines
containing string Loom.

If the first argument is string, as in the above example, then Loom expects that arguments are separated by white
spaces. But argument may be provided explicitly, e.g.

task_run = tasks.run(("/path/to/program", "--arg1", "argument with spaces"))

6 Chapter 1. User guide

Loom Documentation, Release 0.7

Mapping input files

If the executed program cannot read data from the standard input or we need to provide more inputs, run allows to
map data objects to files.

The following code maps the result of task_a to file1 and result of task_b to file2.

task_a = ...
task_b = ...
task_run = tasks.run("/bin/cat file1 file2",

[(task_a, "file1"), (task_b, "file2")])

A new fresh directory is created for each execution of the program and the current working directory is set to this
directory. Files created by mapping data objects are placed to this directory. Therefore, as far as only relative paths
are used, no file conflict occurs. Therefore the following code is correct, even all three tasks may be executed on the
same node simultaneously.

task_a = ...
task_b = ...
task_c = ...

task_1 = tasks.run("/bin/cat file1", [(task_a, "file1")])
task_2 = tasks.run("/bin/cat file1", [(task_b, "file1")])
task_3 = tasks.run("/bin/cat file1", [(task_c, "file1")])

Mapping output files

So far, the result of run tasks is created by gathering the standard output. There is also an option to create a result
from files created by the program execution.

Let us assume that program /path/program1 creates outputs.txt as the output, then we can run the following program
and capturing the file at the end (standard output of the program is ignored).

task = tasks.run("/path/program1", outputs=("output.txt",))

The user may define more files as the output. Let us consider the following code, that assumes that program2 creates
two files.

task = tasks.run("/path/program2", outputs=("output1.txt", "output2.txt"))

The result of this task is an array with two elements. This array contains with two plain data objects.

If None is used instead of a name of a file, than the standard output is captured. Therefore, the following task creates
a three element array:

task = tasks.run("/path/program3",
outputs=("output1.txt", # 1st element of array is got from 'output1.

→˓txt'
None, # 2nd element of array is stdout
"output2.txt")) # 3rd element of array is got from 'output2.

→˓txt'

Variables

In previous examples, we have always used a constant arguments for programs; however, programs arguments can be
also parametrized by data objects. When an input data object is mapped to a file name that starts with character $ then

1.3. Python client 7

Loom Documentation, Release 0.7

no file is mapped, but the variable with the same name can be used in arguments. HyperLoom expands the variable
before the execution of the task.

The following example executes program ls where the first argument is obtained from data object.

path = tasks.const("/some/path")
task = tasks.run("/bin/ls $PATH", [(path, "$PATH")])

Note: See Task redirection for a more powerfull dynamic configuration of run.

Error handling

When an executed program exits with a non-zero exit code then the server reports an error that is propagated as
TaskFailed exception in the client.

task = tasks.run("ls /non-existent-path")
try:

result = client.submit_one(task)
result.wait()

except TaskFailed as e:
print("Error: " + str(e))

This program prints the following:

Error: Task id=2 failed: Program terminated with status 2
Stderr:
ls: cannot access '/non-existing-dictionary': No such file or directory

Python functions in plans

HyperLoom allows to execute directly python functions as tasks. The easiest way is to use decorator py_task().
This is demonstrated by the following code:

from loom.client import tasks

@tasks.py_task()
def hello(a):

return b"Hello " + a.read()

task1 = tasks.cont("world")
task2 = hello(task1)

result = client.submit_one(task2)
result.gather() # returns b"Hello world"

The hello function is seralized and sent to the server. The server executes the function on a worker that has necessary
data.

• When str or bytes is returned from the function then a new plain data object is created.

• When loom.client.Task is returned then the the task redirection is used (see Task redirection).

• When something else is returned or exeption is thrown then the task fails.

• Input arguments are wrapped by objects that provide the following methods

8 Chapter 1. User guide

Loom Documentation, Release 0.7

– read() - returns the content of the object as bytes, if data object is not D-Object than empty bytes are
returned.

– size() - returns the size of the data object

– length() - returns the length of the data object

• tasks.py_task has optional label parameter to set a label of the task if it is not used, then the name of
the function is used. See XXX for more information about labels

Decorator py_task() actually uses loom.client.tasks.py_call(), hence the code above can be written
also as:

from loom.client import tasks

def hello(a):
return b"Hello " + a.read()

task1 = tasks.cont("world")
task2 = tasks.py_call(tasks.py_value(hello), (task1,))
task2.label = "hello"

client.submit_one(task2) # returns b"Hello world"

Task redirection

Python tasks (used via decorator py_task or directoly via py_call) may return loom.client.Task to achive
a task redirection. It is useful for simple dynamic configuration of the plan.

Let us assume that we want to run tasks.run, but configure it dynamically on the actual data. The following
function takes two arguments, checks the size and then executes tasks.run with the bigger one:

from loom.client import tasks

@tasks.py_task()
def my_run(a, b):

if a.size() > b.size():
data = a

else:
data = b

return tasks.run("/some/program", stdin=data)

Task context

Python task can configured to obtain a Context object as the first argument. It provides interface for interacting with
the HyperLoom worker. The following example demonstrates logging through context object:

from loom.client import tasks

@tasks.py_task(context=True)
def hello(ctx, a):

ctx.log_info("Hello was called")
return b"Hello " + a.read()

The function is has the same behavior as the hello function in Python functions in plans. But not it writes a message
into the worker log. Context has five logging methods: log_debug, log_info, log_warn, log_error, and
log_critical.

1.3. Python client 9

Loom Documentation, Release 0.7

Moreover Context has attribute task_id that holds the indentification number of the task.

Direct arguments

Direct arguments serve for the Python task configuration without necessity to create HyperLoom tasks. From the user
perspective it works in a similar way as context – they introduces extra parameters. The values for parameters are set
when the task is called. They can be arbitrary serializable objects and they are passed to the function when the py_task
is called. Direct arguments are always passed as the first n arguments of the function. They are specified only by a
number, i.e. how many first n arguments are direct (the rest arguments are considered normal HyperLoom tasks).

Let us consider the following example:

from loom.client import tasks

@tasks.py_task(n_direct_args=1)
def repeat(n, a):

return n * a.read()

c = tasks.const("ABC")
t1 = repeat(2, c)
t2 = repeat(3, c)

client.submit_one(t1).gather() # returns: b"ABCABC"
client.submit_one(t2).gather() # returns: b"ABCABCABC"

Note: When context and direct arguments are used together, then the context is the first argument and them follows
the direct arguments.

For the completeness, the following code demonstrates the usage of direct arguments via py_call:

from loom.client import tasks

def repeat(n, a):
return n * a.read()

c = tasks.const("ABC")
t1 = tasks.py_call(tasks.py_value(repeat), (c,), direct_args=(2,))
client.submit_one(t1).gather() # returns: b"ABCABC"

Python objects

Data objects in HyperLoom can be directly a Python objects. A constant value can be created by tasks.py_value:

from loom.client import tasks

my_dict = tasks.py_value({"A": "B"})

It is similar to tasks.const, but it creates PyObj instead of Plain object.

PyObj can be used in py_task. It has to be unwrapped from the wrapping object first:

@py_task()
def f(a):

d = a.unwrap()

10 Chapter 1. User guide

Loom Documentation, Release 0.7

return "Value of 'A' is " + d["A"]

t = f(my_dict)
client.submit_one(t).gather() # returns b"Value of 'A' is B"

If we want to return a PyObj from py_task we have wrap it to avoid implicit conversion to Data objects:

@py_task()
def example_1():

return "Hello"

@py_task(context=True)
def example_2(ctx):

return ctx.wrap("Hello")

@py_task(context=True)
def example_3(ctx):

return [ctx.wrap({"A", (1,2,3)}), "Hello"]

The first example returns a plain object. The second example returns PyObj. The third one returns HyperLoom array
with PyObj and plain object.

Important: HyperLoom always assumes that all data objects are immutable. Therefore, modyfing unwrapped objects
from PyObj leads to highly undefined behavior. It is recommended to store only immutable objects (strings, tuples,
frozensets, ...) in PyObj to prevent problems. If you store a mutable object in PyObj, be extra carefull to not modify it.

THIS EXAMPLE CONTAINS ERROR
@py_task()
def modify_arg(a):

my_obj = a.unwrap()
my_obj[0] = 321 # HERE IS ERROR, we are modyfing unwrapped object

value = tasks.py_value([1,2,3,4])
modify_arg(value)

Note: Applying wrap on Data wrapper returns the argument without wrapping.

Reports

Reporting system serves for debugging and profiling the HyperLoom programs. Reports can be enabled by
set_trace method as follows:

task = ...
client.set_trace("/path/to/mytrace")
result = client.submit_one(task)
...

The path provided to set_trace has to be placed on a network filesystem that is visible to server and all workers.
It creates a directory /path/to/mytrace where server and workers writes its traces.

The trace can be explored by loom.lore.

1.3. Python client 11

Loom Documentation, Release 0.7

$ python3 -m loom.lore /path/to/mytrace

It creates file output.html that contains the final report. The full list of commands can be obtained by

$ python3 -m loom.rview --help

Labels

Each task may optinally define a label. It serves for debugging purpose – it changes how is the task shown in rview.
Label has no influence on the program execution. The label is defined as follows:

task = tasks.const("Hello")
task.label = "Initial data"

rview assigns colors of graph nodes or lines in a trace according the labels. The two labels have the same color if they
have the same prefix upto the first occurence of character :. In the following example, three colors will be used. Tasks
task1 and task2 will share the same color and task3 and task4 will also share the same color.

task1.label = "Init"
task2.label = "Init"
task3.label = "Compute: 1"
task4.label = "Compute: 2"
task5.label = "End"

Resource requests

Resource requests serves to specify some hardware limitations or inner paralelism of tasks. The current version
supports only requests for a number of cores. It can be express as follows:

from loom.client import tasks

t1 = tasks.run("/a/parallel/program")
t1.resource_request = tasks.cpus(4)

In this example, t1 is a task that reserves 4 cpu cores. It means that if a worker has 8 cores, that at most two of
such tasks is executed simultaneously. Note that if a worker has 3 or less cores, than t1 is never scheduled on such a
worker.

When a task has no resource_request than scheduler assumes that the task is a light weight one and it is
executed very fast without resource demands (e.g. picking an element from array). The scheduler is allows to schedule
simultenously more light weight tasks than cores available for the worker.

Important: Basic tasks defined module loom.tasks do not define any resource request; except loom.tasks.
run, loom.tasks.py_call, loom.tasks.py_value, and loom.tasks.py_task by default defines re-
source request for 1 cpu core.

Dynamic slice & get

HyperLoom scheduler recognizes two special tasks that dynamically modify the plan – dynamic slice and dynamic
get. They dynamically create new tasks according the length of a data object and the current number of workers and
their resources. The goal is to obtain an optimal number of tasks to utilize the cluster resources.

12 Chapter 1. User guide

Loom Documentation, Release 0.7

The following example:

t1 = tasks.dslice(x)
t2 = tasks.XXX(..., t1, ...)
result = tasks.array_make((t2,))

is roughly equivalent to the following code:

t1 = tasks.slice(x, 0, N1)
s1 = tasks.XXX(..., t1, ...)
t2 = tasks.slice(x, N1, N2)
s2 = tasks.XXX(..., t2, ...)
...
tk = tasks.slice(x, Nk-1, Nk)
sk = tasks.XXX(..., tk, ...)
result = tasks.array_make((s1, ..., sk))

where 0 < N1 < N2 ... Nk where Nk is the length of the data object produced by x.

Analogously, the following code:

t1 = tasks.dget(x) t2 = tasks.XXX(..., t2, ...) result = tasks.make_array((t2,))

is roughly equivalent to the following code (where is N is the length of the the data object produced by x:

t1 = tasks.get(x, 0)
s1 = tasks.XXX(..., t1, ...)
t2 = tasks.get(x, 1)
s2 = tasks.XXX(..., t2, ...)
...
tN = tasks.get(x, N)
sN = tasks.XXX(..., tk, ...)
result = tasks.array_make((s1, ..., sN))

Own tasks

Module tasks contains tasks provided by the worker distributed with HyperLoom. If we extend a worker by our
own special tasks, we also need a way how to call them from the client.

Let us assume that we have extended the worker by task my/count as is shown in New tasks. We can create the
following code to utilize this new task type:

from loom.client import Task, tasks

def my_count(input, character):
task = Task()
task.task_type = "my/count"
task.inputs = (input,)
task.config = character
return task

t1 = tasks.open("/my/file")
t2 = my_count(t1)

...

result = client.submit_one(t2)
result.gather()

1.3. Python client 13

Loom Documentation, Release 0.7

Extending worker

Warning: The API in the following section is not yet fully stable. It may be changed in the near future.

HyperLoom infrastructure offers by default a set of operations for basic manipulation with data objects and running
and external programs. One of this task is also task loom/py_call (it can be used via tasks.py_call or tasks.
py_task in Python client). This task allows to executed arbitrary Python codes and the user may define new tasks.

The another way is to directly extend a worker itself. The primary purpose is efficiency, since worker extensions can
be written in C++. Moreover, this approach is more powerfull than py_call, since not only tasks but also new data
objects may be introduced.

On the implementation level, HyperLoom contains a C++ library libloom that implements the worker in an extensible
way.

New tasks

Let us assume that we want to implement a task that returns a number of a specified characters in a D-object. First, we
define the code of the task itself:

#include "libloom/threadjob.h"

class CountJob : public loom::ThreadJob
{
public:

using ThreadJob::ThreadJob;

std::shared_ptr<loom::Data> run() {
// Verify inputs and configuration
if (inputs.size() != 1 || task.config.size() != 1) {

set_error("Invalid use of the task");
return nullptr;

}
char c = task.config[0]; // Get first character of config

if (!inputs[0].has_raw_data()) {
set_error("Input object does not contain raw data");
return nullptr;

}

// Get pointer to raw data
const char *mem = inputs[0].get_raw_data();

// Perform the computation
size_t size = inputs[0].get_size();
uint64_t count = 0;
for (size_t i = 0; i < size;i ++) {

if (mem[i] == c) {
count += 1;

}
}

// Create result
auto output = std::make_shared<RawData>();
output->init_from_mem(work_dir, &count, sizeof(count));

14 Chapter 1. User guide

Loom Documentation, Release 0.7

return std::static_pointer_cast<Data>(output);
}

};

loom::ThreadJob serves for defining a tasks that are executed in its own thread. The subclass has to implement
run() method that is executed when the task is fired. It should return data object or nullptr when an error occurs.

The following code defines main function for the modified worker. It is actually the same code as for the worker
distributed with HyperLoom except the registartion of our new task. Each task has to be registered under a symbol.
Symbols for buildin tasks, data objects and resource requests starts with prefix loom/. To avoid name clashes, it is
good practice to introduce new prefix, in our example, it is prefix my/.

#include "libloom/worker.h"
#include "libloom/log.h"
#include "libloom/config.h"

#include <memory>

using namespace loom;

int main(int argc, char **argv)
{

/* Create a configuration and parse args */
Config config;
config.parse_args(argc, argv);

/* Init libuv */
uv_loop_t loop;
uv_loop_init(&loop);

/* Create worker */
loom::Worker worker(&loop, config);
worker.register_basic_tasks();

/* --> Registration of our task <-- */
worker.add_task_factory<ThreadTaskInstance<CountJob>>("my/count");

/* Start loop */
uv_run(&loop, UV_RUN_DEFAULT);
uv_loop_close(&loop);
return 0;

}

New data objects

TODO

1.4. Extending worker 15

Loom Documentation, Release 0.7

16 Chapter 1. User guide

CHAPTER 2

API

API: Python Client

Client

Future

Tasks

17

	User guide
	Introduction
	Installation
	Python client
	Extending worker

	API
	API: Python Client

